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1. Introduction

The method of homogeneous solutions was applied, in particular, to plane elasticity problems for rect-
angular domains [1,2]. According to this method the solution is represented as a series expansion in the
eigenfunctions of some homogeneous problem (so called Papkovich’s homogeneous solutions [2]). The
homogeneous solutions do not form an orthonormal functional basis. That substantially complicates
the numerical realization of the method. Just for mixed problems, when the normal displacements and
tangential tractions or normal traction and tangential displacements are given, it is becomes possible
to obtain analytical relations expressing the coefficients of the solution via the functions of boundary
conditions.

Variational method of homogeneous solutions for plane problems was suggested in papers [3,4].
Under this method the solution in form of the eigenfunction expansion is subordinated to the boundary
conditions due to the quadratic functional norm. This reduces the problem to an infinite system of
algebraic equations for the expansion coefficients, which have being solved by the reduction method [3].
Four types of boundary problems have been considered with the use of this method: two ones with
boundary conditions in stresses or displacements prescribed on the opposite sides of the rectangle,
and two other with mixed boundary conditions, given on these sides. The problems for piecewise
homogeneous strip have been also considered [5]. The convergence of the method was studied for some
specific cases in [3,4].

A system of homogeneous solutions for an axisymmetric elasticity problem for a cylinder with
homogeneous conditions in stresses on the lateral cylindrical surface is presented in the monograph [6].
System is obtained with the use the Papkovich-Neuber’s representation. An example of application
of the method for solving the axisymmetric problem for a semi-infinite cylinder with traction-free
lateral surface and loaded end face is considered in [6]. The expansion coefficients for this problem
were determined by minimization of a quadratic functional. The functional specifies the deviation of
the sought-for solution from the given functions of boundary conditions in stresses prescribed on the
cylinder’s end face. In the presented numeric examples the solution containing two expansion terms
had been used.
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A variational method of homogeneous solutions for axisymmetric elasticity problems for cylinder 129

In this paper the solution of the axisymmetric elasticity problem for cylinder is represented with the
use of Love function. That reduces the problem to biharmonic equation. Basing on this representation,
the systems of homogeneous solutions in cylindrical coordinates have been obtained. These systems
have been used for variational formulation and solving of axisymmetric elasticity problems for semi-
infinite and finite cylinders with traction-free lateral surface and different types of boundary conditions
given on their end faces.

2. Systems of homogeneous solutions of the biharmonic equation in cylindrical coordi-
nates

Consider the class of axisymmetric elasticity problems for a semi-infinite cylinder 0 6 r 6 a,
0 6 θ 6 2π, 0 6 z 6 ∞ (r, θ, z — cylindrical coordinates). Let the lateral surface of the cylinder r = a
be free of traction:

σrr|ξ=1 = 0, σrz|ξ=1 = 0 (1)

and on the end surface z = 0 one pair of boundary conditions (2)–(5) are given (problems I–IV
correspondingly):

σzz|ζ=0 = σ(ξ), σrz|ζ=0 = τ(ξ), (2)

uz|ζ=0 = u(ξ), ur|ζ=0 = v(ξ), (3)

σzz|ζ=0 = σ(ξ), ur|ζ=0 = v(ξ), (4)

uz|ζ=0 = u(ξ), σrz|ζ=0 = τ(ξ). (5)

Here, ξ ≡ r/a, ζ ≡ z/a are dimensionless coordinates, σ(ξ), τ(ξ), u(ξ), v(ξ) are given functions.

Function σ(ξ) satisfies the condition
1
∫

0

σ(ξ)ξdξ = 0.

With the use the Love function χ the axisymmetric elasticity problem can be reduced to biharmonic
equation [7]:

∇2∇2χ = 0, (6)

where ∇2 = ∂2

∂ξ2
+ 1

ξ
∂
∂ξ +

∂2

∂ζ2
is the axisymmetric Laplace operator.

The components of the stress tensor σzz, σrr, σθθ, σrz and displacement vector ur, uz can be
expressed via the function χ as follows:

1

2µ
σzz =

∂

∂ζ

(

(2− ν)∇2χ−
∂2χ

∂ζ2

)

,
1

2µ
σrr =

∂

∂ζ

(

ν∇2χ−
∂2χ

∂ξ2

)

,

1

2µ
σθθ =

∂

∂ζ

(

ν∇2χ−
1

ξ

∂χ

∂ξ

)

,
1

2µ
σrz =

∂

∂ξ

(

(1− ν)∇2χ−
∂2χ

∂ζ2

)

,

ur = −
∂2

∂ξ∂ζ
, uz =

∂2

∂ζ2
+ 2(1 − ν)∇2χ.

Here, ν and µ stand for Poisson and shear modulus.
Representing the solution of the equation (6) in the form

χ = exp(−γζ)f(ξ),

where γ is a unknown constant, we come to the following equation for the unknown function f(ξ)

f IV (ξ) +
2

ξ
f ′′′(ξ) +

(

2γ2 −
1

ξ2

)

f ′′(ξ) +

(

2γ2 +
1

ξ2

)

1

ξ
f ′(ξ) + γ4f(ξ) = 0.
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130 ChekurinV. F., Postolaki L. I.

Its general solution is

f(ξ) = ξ(AJ1(γξ) +BY1(γξ) + CY0(γξ) (J0(γξ)Y1(γξ)− J1(γξ)Y0(γξ)))+

+Dξ
(

Y1(γξ)(J
2
0 (γξ)− 1)− J0(γξ)J1(γξ)Y0(γξ)

)

. (7)

Here J0, J1, Y0, Y1 are zero- and first-order Bessel and Neumann functions correspondingly, A, B, C,
D are unknown constants.

Function f(ξ) is singular at the point ξ = 0, so presentation of the solution in form (7) can not be
used for solid cylinder. To avoid that, the solution are presented in [8,9] as a Fourier-Bessel expansion
in function J0.

Unlike that, to ensure finiteness of the solution f(ξ) at the point ξ = 0, we put in the formula (7)
C = 0 and D = B. With this we obtain the presentation for the solution

f(ξ) = ξJ1(γξ)A−
2

πγ
J0(γξ)B, (8)

which is finite in the point ξ = 0. Function (8) is depending on the two unknown constants A and B,
will what provides the possibility to subordinate the solution to two boundary conditions given on the
cylinder’s face end.

Substituting (8) into boundary conditions (1), we come to the following homogeneous system of
equations with respect the unknown constants A and B:

((1 − 2ν)J0(γ)− γJ1(γ))A+
2

πγ
(γJ0(γ)− J1(γ))B = 0,

((2ν − 2)J1(γ)− γJ0(γ))A −
2

π
J1(γ)B = 0.

(9)

Applying the compatibility condition to the system (9) we obtain the following transcendental equation
for parameter γ:

γ2
(

J2
0 (γ) + J2

1 (γ)
)

+ 2(ν − 1)J2
1 (γ) = 0. (10)

Equation (10) is equivalent to those obtained with the use of the Papkovich-Neuber representation
for solution of axisymmetric elasticity problem [10].

Equation (10) has the only real root γ = 0, hence instead we should can consider the infinite
sequences of complex roots γk = αk+ iβk, −γk, γk = αk− iβk and −γk (k = 1, . . . ,∞), where i stands
for imaginary unit, αk, βk are real constants. To guarantee decaying the solution as ζ approaches to
infinity, we use only two sequences γk and γk with positive real parts.

The equation has being solved numerically by residual minimization. The values of the first 25
roots rounded to 5 decimal digits, calculated at ν = 0.25, are presented in the Table 1.

Table 1. Roots of the transcendental equation.

k αk βk k αk βk k αk βk
1 2.69765 1.36735 6 18.75905 2.16604 11 34.50379 2.46622

2 6.05122 1.63814 7 21.91184 2.24211 12 37.64928 2.50949

3 9.26127 1.82853 8 25.06203 2.30817 13 40.79422 2.54932

4 12.43844 1.96742 9 28.21044 2.36656 14 43.93871 2.58623

5 15.60220 2.07642 10 31.35758 2.41886 15 47.08284 2.62059

So, the system (9) has infinity number of solutions Ak, Bk, such that Ak = κkBk, where

κk =
2J1(γk)

π ((2ν − 2)J1(γk)− γkJ0(γk))
.
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As a result, we obtain two complete infinite systems of homogeneous complex solutions decaying
at infinity: the first one is

σkzz(ξ, ζ) ≡ σkzz(ξ) exp(−γkζ), σkrr(ξ, ζ) ≡ σkrr(ξ) exp(−γkζ),

σkθθ(ξ, ζ) ≡ σkθθ(ξ) exp(−γkζ), σkrz(ξ, ζ) ≡ σkrz(ξ) exp(−γkζ),

ukr(ξ, ζ) ≡ ukr(ξ) exp(−γkζ), ukz(ξ, ζ) ≡ ukz(ξ) exp(−γkζ)

and the second one is

σkzz(ξ, ζ) ≡ σkzz(ξ) exp(−γkζ), σkrr(ξ, ζ) ≡ σkrr(ξ) exp(−γkζ),

σkθθ(ξ, ζ) ≡ σkθθ(ξ) exp(−γkζ), σkrz(ξ, ζ) ≡ σkrz(ξ) exp(−γkζ),

ukr(ξ, ζ) ≡ ukr(ξ) exp(−γkζ), ukz(ξ, ζ) ≡ ukz(ξ) exp(−γkζ).

Here

σkzz(ξ) = 2µγ2k

(

κk (2(ν − 2)J0(γkξ) + γkξJ1(γkξ))−
2

π
J0(γkξ)

)

,

σkrr(ξ) = 2µγ2k

(

κk ((1− 2ν)J0(γkξ)− γkξJ1(γkξ)) +
2γkξJ0(γkξ)− J1(γkξ)

πγkξ

)

,

σkθθ(ξ) = 2µγk

(

(1− 2ν)γkκkJ0(γkξ) +
2

πξ
J1(γkξ)

)

,

σkrz(ξ) = 2µγ2k

(

κk((2ν − 2)J1(γkξ)− γkξJ0(γkξ))−
2

π
J1(γkξ)

)

,

ukr(ξ) = γk

(

κkγkξJ0(γkξ) +
2

π
J1(γkξ)

)

,

ukz(ξ) = κkγk (γkξJ1(γkξ) + 4(1 − ν)J0(γkξ))−
2

π
γkJ0(γkξ).

Following the approach proposed in [3,4], we represent the general solution of the problems I–IV
in the real domain as the linear combination of the homogeneous solutions:

σzz(ξ, ζ) =
1

2

∞
∑

k=1

(

Bkσkzz(ξ, ζ) +Bkσkzz(ξ, ζ)
)

, (11)

σrr(ξ, ζ) =
1

2

∞
∑

k=1

(

Bkσkrr(ξ, ζ) +Bkσkrr(ξ, ζ)
)

, (12)

σθθ(ξ, ζ) =
1

2

∞
∑

k=1

(

Bkσkθθ(ξ, ζ) +Bkσkθθ(ξ, ζ)
)

, (13)

σrz(ξ, ζ) =
1

2

∞
∑

k=1

(

Bkσkrz(ξ, ζ) +Bkσkrz(ξ, ζ)
)

, (14)

ur(ξ, ζ) =
1

2

∞
∑

k=1

(

Bkukr(ξ, ζ) +Bkukr(ξ, ζ)
)

, (15)

uz(ξ, ζ) =
1

2

∞
∑

k=1

(

Bkukz(ξ, ζ) +Bkukz(ξ, ζ)
)

+C. (16)

The real constant C has been introduced to take into account the displacement of the cylinder as a
rigid body. The general solution (11)–(16) depends on the infinite sequence of undetermined complex
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132 ChekurinV. F., Postolaki L. I.

constants Bk. We will determine them to subordinating the solution to the boundary conditions
imposed on the end faces of the cylinder applying the variational approach.

3. Variational method for a semiinfinite cylinder

We use the quadratic norm to subordinate of the solution to the boundary conditions (2)–(5) [3,4,10].
To do this we introduce for each problem I–IV the corresponding quadratic functional:

FI =

1
∫

0

[

(σzz|ζ=0 − σ(ξ))2 + (σrz|ζ=0 − τ(ξ))2
]

ξdξ, (17)

FII =

1
∫

0

[

(uz|ζ=0 − u(ξ))2 + (ur|ζ=0 − v(ξ))2
]

ξdξ, (18)

FIII =

1
∫

0

[

(σzz|ζ=0 − σ(ξ))2 + (ur|ζ=0 − v(ξ))2
]

ξdξ, (19)

FIV =

1
∫

0

[

(uz|ζ=0 − u(ξ))2 + (σrz|ζ=0 − τ(ξ))2
]

ξdξ. (20)

Substituting the representation (11)–(16) into the functionals (17)–(20), and applying the necessary
minimum conditions

∂Fj

∂Bm
= 0,

∂Fj

∂Bm

= 0,
∂FII

∂C
= 0, j = I, II, III, IV m = 1, 2, . . . .

we come to the infinite system of linear algebraic equations

∞
∑

k=1

2
∑

p=1

Csp
mkB

p
k = Ks

m. (21)

The coefficients Csp
mk, K

s
m (s, p = 1, 2; m = 1, 2, . . .) of system (21) for problems I–IV are defined

by the formulas (22)–(29) correspondingly:

Csp
mk =

1

2

1
∫

0

(

σsmzzσ
p
kzz + σsmrzσ

p
krz

)

ξdξ, (22)

Ks
m =

1
∫

0

(σ(ξ)σsmzz + τ(ξ)σsmrz) ξdξ, (23)

Csp
mk =

1

2

1
∫

0

(

usmzu
p
kz + usmru

p
kr

)

ξdξ −

1
∫

0

usmzξdξ

1
∫

0

upkzξdξ, (24)

Ks
m =

1
∫

0

(u(ξ)usmz + v(ξ)usmr) ξdξ − 2

1
∫

0

u(ξ)ξdξ

1
∫

0

usmzξdξ, (25)
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Csp
mk =

1

2

1
∫

0

(

σsmzzσ
p
kzz + usmru

p
kr

)

ξdξ, (26)

Ks
m =

1
∫

0

(σ(ξ)σsmzz + v(ξ)usmr) ξdξ, (27)

Csp
mk =

1

2

1
∫

0

(

usmzu
p
kz + σsmrzσ

p
krz

)

ξdξ −

1
∫

0

usmzξdξ

1
∫

0

upkzξdξ, (28)

Ks
m =

1
∫

0

(u(ξ)usmz + τ(ξ)σsmrz) ξdξ − 2

1
∫

0

u(ξ)ξdξ

1
∫

0

usmzξdξ. (29)

The constant C can be expressed via Bp
k as

C =

1
∫

0



−
∞
∑

k=1

2
∑

p=1

Bp
ku

p
kz(ξ, 0) + 2u(ξ)



 ξdξ. (30)

We used the following notation in the formulas (22)–(30):

σ1kzz = σkzz(ξ), σ2kzz = σkzz(ξ), σ1krz = σkrz(ξ), σ2krz = σkrz(ξ),

σ1mzz = σmzz(ξ), σ2mzz = σmzz(ξ), σ1mrz = σmrz(ξ), σ2mrz = σmrz(ξ),

u1kr = ukr(ξ), u2kr = ukr(ξ), u1kz = ukz(ξ), u2kz = ukz(ξ),

u1mr = umr(ξ), u2mr = umr(ξ), u1mz = umz(ξ), u2mz = umz(ξ).

4. Numerical study the convergence of the reduction method

The system (21) can be solved with the use of the reduction method. To do that we consider retain
a finite number of terms in the expansions (11)–(16). This brings to finite system of the algebraic
equations for B1

k = Bk, B
2
k = Bk, k = 1, 2, . . . , N

N
∑

k=1

2
∑

p=1

Csp
mkB

p
k = Ks

m. (31)

To evaluate numerically the convergence of the reduction method for problems I–IV we consider
some examples, taking the functions of the right-hand sides for the boundary conditions (2)–(5) in
forms respectively

σ(ξ) = σ0 arctan(d(ξ − ξ0)), τ(ξ) = 0,

u(ξ) = 0, v(ξ) = v0ξ,

σ(ξ) = σ0 arctan(d(ξ − ξ0)), v(ξ) = 0,

u(ξ) = 0, τ(ξ) = τ0.

On the figures 1, 2 some results obtained by solving the problem III at ξ0 = 0.5, d = 40 are
presented. Fig. 1 display the radial dependencies of the normalized stress σzz/σ0 and displacement
ur/u0 (u0 = aσ0/µ) on the coordinate ξ for different N . As we can see the dependencies σzz(ξ, ζ) |ζ=0

and ur(ξ, ζ) |ζ=0 are approaching to the given functions σ(ξ) and v(ξ) correspondingly, when number
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N is increasing: the curves 3 are practically coincided with the graphs of the given functions σ(ξ) and
v(ξ) of this problem’s boundary conditions.

a b

Fig. 1. Radial dependencies of stress component σzz(ξ, 0)/σ0 (a) and displacement component ur(ξ, 0)/u0 (b)
for different N = 2, 4, 20 (curve 1, 2, 3 correspondingly)

Strain and stress components quickly decay with distance from the end surface. Fig. 2 illustrates
the axial dependencies of the stress components σrr(ξ, ζ) |ξ=0 and σθθ(ξ, ζ) |ξ=1.

Fig. 2. Axial dependencies of normalized stresses
components σrr(0, ζ) (curve 1) and σθθ(1, ζ) (curve 2).

Fig. 3. Decaying of the reduction error with growing
the number of retained terms in the solution repre-
sentation for problems I–IV.

So, if an end of finite cylinder is loaded by self-balanced traction and its height is equal or greater
of its diameter then we can consider it as a semi-infinite cylinder.

We estimate the error for each solution of the problems I–IV, obtained by solving the system (31),
through the value of the corresponding functional as:

εI =
1

σ0

(

FN
I

2

)1/2

, εII =
1

v0

(

FN
II

2

)1/2

,

εIII =
1

σ0

(

FN
III

2

)1/2

, εIV =
1

τ0

(

FN
IV

2

)1/2

.

Plots on Fig. 3 demonstrate how the errors εI , εII , εIII , εIV are decaying with increasing N (curves
1–4 correspondingly). As we can see the convergence of the reduction method depends on the type
of boundary conditions and features of the given functions of boundary conditions. On the basis of
conducted numerical experiments we can conclude that reduction method’s accuracy, sufficient for
practical goals, can be achieved at N > 10.
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5. Variational method for a finite cylinder

Consider the class of axisymmetric problems of elasticity theory for a finite cylinder 0 6 r 6 a,
0 6 θ 6 2π, −b 6 z 6 b, with free lateral surface (conditions (1)) and four types of boundary
conditions on the ends ζ = ±b of cylinder (problems V–VIII):

σzz|ζ=±b = σ(ξ), σrz|ζ=±b = τ(ξ), (32)

uz|ζ=±b = u(ξ), ur|ζ=±b = v(ξ), (33)

σzz|ζ=±b = σ(ξ), ur|ζ=±b = v(ξ), (34)

uz|ζ=±b = u(ξ), σrz|ζ=±b = τ(ξ). (35)

Since the each solution of the problems V–VIII satisfies on the opposite cylinder’s ends ζ = ±b the
conditions of the same types, we can split each problem (32)–(35) on the symmetric and antisymmetric
parts with respect to the plane ζ = 0.

To do that we take the solution in the forms:

χ =
1

2

∞
∑

k=1

(

Lkfk(ξ) cosh(γkζ) + Lkfk(ξ) cosh(γkζ)
)

for symmetric part and

χ =
1

2

∞
∑

k=1

(

Lkfk(ξ) sinh(γkζ) + Lkfk(ξ) sinh(γkζ)
)

,

for antisymmetric part, where fk(ξ) = ξJ1(γkξ)κk −
2

πγk
J0(γkξ), Lk are undetermined constants.

Using the variational method of homogeneous solutions [3,4] we represent the components w(ξ, ζ) ∈
{σzz(ξ, ζ), σrr(ξ, ζ), σθθ(ξ, ζ), σrz(ξ, ζ), ur(ξ, ζ), uz(ξ, ζ)} for symmetry and antisymmetry problems in
the form (36) and (37) correspondingly:

w(ξ, ζ) =
1

2

∞
∑

k=1

(

Lkwk(ξ) cosh(γkζ) + Lkwk(ξ) cosh(γkζ)
)

, (36)

w(ξ, ζ) =
1

2

∞
∑

k=1

(

Lkwk(ξ) cosh(γkζ) + Lkwk(ξ) cosh(γkζ)
)

, (37)

Here wk(ξ) ∈ {σkzz(ξ), σkrr(ξ), σkθθ(ξ), σkrz(ξ), ukr(ξ), ukz(ξ)}.
To subordinate the solutions for problem V–VIII to the boundary conditions (32)–(35) in the

quadratic norm, we introduce corresponding quadratic functional:

FV =

1
∫

0

[

(σzz|ζ=±b − σ(ξ))2 + (σrz|ζ=±b − τ(ξ))2
]

ξdξ, (38)

FV I =

1
∫

0

[

(uz|ζ=±b − u(ξ))2 + (ur|ζ=±b − v(ξ))2
]

ξdξ, (39)

FV II =

1
∫

0

[

(σzz|ζ=±b − σ(ξ))2 + (ur|ζ=±b − v(ξ))2
]

ξdξ, (40)

FV III =

1
∫

0

[

(uz|ζ=±b − u(ξ))2 + (σrz|ζ=±b − τ(ξ))2
]

ξdξ. (41)
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Using the necessary condition of minimum of the functionals (38)–(41)

∂Fj

∂Lm
= 0,

∂Fj

∂Lm

= 0,
∂FV I

∂C
= 0, j = V, V I, V II, V III m = 1, 2, . . .

we obtain the infinite system of linear algebraic equations

∞
∑

k=1

2
∑

p=1

Csp
mkL

p
k = Ks

m. (42)

Here, L1
k = Lk, L

2
k = Lk.

The coefficients of system (42) are defined by the formulas (22)–(29) with following notation

w1
k = wk(ξ) cosh(γkζ), w2

k = wk(ξ) cosh(γkζ)

for symmetric part and

w1
k = wk(ξ) sinh(γkζ), w2

k = wk(ξ) sinh(γkζ)

for antisymmetric part. Here w1
k ∈ {σ1kzz, σ

1
krr, σ

1
kθθ, σ

1
krz, u

1
kr, u

1
kz}, w

2
k ∈ {σ2kzz, σ

2
krr, σ

2
kθθ, σ

2
krz, u

2
kr, u

2
kz}.

The constant C can be calculated as

C =

1
∫

0



−

∞
∑

k=1

2
∑

p=1

Lp
ku

p
kz(ξ, b) + 2u(ξ)



 ξdξ.

6. Axisymmetric bending of a thick disk

Fig. 4. Axisymmetric bending of the
circular disk.

As an example of applying the variational approach we consider
the problem of bending of a round disk (Fig. 4). The external
axisymmetric loadings F1(ξ) and F2(ξ) applying to opposite
disc’s surfaces, are concentrated in vicinities of the concentric
circles of radiuses r1 and r2 correspondingly and satisfy the
conditions

1
∫

0

F1(ξ)ξdξ =

1
∫

0

F2(ξ)ξdξ.

Under such loading the boundary conditions for symmetric
and antisymmetric problems are as follows:

σzz|ζ=±b =
1

2
(F1(ξ) + F2(ξ)) , σrz|ζ=±b = 0,

σzz|ζ=±b =
1

2
(F1(ξ)− F2(ξ)) , σrz|ζ=±b = 0.

We solved the problem, taking the functions F1(ξ) and F2(ξ)
in the form

F1(ξ) = σ0 exp

(

− sin(ξ − r1)
2

δ

)

, F2(ξ) = ψσ0 exp

(

− sin(ξ − r2)
2

δ

)

,

where ψ =
1
∫

0

exp
(

− sin(ξ−r1)2

δ

)

ξdξ
/ 1
∫

0

exp
(

− sin(ξ−r2)2

δ

)

ξdξ, σ0 and δ are given parameters.
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The solution was obtained at N = 25. Some results obtaining for b = 0.2a, r1 = 0.5a, r2 = 0.8a,
δ = 0.04a are shown on figures 5–7.

a b

Fig. 5. Radial dependence of the normalized stress component σzz/σ0 on the faces ζ = b (curve 1) and ζ = −b
(curve 2) for symmetric (a) and antisymmetric (b) problems.

a b

Fig. 6. Radial dependence of the normalized stress component σrr/σ0 on the faces ζ = b (curve 1) and ζ = −b
(curve 2) for symmetric (a) and antisymmetric (b) problems.

a b

Fig. 7. Radial dependence of the normalized stress component σθθ/σ0 on the faces ζ = b (curve 1) and ζ = −b
(curve 2) for symmetric (a) and antisymmetric (b) problems.
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On figure 5 the normalized axial stress component σzz/σ0 on surfaces ξ = ±b for symmetric (a)
and antisymmetric (b) problems as the function of radial coordinate are shown. As we can see the
calculated values of the stress component are practically coincide with the applied loading.

Graphs of distribution of normalized stress components σrr/σ0, σθθ/σ0 for symmetric (a) and
antisymmetric (b) tasks are shown in Fig. 6, 7.

7. Conclusions

Variational method for solving of axisymmetric elasticity problems for semi-infinite and finite cylinders
is developed. According to this method the solution is represented as the series expansion in the
eigenfunctions of problem for a cylinder with an unloaded lateral surface. This reduces the problem to
an infinite system of algebraic equations for the coefficients of the expansion, which have being solved
by the reduction method. Four types of boundary problems have been considered for semi-infinite
and finite cylinders with the use of this method. Application of this method to study of the stressed
state of a circular disc under its transversal bending by normal forces applying to the disc’s faces has
been made. That allowed to obtain the analytical solution that reflects the volumetric character of the
stressed state. These results can be used in particular for optimizing the geometric parameters of the
samples and loading conditions for long-term strength statistical testing of brittle materials [11].
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Варiацiйний метод однорiдних розв’язкiв розв’язування
осесиметричних задач теорiї пружностi для цилiндра

ЧекурiнВ.Ф., ПостолакiЛ. I.

Iнститут прикладних проблем механiки i математики iм. Я. С. Пiдстригача НАН України

вул. Наукова, 3-б, 79060, Львiв, Україна

Розвинено варiацiйний метод однорiдних розв’язкiв для розв’язування осесиметрич-
них задач теорiї пружностi для пiвбезмежного та скiнченого цилiндрiв, на торцевих
поверхнях яких заданi умови навантаження в напруженнях, перемiщеннях чи змiша-
нi. Розв’язок подано у виглядi розвинення за системами власних функцiй вiдповiд-
ної однорiдної бiгармонiчної задачi у цилiндричних координатах. Пiдпорядкування
розв’язку умовам, заданим на торцях цилiндра, здiйснюється за квадратичною нор-
мою. Як приклад застосування цього методу розглянута задача згинання товстого
круглого диска зосередженими силами, прикладеними до його лицьових поверхонь.

Ключовi слова: цилiндричне тiло, осесиметрична задача теорiї пружностi,

функцiя Лява, бiгармонiчне рiвняння, варiацiйний метод однорiдних розв’язкiв
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