

Modeling of Pt-catalyst surface influence on characteristics of oxygen and carbon monoxide molecules

Kostrobij P.¹, Beznosiuk A.¹, Dmytruk V.^{1,2}, Polovyi V.¹

¹Lviv Polytechnic National University
12 S. Bandera str., 79013, Lviv, Ukraine
²Centre of Mathematical Modelling of Pidstryhach IAPMM
of National Academy of Sciences of Ukraine
15 Dudayev str., 79005, Lviv, Ukraine

(Received 30 June 2016)

A simple mathematical model of Pt-catalyst surface influence on both carbon monoxide and oxygen molecules behavior is considered. It is shown that an electric field, which is located in a near-surface layer of the Pt-catalyst, leads to a significant change of both the dipole moment and the equilibrium interatomic distance.

Keywords: diatomic molecule in electric field, catalyst phenomenon, semi-bounded metal.

2000 MSC: 00A71 **UDC:** 533.9, 536.7

1. Introduction

A significant number of theoretical and experimental researches are devoted to investigation of carbon monoxide (CO) oxidation processes kinetics on a metal catalysts surface (based on platinum, palladium, ruthenium) [1]. Nevertheless, the research of these processes remains urgent both from the viewpoint of experimental investigations at nanocatalytic level and theoretical viewpoint because a consequent microscopic theory of reactive diffusion processes has not been investigated enough yet. Without understanding catalytic CO oxidation mechanisms on a microscopic scale, the development of a mathematical model of a quantitative description of catalytic CO oxidation process is impossible.

The catalytic CO oxidation mechanisms (Langmuir-Hinshelwood (LH) [2], Eley-Rideal (ER) [3]) were investigated in [4]. According to the LH mechanism both reactants (CO and O_2) are adsorbed on a metal catalyst surface in the beginning and then between adsorbed CO_{ad} and O_{ad} under thermodynamically advantageous conditions a fusion reaction with a quick desorption process of the resultant product (CO_2) from the catalyst surface occur. The CO oxidation process through the ER mechanism occurs when oxygen atoms are adsorbed on the catalyst surface and a CO molecule is located in a subsurface gas zone. The energy barrier of the reaction according to such a mechanism is $0.72\,\mathrm{eV}$ and according to LH mechanism it is larger ($0.8-1.05\,\mathrm{eV}$). However, experimental investigations show that for CO oxidation processes on a platinum catalyst, LH mechanism is more acceptable. Although, the minimum barrier energy of a reaction for ER mechanism is less than for LH mechanism, such factors as the CO molecule structure, its orientation near a catalyst surface begin to play a determinant role. Detailed microscopic analysis of CO oxidation mechanisms on a platinum catalyst surface was conducted in [5–7] and an impurity effect on a catalytic CO oxidation was considered in [8].

ZGB model [9] and its generalization [10] a basis for theoretical investigation of catalytic CO oxidation kinetics being considered. This model assumes that a CO oxidation reaction occurs only on a catalyst surface, moreover, an adsorption of oxygen atoms occurs in consequence of a O_2 molecule decomposition near the catalyst surface. The CO molecule is adsorbed by the surface and lies on it without decomposing into atoms. However, as shown in [11], near a metal catalysts surface there exists

a strong electrostatic field (with the intensity $40 \,\mathrm{V/nm}$), which localization is the same as the atomic number of the metal catalyst. The influence of this field on a diatomic molecule (CO or O_2) can lead to its decomposition into atoms that henceforth can be adsorbed by the surface of metal catalysts.

In this work, a simple mathematical model of a diatomic molecule near a metal catalyst surface is developed and investigated. It is shown that existing near-surface electric field affects an equilibrium distance R between molecule atoms (leads to its increase), that implies a possibility of molecule decomposition into atoms with a consequent adsorption of O_2 molecule by the surface.

2. Problem formulation

Let us consider a motion of a diatomic molecule (CO or O_2) near a metal catalyst surface. The diatomic molecule contains atoms with atomic numbers Q_1 and Q_2 respectively, and set of electrons which general number is $Q_1 + Q_2$.

Whereas the metal catalyst is macroscopically large comparing to a size of the molecule, further let us assume that it is located in the lower half-space Z < 0 (OXYZ is the Cartesian coordinate system connected to the catalyst) with a flat surface Z = 0 (Fig. 1).

Fig. 1. Diatomic molecule near metal catalyst surface.

As shown in [13], near the surface of metal there exists a non-uniform electric field with the intensity $E(\mathbf{r})$.

In dipole approximation [14], the energy W of diatomic molecule in an internal electric field of the intensity $E(\mathbf{r})$ can be expressed as follows:

$$W = W_0 + \frac{1}{2} \int_V \varphi(\mathbf{r}) \rho(\mathbf{r}) d\mathbf{r} - \int_V (\mathbf{d}(\mathbf{r}), \mathbf{E}(\mathbf{r})) d\mathbf{r}.$$
 (1)

Here W_0 is a molecule energy at the moment when electric field is absent, $\rho(\mathbf{r})$ is the electric charge density, $\varphi(\mathbf{r})$ and $\mathbf{E}(\mathbf{r})$ are the potential and the intensity of the electric field respectively, $\mathbf{d}(\mathbf{r})$ is the dipole moment of the molecule, (,) is a scalar product.

The diatomic molecule density of the electric field is

$$\rho(\mathbf{r}) = \rho^{e}(\mathbf{r}) + Q_{1}e\delta(\mathbf{r} - \mathbf{R}_{1}) + Q_{2}e\delta(\mathbf{r} - \mathbf{R}_{2}). \tag{2}$$

Here \mathbf{R}_1 and \mathbf{R}_2 are coordinates of the nucleus atoms of the molecule in Cartesian coordinate system tied to the catalyst, e is electron charge, $\delta()$ is Dirac delta function [14].

Let us assume that the dipole moment of the molecule is a constant vector. It allows us to write the expression for the dipole moment in the presence of the electric field in the following form

$$d(r) = (d_0 + \varepsilon_0 \alpha \mathbf{E}) \, \delta \left(r - \mathbf{R}^d \right) \mathbf{n}, \tag{3}$$

Mathematical Modeling and Computing, Vol. 3, No. 1, pp. 43-50 (2016)

where d_0 is an absolute value of the dipole moment, ε_0 is the vacuum permittivity, α is the molecule polarization, \boldsymbol{n} is a unit direction vector (in our case under influence of a field, created by the surface, the direction is perpendicular to the surface). Let us consider that dipole moment is concentrated in the molecule center of the charge \boldsymbol{R}^d , which we denote by

$$oldsymbol{R}^d = rac{Q_1 oldsymbol{R}_1 + Q_1 oldsymbol{R}_2}{Q_1 + Q_2}.$$

For the chosen model of catalyst in case of a plane surface, the electrostatic potential is $\varphi(\mathbf{r}) \equiv \varphi(z)$, and $E(\mathbf{r}) \equiv E(z)$ [15], where z is a coordinate of the Oz axis that is perpendicular to the surface of catalyst.

Considering this, let us rewrite the expression (3) as follows:

$$W - W_0 = \frac{1}{2} \int_V \varphi(z) \rho^e(\mathbf{r}) d\mathbf{r} - \frac{1}{2} e \left(Q_1 \varphi(z_1) + Q_2 \varphi(z_2) \right) - d_{0z} E(z_d) - \varepsilon_0 \alpha E^2(z_d), \qquad (4)$$

where d_0 is a dipole moment projection of the molecule onto Oz axis.

3. Calculation of the electronic density, the electrostatic potential and intensity

The electronic density of molecules has been calculated using a software package Firefly (old name is PC GAMESS) [18]. In Fig. 2, it is shown scalar surfaces of the electronic density of CO molecule and in Fig. 3 of O_2 . Note that the scalar surfaces of the electronic density for CO coincide with results of analogical calculations given in [16].

The electrostatic potential $\varphi(z)$ in our model (Fig. 1) is a solution of Poisson's equation [15]:

$$\frac{d^2\varphi(z)}{dz^2} = -4\pi e n \left(F_1(z) - F_{ion}(z)\right) \tag{5}$$

or

$$\varphi(z) = \varphi(-\infty) + 4\pi e n \int_{-\infty}^{z} dz' \left(z' - z\right) \left(F_1(z') - F_{ion}(z')\right). \tag{6}$$

Here $F_1(z)$ is a unary distribution function of electrons, $nF_{ion}(z) \equiv \frac{2N}{SL}e\theta(-z-m_d)$ is a unary distribution function of positive compensated charge, $m_d > 0$ is a parameter that is determined by the electroneutrality condition:

$$\int_{-\infty}^{\infty} dz \left(F_1(z) - F_{ion}(z) \right) = 0. \tag{7}$$

The unary distribution function $F_1(z)$ was calculated in the research [17]. Knowing $F_1(z)$ it is possible to write the intensity of induced electrostatic field as follows

$$E(z) = -\frac{d\varphi(z)}{dz} = -4\pi e n \int_{-\infty}^{z} dz' \left(n\left(z'\right) - n\left(z\right) \right). \tag{8}$$

Here n(z) is defined according to the condition $F_1(z) = en(z)$.

 $\varphi(\mathbf{r})$ and $E(\mathbf{r})$ were calculated using the results obtained in [17] for the unary function $F_1(z)$. Results of these calculations in accordance with Gell-Mann-Brueckner parameter r_s [14] are presented in Figs. 4 and 5.

Mathematical Modeling and Computing, Vol. 3, No. 1, pp. 43-50 (2016)

Fig. 2. Electronic density of *CO* molecule obtained by using Firefly.

Fig. 3. Electronic density of O_2 molecule obtained by using Firefly.

Fig. 4. Electrostatic potential $\varphi(z)$ for different values of r_s .

Fig. 5. Intensity E(z) of field for different values of r_z

4. Calculation of flue gas and oxygen molecules energy near the catalyst surface

Let us go back to the expression for the energy of diatomic molecule in an electric field (4):

$$W - W_0 = \frac{1}{2} \int_{\mathcal{X}} \varphi\left(z\right) \rho^e\left(\boldsymbol{r}\right) d\boldsymbol{r} - \frac{1}{2} e\left(Q_1 \varphi\left(z_1\right) + Q_2 \varphi\left(z_2\right)\right) - d_{0z} E\left(z_d\right) - \varepsilon_0 \alpha E^2\left(z_d\right),$$

In the first term, let us make a transformation from coordinate system of catalyst to coordinate system of the diatomic molecule (Fig. 1). Let $\mathbf{r} = (x, y, z)$ be coordinates in the catalyst coordinate system, $\mathbf{r}' = (x', y', z')$ are coordinates in the molecule coordinate system. These coordinate systems are related by the correlations:

$$\mathbf{r}' = \mathbf{r}_0 - A\mathbf{r} \tag{9}$$

where $\mathbf{r}'_0 = (x'_0, y'_0, z'_0)$ is a coordinate origin of molecule in catalyst coordinates, A is a rotation matrix, which contains direction cosines between the axes.

$$A = \begin{pmatrix} \cos_{xx} & \cos_{xy} & \cos_{xz} \\ \cos_{yx} & \cos_{yy} & \cos_{yz} \\ \cos_{zx} & \cos_{zy} & \cos_{zz} \end{pmatrix}. \tag{10}$$

Whereas these relations are linear then inverse relations can be determined identically. Let J be Jacobian matrix of the transformation from r to r'. Since a transformation is a rotation and does not

Mathematical Modeling and Computing, Vol. 3, No. 1, pp. 43-50 (2016)

depend on coordinates then the determinant |J| is a constant. Hence we have that

$$\frac{1}{2} \int_{V} \varphi(\mathbf{r}) \rho^{e}(\mathbf{r}'(\mathbf{r})) d\mathbf{r} = \frac{1}{2} |J| \int_{V} \varphi(z(\mathbf{r}')) \rho^{e}(\mathbf{r}') d\mathbf{r}'.$$
(11)

Note, since in the explored model only the angle β of the slope of the axis z plays a role then one of the axes x or y is going to be unchangeable. Thus, the matrix (10) can be expressed as follows (for the unchangeable axis x)

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \beta & -\sin \beta \\ 0 & \sin \beta & \cos \beta \end{pmatrix}.$$

The determinant of this matrix is equal to 1. Nondimensionalize the expression (11). Let

$$\varphi = \varphi^* \frac{e}{a_B}, \quad \rho^e = \rho^* \frac{e}{a_B^3}, \quad d\mathbf{r}' = a_B^3 d\mathbf{r}^*. \tag{12}$$

Then, including that |J| = 1,

$$\frac{1}{2} \int_{V} \varphi(z(\mathbf{r}')) \rho^{e}(\mathbf{r}') d\mathbf{r}' = \frac{1}{2} \frac{e^{2}}{a_{B}} \int_{V} \varphi^{*}(z^{*}(\mathbf{r}^{*})) \rho^{*}(\mathbf{r}^{*}) d\mathbf{r}^{*}.$$

$$(13)$$

In a similar way to (11), let us nondimensionalize the second term related to nucleus:

$$\frac{1}{2}e\left(Q_{1}\varphi\left(z_{1}\right)+Q_{2}\varphi\left(z_{2}\right)\right)=\frac{1}{2}\frac{e^{2}}{a_{B}}\left(Q_{1}\varphi^{*}\left(z_{1}^{*}\right)+Q_{2}\varphi^{*}\left(z_{2}^{*}\right)\right).$$
(14)

Let us analyze a contribution related to the presence of a dipole moment in a molecule. The dipole moment is directed towards the field by OZ axis of catalyst coordinate system. Then

$$d_{0z} = d_0 \cos \beta,$$

where d_0 is the value of the dipole moment of the molecule (for CO molecule experimental value of d_0 is equal to 0.112 Debye, for O_2 molecule it is equal to 0). Nondimensionalizing the last term in (4), we obtain

$$W - W_0 = \frac{e^2}{a_B} \left[\frac{1}{2} \int_V \varphi^*(z^*(\mathbf{r}^*)) \rho^*(\mathbf{r}^*) d\mathbf{r}^* + \frac{1}{2} \left(Q_1 \varphi^*(z_1^*) + Q_2 \varphi^*(z_2^*) \right) - 0.00155 \left(d_0^* \cos \beta E(z_d^*) + 0.0026 \alpha^* E^*(z_d^*) \right) \right].$$
(15)

Further we minimize the expression for energy (15) for different values of the internuclear distance $|\mathbf{R}_1 - \mathbf{R}_2|$ and for the angle β . In Figs. 6–11, there are represented numerical results of investigations of catalyst electric field influence on energy of flue gas and oxygen molecules in the distances $3a_B, a_B, 0$ with the minimal possible distance of m_d and $m_d-0.5a_B$ (condition (7)) and the angles $\beta=0^\circ, 45^\circ, 90^\circ$. The Gell-Mann-Brueckner parameter is chosen specific to platinum $(r_s=4)$. Below the surface $z=m_d$, a positive charge lays and a molecule with respect to strong Coulomb repulsion in our model cannot enter. For $r_s=3$ $m_d=0.341a_B$; for $r_s=4$ $m_d=-0.3a_B$; for $r_s=5$ $m_d=-0.98a_B$.

The results of numerical investigation of the proposed model show the following. For the O_2 molecule, the equilibrium interatomic distance $R_0^{O_2} = |\mathbf{R}_1 - \mathbf{R}_2|$ in the presence of electric field near the catalyst surface changes and for all the distances of the O_2 molecule charge center from the catalyst

Fig. 6. Dependence of the energy (15) on internuclear distance of CO for different distances to the surface for the angle of $\beta = 0^{\circ}$.

Fig. 7. Dependence of the energy (15) on internuclear distance of CO for different distances to the surface for the angle of $\beta = 45^{\circ}$.

Fig. 8. Dependence of the energy (15) on internuclear distance of CO for different distances to the surface for the angle of $\beta = 90^{\circ}$.

Fig. 9. Dependence of the energy (15) on internuclear distance of O_2 for different distances to the surface for the angle of $\beta = 0^{\circ}$.

Fig. 10. Dependence of the energy (15) on internuclear distance of CO for different distances to the surface for the angle of $\beta = 45^{\circ}$.

Fig. 11. Dependence of the energy (15) on internuclear distance of CO for different distances to the surface for the angle of $\beta = 90^{\circ}$.

surface $R_0^{O_2} = 2.22943 a_B$. It is 130% of the equilibrium distance $R_0^{O_2}$ when the electric field of catalyst is absent: $R_0^{O_2} = 2.147 a_B$.

The energy change $\Delta E = E_{\min}(E \neq 0) - \varepsilon_{\min}(E = 0)$ depends on the angle β and is the following:

$$\beta = 0^{\circ} : \Delta E = -1 \frac{e^2}{2a_B}, \quad R_0^{O_2} = 2.2942,$$

$$\beta = 45^{\circ} : \Delta E = -0.5 \frac{e^2}{2a_B}, \quad R_0^{O_2} = 2.2942,$$

$$\beta = 90^{\circ} : \Delta E = -3 \frac{e^2}{a_B}, \quad R_0^{O^2} = 2.2942.$$

These results testify that the shown dipole moment d_{O_2} of the molecule O_2 when it is approaching the catalyst surface becomes parallel to the surface and the molecule becomes O_2 asymmetric.

For the CO molecule, the location of energy minimum (R_0^{CO}) depends on the angle β of the dipole moment and on the distance r_0 of the CO molecule charge center from the surface of catalyst, namely

Table 1. Dependence of *CO* molecule energy minimum location on model parameters.

r_0/eta	$0^{\circ} \div 50^{\circ}$	$50^{\circ} \div 70^{\circ}$	$70^{\circ} \div 90^{\circ}$
$1 \div 3$	2.147	2.147	2.147
$0 \div m_d$	3.650	3.00	2.147

This table demonstrates that when the CO molecule approaches the catalyst surface, it does not tend to decay into atoms (in contrast to O_2 molecule).

5. Conclusions

A simple mathematical model of diatomic molecule (CO or O_2) behavior description near the Ptcatalyst surface is suggested and investigated. It is shown that a near-surface electric field has a significant influence on the change (or appearance) of dipole moment of molecules and changes the equilibrium interatomic distance. The changes of these characteristics for the molecules CO and O_2 are evaluated.

^[1] Kostrobij P. P., Tokarchuk M. V., Markovich B. M., Ignatjuk V. V., Gnativ B. V. Reakcijno-difuzijni procesy v sistemah "metal—gaz". Lviv, Lviv Polytechnic National University (2009), (in Ukrainian).

^[2] Richardson J. T. Principles of Catalyst Development, Springer Science+Business Media, LLC (1992).

^[3] Rideal E. K. Concepts in Catalysis, Academic Press (1968).

^[4] Baxter R. J., Hu P. Insight into why the Langmuir-Hinshelwood mechanism is generally preferred. J. Chem. Phys. 116, n. 11, 4379–4381 (2002).

^[5] Zhang C., Hu P., Alavi A. A general mechanism for CO oxidation mechanism on close-packed transition metal surfaces. J. Am. Chem. Soc. **121**, 7931–7932 (1999).

^[6] Zhdanov V. P., Kasemo B. Simulation of CO adsorbtion and oxidation on Pt(110). Phys. Rev. B. 114, n. 12, 5351–5357 (2001).

^[7] Reuter K., Frenkel D., Scheffler M. The steady-state of heterogeneous catalysis, studied by first-principles statistical mechanics. Preprint cond-mat. 0408080 v.l (2004).

^[8] Mryglod I. M., Bzovska I. S. Effect of adsorbed impurities on catalytic oxidation of CO: a lattice-gas model. Ukr. J. Phys. **52**, n. 5, 466–471 (2007).

^[9] Ziff R. M., Gulari E., Barshad Y. Kinetic phase transitions in an irreversible surface reaction model. Phys. Rev. Letters. **56**, n. 24, 2553–2556 (1986).

- [10] Johanek V., Laurin M., Grant A. W., Kasemo B., Henry C. R., Libuda J. Fluctuations and bistabilities on catalyst nanoparticles. Science. **304**, 1639–1644 (2004).
- [11] Kostrobiy P. P., Markovych B. M., Suchorski Y. Revisiting local electric fields on a closed-packed metal surfaces: theory versus experiments. Solid state phenomena. **128**, 219–224 (2007).
- [12] Kostrobij P. P. Doctoral Thesis. Reaction-diffusion processes in systems with a "metal–gas" interface: the quantum statistical description. Lviv (2009), (in Ukrainian).
- [13] Kostrobij P. P., Markovych B. M. Statistical theory of the spacebounded systems of charged fermi-particles: I. The functional integration method and effective potentials. Journ. of Phys. Stud. 7, 195–206 (2003) (in Ukrainian).
- [14] Vakarchuk I. O. Kvantova mehanika. Lviv, Lviv National University (2004), (in Ukrainian).
- [15] Kostrobij P. P., Markovych B. M. Investigation of the Influence of External Electric Field on the Electron Density of Semi-bounded Metal. Ukr. J. Phys. **52**, n. 2, 167–171 (2007).
- [16] Fudzinaga C. Metod molekuljarnih orbitalej. Moskva, Mir (1983), (in Russian).
- [17] Kostrobij P. P., Markovych B. M. Statistical theory of the spacebounded systems of charged fermi-particles: II. Distribution functions. Journ. of Phys. Stud. **7**, 298–312 (2003) (in Ukrainian).
- [18] Granovsky Alex A. Firefly version 8, wwww http://classic.chem.msu.su/gran/firefly/index.html.

Моделювання впливу поверхні Pt-каталізатора на характеристики молекул кисню і окису вуглецю

Костробій П. П. 1 , Безносюк А. В. 1 , Дмитрук В. А. 1,2 , Польовий В. Е. 1

¹ Національний університет «Львівська політехніка» вул. С. Бандери, 12, 79013, Львів, Україна
² Центр математичного моделювання ІППММ ім. Я. С. Підстригача Національної академії наук України вул. Дудаєва, 15, 79005, Львів, Україна

Розглянуто просту математичну модель впливу поверхні Рt-каталізатора на поведінку молекул чадного газу та кисню. Показано, що електричне поле, локалізоване в приповерхневому шарі Рt-каталізатора, призводить до значної зміни дипольного моменту та рівноважної міжатомної відстані.

Ключові слова: двоатомні молекули в електричному полі, явище каталізу, півобмежений метал.

2000 MSC: 00A71 **UDC:** 533.9, 536.7