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The generalized activator-inhibitor model with cubic nonlinearity, in which the classical
Laplacian is replaced by fractional operator has been studied. The fractional operator re-
flects the nonlocal behavior of superdiffusion. A spatially homogeneous, time independent
solution has been found and its linear stability was studied. We have also performed a
weakly nonlinear analysis and obtained a system of amplitude equations that are the basis
for analysing pattern formation as well as parameter regimes for which various steady-state
patterns would exist.
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1. Introduction

Observations of different spatially nonhomogeneous patterns with complicated symmetries in many
physical, chemical, and biological media have made the reaction-diffusion systems to be a subject of
numerous investigations [1–4]. Recently, many scientists noticed that the diffusion in real-life systems
has got an anomalous character [5–8]. Although the anomaly order appeared to be rather insignifi-
cant in the vast majority of examples, there exists a bunch of complex systems, (e.g., composite or
amorphous materials, complex micro-emulsions, living tissues, etc.), which call for the models with
substantial diffusion anomaly.

The investigation of superdiffusion becomes important because it has been detected experimentally
in several systems. In particular, the superdiffusion has been observed in transport in nonhomogeneous
rocks [9, 10], turbulent flows [11, 12], optics [13], single-molecule spectroscopy [14], etc.

The effect of superdiffusion on pattern formation and pattern selection in the Brusselator model
is studied in [15]. The authors have performed a weakly nonlinear analysis and obtained a system of
amplitude equations. The analysis of these equations allowed them to predict the parameter regimes
where hexagons, stripes and their coexistence are expected.

Pattern selection in the formation of hexagons and stripes in the activator-inhibitor system with
superdiffusion is also studied in [16]. Note that the considered activator-inhibitor model with, however,
the normal diffusion, was studied by Dufiet and Boissonade [17] in order to describe the chlorite-iodine-
malonic acid reaction. In [16] the linear stability analysis allowed the authors to show, in particular,
that the superdiffusive exponent has a significant effect on the wave number of Turing patterns.

Due to the foregoing facts, we can conclude that the investigation of nonlinear dynamics and Turing
pattern formation in activator-inhibitor systems with superdiffusion remains to be a very important
problem.

It was shown in [18] that by the decrement of fractional derivative order i.e., when the level of
anomalous diffusion is essential, the qualitatively different types of spatio-temporal nonlinear dynamics
can occur in these systems. There the Brusselator model and the model with cubic nonlinearity were
considered.
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The aim of this paper is to study the generalized activator-inhibitor model with cubic nonlinearity,
in which the classical Laplacian is replaced by a fractional operator (the case of superdiffusion). We
focus on the obtaining, by means of a weakly nonlinear analysis, a system of amplitude equations that
can serve as a basis for the analysing pattern formation.

2. Mathematical model

We consider the reaction-diffusion model with cubic nonlinearity, in which the classical spatial differ-
ential operator is replaced by ∆α (the operator representing the superdiffusion)

∂u(x, t)

∂t
= D1∆

αu(x, t) + u− 1

3
u3 − v,

∂v(x, t)

∂t
= D2∆

αv(x, t) + u− v +A.

(1)

The system (1) must be completed by the following Neumann boundary conditions
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with certain initial conditions. Here u = u(x, t) is an activator variable and v = v(x, t) is inhibitor one;
D1 and D2 are the diffusion coefficients; A and B are the external bifurcation parameters; x ∈ [0, L] is
a space coordinate; t is a time; α is the exponent of fractional operator. Besides, 1 < α < 2 (the case
of superdiffusion).

In one dimension, the fractional operator has the form [19–22]

∂αf (x, t)

∂xα
= − 1

2 cos(πα/2)

[

Dα
+f (x, t) +Dα

−f (x, t)
]

,

where for 1 < α < 2

Dα
+f (x, t) =

1

(2− α)

d2

dx2

x
∫

−∞

f (ξ, t)

(x− ξ)α−1
dξ,

Dα
−f (x, t) =

1
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d2

dx2

∞
∫

x

f (ξ, t)

(ξ − x)α−1
dξ,

or in a form defined by its action in Fourier space F [∂
αf

∂xα
](k) = −kαF [f ](k). In higher dimensions, the

Laplacian is replaced by the operator [19]

∆α ≡ −(−∆)α/2(1 < α < 2),

defined by its action in Fourier space

F [∆αf ](k) = −kαF [f ](k),
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where (−∆)α/2 is Riesz derivative [19] and (2− α) is the Gamma function.
The spatially homogeneous and stationary solution of the system (1) with the boundary conditions

(2) or (3) is obtained as solution of the system of algebraic equations

u− 1

3
u3 − v = 0,

u− v +A = 0.

So the critical point of the system (1) corresponding to a homogeneous stationary solution, is

us =
3
√
−3A, vs =

3
√
−3A+A.

If we consider the deviation of the solution from the critical point

U = u− 3
√
−3A, V = v − 3

√
−3A−A,

then, as a result, we can obtain

∂U

∂t
= D1∆

αU + (1− 3
√
9A2)U − V +

3
√
3AU2 − 1

3
U3,

∂V

∂t
= D2∆

αV + U − V.

(4)

The critical point is now given by U = V = 0. Stability of homogeneous stationary solution of
the system can be analyzed by linearization of the system nearby this solution. So we decompose the
nonlinear functions in the right-hand sides of system (4) into Taylor series in the vicinity of the critical
point U = V = 0.

Then the system can be transformed to a linear system which has the form

∂u(x, t)

∂t
=

⌢
F (u)u(x, t), (5)

where

u(x, t) =

(

U(x, t)
V (x, t)

)

,
⌢
F (u) =

(

D1∆
α + 1− 3

√
9A2 −1

1 D2∆
α − 1

)

,

⌢
F (u) is the Frechet derivative.

3. Linear stability analysis

In order to study the linear stability of the solution U = V = 0, we substitute the solution, given in
the form

u(x, t) =

(

U(x, t)
V (x, t)

)

=

(

a
b

)

eλt+ikx, (6)

into the linear system (5). As a result, we can obtain the dispersion relation

λ2 +
[

3
√
9A2 + (D1 +D2) k

α
]

λ+
3
√
9A2 +

[

D1 −
(

1− 3
√
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)

D2

]

kα +D1D2k
2α = 0.

Here k is the wave number.
We are particularly interested in the Turing stability boundary, which corresponds to λ = 0. Then

the neutral stability curve can be written in the form

A =
1

3

√

(

D2kα −D1kα −D1D2k2α

1 +D2kα

)3

. (7)
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The curve (7) has a single minimum: (Acr, kcr), where
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1 +
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√
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]3/2

, kcr =
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.

For λ = 0, k = kcr, and A = Acr we can introduce the eigenvector

(
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)
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1
√
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)

.

In such manner, we obtained the Turing instability threshold Acr and also the critical value of the
wave number kcr, which depends on exponent α.

4. Weakly nonlinear analysis

We perform a weakly nonlinear analysis of the system (4) near the instability threshold to study the
pattern formation. We are interested in the formation of hexagons and stripes.

We introduce the slow time T = ε2t, and variables U and V as well as the bifurcation parameter
A as

U ∼ εU1 + ε2U2 + ε3U3 + . . . ,

V ∼ εV1 + ε2V2 + ε3V3 + . . . ,

A = Acr + ε2µ.

(8)

Here Ui and Vi (i = 1, 2, 3) are functions of T and x.
Substituting the expansions (8) into the system (4) and collecting like powers of ε, we obtain at

orders εi (i = 1, 2, 3) the sequence of problems
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√
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)
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∂U1

∂T
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∂T
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(11)

where R2 =
3
√
3Acr U

2
1 , R3 = −2

3
3

√

9

Acr

µU1 + 2 3
√
3Acr U1U2 − 1

3
U3
1 .

Now our intend is the solutions to linearized system in the form [15] for the description of the
appearance of both hexagons and stripes

(

U1

V1

)

=

(

a
b

)

E, (12)

where
E = L1e1 + L2e2 + L3e3 + c.c., (13)

e1 = eikcrx, e2 = e3 = e−
1

2
ikcrx.
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Here, the amplitudes L1, L2, L3 are functions of the slow time T ; c.c. denotes complex conjugate terms.
The right-hand side R2 in the O

(

ε2
)

problem can be written in the form

R2 = PE2, P ≡ 3
√

3Acr a
2,

and can be represented as [15]
R2 = (E1 + E2 + 2E3 + 2E4)P,

where

E1 = L2
1e

2
1 + L2

2e
2
2 + L2

3e
2
3 + c.c.,

E2 = 2
(

|L1|2 + |L2|2 + |L3|2
)

,

E3 = L1L
∗
2
e1e

∗
2 + L1L

∗
3
e1e

∗
3 + L2L

∗
3
e2e

∗
3 + c.c.,

E4 = L1L2e
∗
3 + L1L3e

∗
2 + L2L3e

∗
1 + c.c.

Here, the asterisk denotes the complex conjugate. It should be noted that the terms proportional to E4

are secular terms that appear in the O
(

ε2
)

problem and are regarded to be small [15, 23]. Therefore
they contribute to the solvability condition at O

(

ε3
)

.
As a result, the solution of the O

(
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)

problem has the form

(
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)
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(
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)
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(
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)
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(
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)]

P,

where the coefficients U2i, V2i are
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3
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3
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√
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√
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)

( 3

√

9A2
cr + 3α/2kαcrD1)− 3α/2kαcrD2

.

Then return to the O
(

ε3
)

problem. Putting the solutions U1, V1, U2, V2 into the right-hand side
of this problem, yields

R3 = 2PK1EE1 + 2PK2EE2 + 4PK3EE3 −
1

3
a3E3 − 2

3
3

√

9

Acr
µaE.

Here, K1 =
3
√
3AcraU21, K2 =

3
√
3AcraU22, K3 =

3
√
3AcraU23.

We can represent the secular terms in the above products EE1, EE2, EE3 and E3 in such a
form [15]

in EE1 : L1 |L1|2 e1 + L2 |L2|2 e2 + L3 |L3|2 e3 + c.c. ≡ E0,

in EE2 : 2EF, F = |L1|2 + |L2|2 + |L3|2 ,
in EE3 : EF − E0,

in E3 : 6EF − 3E0.
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Hence, the right-hand side R3 can be written as

R3 = −2

3
3

√

9

Acr
µaE + E0

(

2PK1 + 4PK2 − a3
)

+ (EF − E0)
(

4PK2 + 4PK3 − 2a3
)

.

The equations of the system (11) are inhomogeneous. The right-hand sides of these equations
contain solutions to the systems of equations of lower orders, namely U1, U2 та V1. Now we use the
Fredholm alternative, i.e. the right-hand sides of equations must be orthogonal to vector U+ that
satisfy such an equation

Λ ·U+ = 0,

where

Λ =

(

−D1k
α
cr + 1− 3

√

9A2
cr 1

−1 −D2k
α
cr − 1

)

is the conjugate operator.
The Fredholm alternative can be written as

U+ · q = 0, (14)

where q is the vector of the right-hand sides of equations, in particular, in the considered O
(

ε3
)

problem it has the form

q =







a
∂E

∂T
−R3

b
∂E

∂T






, (15)

and the vector U+ is written by

U+ =

(

a+E
b+E

)

,

(

a+

b+

)

=

(

−
√

D2

D1

1

)

. (16)

As a result, using the Fredholm alternative (14), relations (15), (16), and also (13), we obtain the
system of amplitude equations

C0

∂L1

∂T
= µC1L1 + C2L

∗
2L

∗
3 + C3L1 |L1|2 +C4L1

(

|L2|2 + |L3|2
)

,
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∂L2

∂T
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∗
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∗
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|L1|2 + |L3|2
)

,
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∂L3

∂T
= µC1L3 + C2L

∗
1L

∗
2 + C3L3 |L3|2 +C4L3

(

|L1|2 + |L2|2
)

,

(17)

where the coefficients Ck, k = 0, 1, 2, 3, 4, are given by

C0 =
a+a+ b+b

a+
=

D2 −D1

D2

,

C1 = −2

3
3

√

9
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√
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√
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,
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√
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√
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,

Mathematical Modeling and Computing, Vol. 3, No. 2, pp. 191–198 (2016)



Amplitude equations for activator-inhibitor system with superdiffusion 197

C3 = 2PK1 + 4PK2 − a3

=

(

5− 23+α + 3 · 22α
)

(

1 + D1

D2
− 2
√

D1

D2

)

+ 2α+1

(√

D1

D2
+
√
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D1
− 2
)

(1− 21+α + 22α)
(

1 + D1

D2
− 2
√

D1

D2

) ,

C4 = 4PK2 + 4PK3 − 2a3

=
2
[

(

3− 4 · 3α/2 + 3α
)

(

1 + D1

D2
− 2
√

D1

D2

)

+ 2 · 3α/2
(√

D1

D2
+
√

D2

D1
− 2
)]

(

1− 2 · 3α/2 + 3α
)

(

1 + D1

D2
− 2
√

D1

D2

) .

(18)

In conclusion, by means of a weakly nonlinear analysis, we obtained the system of amplitude
equations (17), with coefficients (18). These amplitude equations are present a basis for the analysis
of pattern formation. The analysis of these equations can be a matter of further publications.

5. Conclusions

The generalized activator-inhibitor model with cubic nonlinearity, in which the classical Laplacian
is replaced by a fractional operator, has been studied. The fractional operator reflects the nonlocal
behavior of superdiffusion. The spatially homogeneous, time independent solution has been found and
we have also studied its linear stability. We have obtained the Turing instability threshold Acr and
also the critical value of the wave number kcr, which depends on superdiffusive exponent α.

We performed a weakly nonlinear analysis and obtained a system of amplitude equations. It should
be noticed that the weakly nonlinear analysis gives an indication of what type of patterns to expect as
well as parameter regimes for which various steady-state patterns would exist.
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Амплiтуднi рiвняння для системи типу активатор-iнгiбiтор
iз супердифузiєю

ПритулаЗ.В.

Iнститут прикладних проблем механiки i математики iм. Я. С. Пiдстригача НАН України

вул. Наукова, 3-б, 79060, Львiв, Україна

Дослiджено узагальнену модель типу активатор-iнгiбiтор iз кубiчною нелiнiйнiстю,
в якiй класичний оператор Лапласа замiнено дробовим аналогом. Дробовий опера-
тор вiдображує нелокальну поведiнку супердифузiї. Знайдено просторово-однорiдний
стацiонарний розв’язок та вивчено його лiнiйну стiйкiсть. Проведено також слабконе-
лiнiйний аналiз та отримано систему амплiтудних рiвнянь. Отриманi рiвняння дають
можливiсть аналiзувати типи структур, якi виникають у розглядуванiй реакцiйно-
дифузiйнiй системi.

Ключовi слова: система реакцiї-дифузiї, кубiчна нелiнiйнiсть, дробовий опера-

тор, супердифузiя.
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