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The method of solving problems of mathematical physics, in particular for calculating
a non-stationary gas flow in pipelines, is proposed in this article on the basis of the
biorthogonal polynomial constructed by the authors. The method of solving the problem
by means of the separation of variables in the base of biorthogonal polynomials is investi-
gated. The analytical-approximate and approximate solutions of the problem as the sum
of some biorthogonal and quasi-spectral polynomials are found. The comparative analy-
sis between the obtained analytical-approximate and approximate solutions is conducted.
The influence of parameters of methods, including the order of the partial sum, a bit grid,
and an accuracy error of calculations on the obtained solution are studied. The results of
calculation are presented in the form of tables.
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1. Introduction

Spectral methods are used both in theoretical studies and for solving a wide class of problems of
mathematics and mechanics. Their essence is that the functions included into the model are presented
in the form of orthogonal series in accordance to the selected basis. Finding the solution is reduced
to calculating the coefficients of orthogonal series of the desired solution. It is shown [6, 7] that the
choice of orthogonal basis one should coordinate with the domain of definition of the desired solution.
The positive sides are those that many orthogonal bases are studied well enough, they are easy to use,
and the solving algorithms constructed on their basis are easy for automation. The negative side is
that the summation of corresponding series is, as a rule, an incorrect problem. Therefore, not all the
criteria to the solutions of problems one can satisfy by means of using of one orthogonal basis. Due to
the fact, we are modifying the existing bases or constructing a new one to meet the broader criteria.
One of the methods of consideration of these comments is the usage of biorthogonal bases. Nowadays,
there are a few papers devoted to their research and practical application. This is mainly due to the
fact that formation of these biorthogonal bases is connected with significant difficulties of calculation
and they are not studied enough.

2. Formulation of the problem

The system of the interconnected differential equations in partial derivatives is the common mathe-
matical model of gas flow in the pipeline in the isothermal case















∂p (y, t)

∂y
+ αρ

∂

∂y

(

υ2 (y, t)

2

)

+ ρg
∂h (y, t)

∂y
+

λρυ2 (y, t)

2D
+

∂ (ρυ (y, t))

∂t
= 0,

∂ (ρυ (y, t))

∂y
+

1

c2
∂p (y, t)

∂t
= 0,

(1)

c© 2016 Lviv Polytechnic National University

CMM IAPMM NASU

199



200 Pyanylo Ya., SobkoV.

where ω = ρυ is the mass gas consumption (gas velocity); A is the sound velocity in gas; α is the
Coriolis coefficient; ρ, υ, p are the density, the gas velocity and the gas pressure accordingly; λ is the
hydraulic resistance coefficient; D is the diameter of the pipeline; g is gravity acceleration; h is the
relative height of the pipeline location; t > 0 is time; y ∈ [0, l] is the line coordinate, l is the length of
the pipeline.

In practice, the limiting conditions are formulated on the input and output of compressor stations.
As usual, the stationary pressure distribution is the initial state at the beginning of the non-stationary
process. Therefore, the problem of mathematical physics in this case is as follows.

One can find the solution of the system (1) in accordance to the initial stationary pressure distri-
bution
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and limiting conditions on volumetric gas consumption

q0 (t) = q0n + (q0 − q0n) e
−γ0t; (3)

ql (t) = qln + (ql − qln) e
−γlt, (4)

stand on inputs and outputs of the pipeline correspondingly.
In this case p0 is the value of pressure on the pipeline start; ρs, qs are the values of density and

volumetric consumption in standard conditions, s = πD2/4; q0, q0n are the volumetric gas consump-
tions at the initial and new states of gas flow and the parameter γ0, which characterizes velocity of
transition from one state into other on the pipeline start; ql, qln, γl are the the similar parameters at
the pipeline end. In the case of transition to mass velocity the limiting conditions are the following [9]:

ω0 = ω (0, t) =
ρs
s
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ρs
s
ql (t) . (5)

3. Linearization of the output nonlinear system

The linearised variant of the system (1) [9] has the form















A0
∂p (y, t)

∂y
+A1

∂ω (y, t)

∂y
+

∂ω (y, t)

∂t
+A2ω (y, t) +A3p (y, t) = −A4,

∂ω (y, t)

∂y
+

1

c2
∂p (y, t)

∂t
= 0.

(6)

where

ap = p1 (1 + fp1)− bpp1, c0 = 1− αυ2cρ0T0bp/ (p0T ), c1 = αυc, aυ = υ1 + υ2,

bυ = −υ1υ2 −
1

8
(υ2 − υ1)

2 , c2 = αbυ/ (2D), c3 =
ρ0T0

p0T
bp

(

g
δh

δy
+

λaυ
2D

)

,

c4 =
ρ0T0

p0T
ap

(

g
δh

δy
+

λaυ
2D

)

, p ∈ [p1, p2] ,

p1 and p2 stand for the limits of pressure change, υA is the average volume of gas flow in the pipeline,
which is accepted as known, υ1 and υ2 are the limits of change of gas flow velocity. For calculation of
the coefficient of pressure z, which describes difference of the real gas from the ideal gas, one can use the
empirical formula z = 1/ (1 + fp), where p is measured in atmospheres, and f = (24− 0.21t◦C) · 10−4,
t◦C is the temperature of gas Celcius; R is the gas constant.

We can note that initial distribution of pressure (2) is obtained in the stationary case from the
nonlinear system of differential equations. Therefore, it is necessary to have its parametrical image in
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the stationary case for finding the correct solution of the system (6). Thus, the problem of mathe-
matical physics is as follows: to find the solution of the system (6) according to the initial (2) and the
boundary (5) conditions.

4. Analytical-approximate solution

We will consider the horizontal pipelines without taking into account the Coriolis force at the constant
value of the pressure coefficient, that is α = 0 and c0 = 1, c1 = 0, c2 = 0 correspondingly. Then we
write the system (6) in the form
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Since the length of the pipeline is l, that is 0 6 y 6 l, and functions which help us to solve this
problem are considered on an interval [−1, 1], then we change
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Using the formulas (8), we write the system (7) and the conditions (2), (5) in the form
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We can obtain the following from the system (9) and conditions (10), (11)
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where V n+1
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values i. Tn+1 = Tn+1 (x) and Tn+2 = Tn+2 (x) are the Chebyshev polynomials of degree n + 1

and n + 2, λn
i , i = 1, . . . , n are the eigenvalues of the integral operator π∞

1 L = π∞
1

x
∫

−1

x1
∫

−1

, U2s
2i (x) =

s
∑

j=1
c2i2j T̃2j (x), U

2s−1
2i−1 (x) =

s
∑

j=1
c2i−1
2j−1T̃2j−1 (x) are the eigenvalues of this operator, T̃j (x) is modified

Chebyshev polinomials, Ū2s
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are the standard of biorthogonal functions [10, 11].
Let us substitute (13) into the equation (12) and obtain
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i (x)Gi (t) . (15)

Then,

V (x)G′′ (t) =
n+2
∑

i=1

V n+ī
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From the boundary conditions (11), considering that Vi (−1) = Vi (1) = 0, we have
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Expressions (15), (16) we substitute into the equation (14) and obtain the following
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1,2 =

±
√

4c2

l2
1

λn
2i−1+ī
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lc3
4 W (−1, t)

=
ρs
s

(

qlne
lc3
4 + (ql − qln) e

−γlt+
lc3
4 + (−1)ī
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Thus, we found solutions of the system (9) on the intervalx ∈ [−1, 1], namely
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i (y) + U
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From the boundary conditions (11), considering that Vi (−1) = Vi (1) = 0 [10, 11], we have
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If we multiply the latter two equations by e−tLj (t) and integrate with respect to t from 0 to ∞ we
can find the unknown coefficients qn+1,j, qn+2,j, j = 1, . . . , s for (21). We substitute the expressions
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The equation (24) is multiplied by V̄i(x)√
1−x2

e−tLj (t), i = 1, . . . , n, j = 1, . . . , s and integrated with

respect to t from 0 to ∞ and with respect to x from −1 to 1. We obtain i = n of the systems, each
of them contains j = s of equations and j = s of the unknowns, from which we can find the rest of
unknown coefficients qi,j, i = 1, . . . , n, j = 1, . . . , s for (21). Thus, we have found the solution of the
system (9) on the interval x ∈ [−1, 1], namely
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The results of the solution of the system of equations (7) for l = 100000m, λ = 0.01, z = 0.908,
R = 500 Joul/(kg·K), D = 1.4m, T = 300K, q0 = 894m3/s, q0n = 993m3/s, ql = 894m3/s, qln =
993m3/s, p0 = 70 atm, p1 = 58.4 atm, ρs = ρ0 = 0.682 kg/m3, υ1 = 6m/s, υ2 = 12m/s, γ0 = 0.00069,
γl = 0.00075, c = 500m/s, ∆x = 5000m, ∆t = 420 s.

Table 1. Value of mass consumption for the pipeline with length l = 100000m at different values of time t and
the coordinate y1 for analytical-approximate solution of the problem from the Item 4 and the coordinate y2 for

approximate solution of the task from the Item 5 at n = 10, the value t is indicated in seconds in Table.

t
y

10000 30000 60000 90000
y1 y2 y1 y2 y1 y2 y1 y2

420 407.22 407.22 407.42 407.42 407.68 407.68 407.87 407.87

1260 421.70 421.70 421.99 421.99 422.40 422.40 422.77 422.77

2100 429.77 429.77 430.02 430.02 430.39 430.39 430.74 430.74

2940 434.26 434.26 434.46 434.46 434.74 434.74 435.01 435.01

3780 436.77 436.77 436.91 436.91 437.10 437.10 437.30 437.30

4620 438.17 438.17 438.26 438.26 438.39 438.39 438.52 438.52

5460 438.95 438.95 439.01 439.01 439.09 439.09 439.18 439.18

6300 439.38 439.38 439.42 439.42 439.47 439.47 439.53 439.53

7140 439.63 439.63 439.65 439.65 439.68 439.68 439.72 439.71

7980 439.76 439.76 439.78 439.77 439.80 439.79 439.82 439.81

8820 439.84 439.81 439.85 439.80 439.86 439.79 439.87 439.78

9660 439.88 439.70 439.89 439.60 439.89 439.43 439.90 439.26
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Table 2. Value of pressure for the pipeline with length l = 100000m at different values of time t and the
coordinate y1 for analytical-approximate solution of the problem from the Item 4 and the coordinate y2 for

approximate solution of the task from the Item 5 at n = 10, the value t is indicated in seconds in Table.

t
y

10000 30000 60000 90000
y1 y2 y1 y2 y1 y2 y1 y2

420 68.92 68.92 66.73 66.73 63.31 63.31 59.68 59.68

1260 68.89 68.89 66.71 66.71 63.28 63.28 59.66 59.66

2100 68.86 68.86 66.68 66.68 63.26 63.26 59.64 59.64

2940 68.84 68.84 66.65 66.65 63.23 63.23 59.62 59.62

3780 68.82 68.82 66.64 66.64 63.22 63.22 59.60 59.60

4620 68.81 68.81 66.63 66.63 63.21 63.21 59.59 59.59

5460 68.80 68.80 66.62 66.62 63.20 63.20 59.58 59.58

6300 68.80 68.80 66.61 66.61 63.19 63.19 59.58 59.58

7140 68.80 68.79 66.61 66.61 63.19 63.19 59.58 59.58

7980 68.79 68.78 66.61 66.61 63.19 63.19 59.57 59.58

8820 68.79 68.77 66.61 66.61 63.19 63.19 59.57 59.59

9660 68.79 68.75 66.61 66.61 63.19 63.19 59.57 59.60

6. Conclusions

The obtained results confirm effective usage of the built biorthogonal polynomials for solving problems
of the mathematical physics. Not only the number of products n of the corresponding series sum,
accuracy of calculation have an essential influence on finding of approximate solution of our problem,
but the method of the function by time. If one can find the function by time by means of the analytical
method, then we obtain analytical-approximate solution from the Item 4, which helps us to find the
solution of system (7) on the random period of time, contrary to the approximate solution from the
Item 5, which will be correct only comparable on small intervals of time t 6 2.5hour, where the
function concerning time is found through the approximate method.
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Методи знаходження розподiлу тиску в трубопроводi

П’янило Я., Собко В.

Центр математичного моделювання

Iнституту прикладних проблем механiки i математики

iм. Я. С. Пiдстригача НАН України

вул. Дудаєва, 15, 79000, Львiв,Україна

У працi на базi побудованих авторами бiортогональних полiномiв запропоновано ме-
тод розв’язування задач математичної фiзики, зокрема для розрахунку нестацiо-
нарного руху газу в трубопроводах. Дослiджено спосiб розв’язування задачi мето-
дом роздiлення змiнних у базисi бiортогональних полiномiв. Знайдено аналiтично-
наближений та наближений розв’язки задачi у виглядi суми ряду бiортогональних
та квазiспектральних полiномiв. Проведено порiвняльний аналiз мiж отриманими
наближеним та аналiтично-наближеним розв’язками. Вивчено вплив параметрiв ме-
тодiв, зокрема порядку часткової суми, розрядної сiтки та похибки обчислення на
точнiсть отриманого розв’язку. Результати обчислень подано у виглядi таблиць.

Ключовi слова: спектральнi методи, математична модель, нестацiонарний рух

газу, лiнеаризацiя, бiортогональнi та квазiортогональнi полiноми.
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