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A model problem for the gas extraction process from UGS while substituting it with
water is developed. The connection between the mass flowrate and pressure values in the
main gas pipeline and on the outer water surface is established. A mathematic model
for calculation of the UGS functioning parameters during the period of gas extraction is
constructed. The results obtained are tested on the model problem.
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1. Introduction

While creating and using underground gas stores, one of the main questions is establishing of function-
ing parameters for the underground gas store for maintenance of gas extraction process (gas flooding)
in case any water is present in formations. Presence of water is detected almost in all gas stores (de-
posits) created in the depleted fields. Notwithstanding the great amount of the researches, currently
no sufficient theory for describing of processes taking place in formations – collectors of gas stores with
edge water has been yet proposed. Calculating UGS functioning parameters is getting complicated
also due to the uncertainty of the porous medium parameters and its non-homogeneousness. This
demands building of the corresponding adaptation models and methods, which allow specification of
model parameters in accordance with the measured parameters (pressure, discharge, etc.).

Aim of work is to build a model and study the process of gas extraction from UGS, with the
water presence in the formation, and calculation of underground gas store functioning parameters for
maintenance of the given process.

2. Mathematic models describing gas flow during the UGS operation period

Distribution of the formation pressure near the well is described by the formula [1–3]

p2pl − p2c = 2DFG, (1)

where

D (r, τ) =
(bλm)Z1 (bλm)Z0 (rλm)

(aλm)2 Z2
0 (aλm)− (bλm)2 Z2

1 (bλm)

and

1

F
=

4πnkhg

β (n+ 1)µ

∞
∑

m=1

(bλm)2 Z1 (bλm)Z1 (rλm) exp
(

−
p0τλ2

m

D

)

(aλm)2 Z2
0 (aλm)− (bλm)2 Z2

1 (bλm)
.
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Connection of the formation pressure with the bottom-hole pressure [1, 3]

p2pl − p2b = Aq +Bq2. (2)

Here

A =
A1

kpl
+

A2

kb
, B =

B1

k
3/2
pl

+
B2

k
3/2
b

.

In order to calculate pressure distribution in flowlines and horizontal pipelines it is enough to use the
stationary models of the gas flow:

In the working string

p(x) =

√

p20 e
−b

− λ z
RT

D

(

M

S

)2 1− e−b

b
x, (3)

and horizontal pipeline (flowline) [1–3]

p(x) =

√

p20 − λ z
gRT

D

(

M

S

)2

x, (4)

marked here:

S =
πD2

4
, b =

2g∆h

zRT
.

Gas compression coefficient may be calculated according to formula

z =
1

1 + fp
, (5)

where f = (24− 0.21t ◦C)·10−4, and p(x) is measured in atmospheres. In order to calculate parameters
of hookups and local resistances the empiric formula is being used [3]

∆p = pg − po =
ξ

2
ρυ2,

which can be narrowed down to

p2g − p2o = ξ
zRT

s2
q2, (6)

where q is mass flowrate. Here υ is speed of the gas flow, ξ is coefficient depending on the local
resistance type. On the basis of the last formula and measured data, empiric formulas are being built
for the hookup, namely one of such dependencies may be the following:

ξ =

{

201.87 + 18455 e−3.1455 q, q 6 1.46,
1011.8 − 540.71 q + 78.039 q2, q > 1.46.

(7)

Gas flow through the constriction device. Constriction devices take an important place in the GTS
structure – valves, diaphragms, etc. Mass gas flowrate ω, going through the constriction with the
square S is defined in the following way

ω = kqS

√

√

√

√2
k

k − 1
pz1ρz1

[

(

pz2
pz1

)
2

k

−

(

pz2
pz1

)
k+1

k

]

, (8)

where kq is coefficient considering multiple factors influence and empiric formula for its calculation is
known, k is adiabatic exponent, pz1, ρz1 are gas pressure and density to the right, and pz2 is pressure
to the left from the constriction device. Here pz2/pz1 6 1.
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As pz2/pz1 6 1, thus from (8) we receive the equality

ω2 = 2k2qS
2 k

k − 1
pz1ρz1

[

(

pz2
pz1

)
2

k

−

(

pz2
pz1

)
k+1

k

]

, p = ρzRT.

The last equality may be narrowed down to

(

1−
pz1 − pz2

pz1

)
2

k

−

(

1−
pz1 − pz2

pz1

)
k+1

k

=
ω2 (k − 1)

2kqSpz1ρz1k
,

or, considering inequality (pz1 − pz2) /pz1 < 1,

(

k + 1

k
−

2

k

)

pz1 − pz2
pz1

=
ω2 (k − 1)

2k2qS
2pz1ρz1k

.

Thus

pz1 − pz2 =
ω2 (k − 1)

2 (k − 1) k2qS
2ρz1

.

If using approximate relationship
1

ρz1
=

zRT

pz1
=

2zRT

pz1 + pz2
,

one will receive

p2z1 − p2z2 = q2
zRTω2 (k − 1)

q2 (k − 1) k2qS
2
= azzq

2, (9)

azz =
zRTω2 (k − 1)

q2 (k − 1) k2qS
2
. (10)

Work of the compression station is characterized by the compression coefficient ε. In such a case,
if pk2 is gas pressure after exit from GCS, then pk2 = εpz2, or p2k2 = ε2p2z2.

Using formulas (1)–(10), necessary to build gas-dynamic control of the system formation UGS –
main gas pipelines, we will receive the following equation to define mass flowrate q:

p2pl − ε−2p2k2e
b = q

(

A+
2

q
DFG

)

+ q2
(

B + ar + ξ
zRT

s2
+ as + azz

)

eb. (11)

3. Definition of water pressure on the inner contour.

Formation of the underground store with presence of water and gas will be modelled with the enclosed
porous cylindrical fields with the common axis. In case the porousness and penetrating of the cylindrical
environments containing water as well as mass flowrate are known, then, within the process of gas
extraction the effective porous volume to be taken by water will be increased by that flowrate (Fig. 1).
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Fig. 1. Scheme of gas-water edge substitution within the process of gas extraction.
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At the start time effective porous volume Ω1v containing the same water volume

Ω1v = πhmv(b
2
v − a2v).

if q is mass flowrate, then the water inflow is increased by the same value. Thus the inner radius of
the water cylinder decreases by the certain value rv. Due to movements of the lower edge the quantity
of water will be

Ω1v + q = πhmv

(

b2v − (av − rv)
2
)

. (12)

Using the formula (12) one can find how the inner radius decreases during the time unit

rv = av −

√

b2v −
Ω1v + q

πhmv
.

As the last formula defines the radius change during the time unit, it appears to be nothing less than
the mean speed of the water contour movement, namely

υv = av −

√

b2v −
Ω1v + q

πhmv
.

Taking into account that

υ = −

k

µ

∂p

∂r
,

then

dp = −

µ

k
υdr = −

µ

k

(

av −

√

b2v −
Ω1v + qv
πhmv

)

dr.

In case all parameters remain constant, them from the last formula for GWC radius change by r it is
necessary to execute the equality

p1 − p0 =
µ

k
υr = −

µ

k

(

av −

√

b2v −
Ω1v + q

πhmv

)

r. (13)

Here p0 is the start value of the pressure on the surface of the inner cylinder for water, and p1 is value
of pressure on the surface of the inner cylinder for water while volume change on the mass flowrate.
Formula (13) marks pressure fall on the surface of the inner cylinder per time unit. Therefore, from
the balanced correlations the inner edge condition for the moving water will be

p1 = p0 −
µ

k
υr = p0 −

µ

k

(

av −

√

b2v −
Ω1v + q

πhmv

)

r. (14)

If tv is time, during which the gas extraction takes place, then the formula (14) will look like

p1v = p0 −
µ

k

(

av −

√

b2v −
Ω1v + tvq

πhmv

)

rv. (15)

4. Definition of gas pressure on the inner contour

Let us perform the same balance procedure for gas. At the start time the effective porous volume in
the gas area is Ωg. Then

Ωg = πhmg(a
2
g − c2g).
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Per time unit the volume will decrease by flowrate q. Outer gas radius will decrease by value rv, thus

Ωg − q = πhmg((ag − rv)
2
− c2g). (16)

In such a case only the upper edge will be taken into account. From the formula (16) one can find how
the outer radius will decrease per time unit

rv = ag −

√

Ωg − q

πhm
+ c2g.

The last formula is nothing less than the movement of the inner water edge. As far as

G = γυ = −

k

2µβ

∂p

∂x
,

then

dp = −

2µβγ

k
υdr = −

2µβγ

k

(

ag −

√

Ω1 − q

πhm
+ c2g

)

dr.

As all parameters are considered to be constant, then from the last formula

p1 − p0 =
2µβγ

k
υr = −

2µβγ

k

(

ag −

√

Ω1 − q

πhm
+ c2g

)

r.

Here p0 is the start pressure value on the surface of the inner cylinder for water. The last formula
defines the pressure fall on the surface of the inner cylinder for water per time unit. Having assumed
that tv is time, during which the gas extraction takes place, we will receive the edge condition for the
gas flow in the following way

p1 = p0 −
2µβγ

k
υr = p0 −

2µβγ

k

(

ag −

√

Ω1 − tvq

πhm
+ c2g

)

r. (17)

It is clear that on the GWC edge there should not be any breaks for speed field, namely the speed
of the gas drainage should be equal to the speed on water inflow, and correspondingly, the pressure
values calculated in accordance with the formulas (15) and (17) should coincide.

5. Definition of water pressure on the outer contour.

Let us assume that on surface r1 = a there is water pressure P1, and on surface r2 = b there is pressure
P2, while the initial distribution is provided in formula f (r). In this case, the solution of the original
problem of mathematical physics is presented in the following form: P = Ps + Pn, where

Ps =
P1 ln (b/r) + P2 ln (r/a)

ln b/a

determines the steady pressure distribution among the surfaces, and the second solution component is
as follows:

Pn =
π2

2

∞
∑

n=1

α2
nJ

2
0 (aαn)

J2
0 (aαn)− J2

0 (bαn)
exp

(

−κα2
nτ
)

U0 (rαn)

b
∫

a

rf (r)U0 (rαn) dr

− π

∞
∑

n=1

[P2J0 (aαn)− P1J0 (bαn)] J0 (aαn)U0 (rαn)

J2
0 (aαn)− J2

0 (bαn)
exp

(

−κα2
nτ
)

.

(18)
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Here U0 (ar) = J0 (ar)Y0 (ab) + J0 (ab)Y0 (ar), Ji (x) and Yi (x) are first and second kind Bessel
functions of actual argument of order i respectively.

Then

∂Pn

∂r
=

π2

2

∞
∑

n=1

α2
nJ

2
0 (aαn)

J2
0 (aαn)− J2

0 (bαn)
exp

(

−κα2
nτ
)

U1 (rαn)

b
∫

a

xf (x)U0 (xαn) dx

− π

∞
∑

n=1

[P2J0 (aαn)− P1J0 (bαn)]J0 (aαn)U1 (rαn)

J2
0 (aαn)− J2

0 (bαn)
exp

(

−κα2
nτ
)

,

where U1 (rαn) = −αn [J1 (αnr)Y0 (ab) + J0 (ab)Y1 (αnr)], αn stand for roots of nonlinear equations

J0(αa)Y0 (αb)− J0(αb)Y0 (αa) = 0.

Since

υ = −

k

µ

∂p

∂y
, q = υS = 2πrSυ, υ =

q

2πrS
,

q

2πrS
= −

k

µ

∂p

∂r
, q = −2πrS

k

µ

∂p

∂r
.

Then we get the following equation

q

2πrS
=







P2 − P1

ln (b/a)
+ r

π2

2

∞
∑

n=1

α2
nJ

2
0 (aαn)

J2
0 (aαn)− J2

0 (bαn)
exp

(

−κα2
nτ
)

U1 (rαn)

b
∫

a

xf (x)U0 (xαn) dx

−rπ

∞
∑

n=1

[P2J0 (aαn)− P1J0 (bαn)] J0 (aαn)U1 (rαn)

J2
0 (aαn)− J2

0 (bαn)
exp

(

−κα2
nτ
)

}

k

µ
. (19)

Here κ = αk
mµ , where α is surround module of tension, k is permeability of environment, µ is dynamic

viscosity of gas, m is porosity of reservoir.

Initial pressure distribution set the following formula f (r) =
P1 ln (b/r) + P2 ln (r/a)

ln (b/a)
, then

b
∫

a

x
P1 ln (b/x) + P2 ln (x/a)

ln (b/a)
U0 (xαn) dx

=
1

ln (b/a)

b
∫

a

x [P1 ln b− P1 lnx+ P2 lnx− P2 ln a]U0 (xαn) dx

=
1

ln (b/a)

b
∫

a

x [P1 ln b− P2 ln a+ (P2 − P1) lnx]U0 (xαn) dx

=
1

ln (b/a)



(P1 ln b− P2 ln a)

b
∫

a

xU0 (xαn) dx



 + (P2 − P1)

b
∫

a

x lnxU0 (xαn) dx. (20)

Using an analytical representation of these integrals [4]:

b
∫

a

xU0 (xαn) dx =
2 [J0 (aαn)− J0 (bαn)]

πα2
nJ0 (aαn)

,
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b
∫

a

xU0 (xαn) lnxdx =
2 [J0 (aαn) ln b− J0 (bαn) ln a]

πα2
nJ0 (aαn)

,

we get that the equation (20) takes the following form

b
∫

a

x
P1 ln (b/x) + P2 ln (x/a)

ln (b/a)
U0 (xαn) dx =

=
1

ln (b/a)

[

(P1 ln b− P2 ln a)
2 [J0 (aαn)− J0 (bαn)]

πα2
nJ0 (aαn)

+ (P2 − P1)
2 [J0 (aαn) ln b− J0 (bαn) ln a]

πα2
nJ0 (aαn)

.

]

Grouping separate terms which include P1 and P2 then the last formula can be rewritten as:

b
∫

a

x
P1 ln (b/x) + P2 ln (x/a)

ln (b/a)
U0 (xαn) dx =

2 (ln a− ln b)

πα2
n ln (b/a)

[

P1
J0 (bαn)

J0 (aαn)
− P2

]

.

Let
U2 (r, αn, κ, τ) = exp

(

−κα2
nτ
)

U1 (rαn) ,

Then the equation (19) written as

qµ

2πrkS
=

P2 − P1

ln (b/a)
+ r

π2

2

∞
∑

n=1

α2
nJ

2
0 (aαn)

J2
0 (aαn)− J2

0 (bαn)
U2 (r, αn, κ, τ)

2 (ln a− ln b)

πα2
n ln (b/a)

[

P1
J0 (bαn)

J0 (aαn)
− P2

]

− rπ

∞
∑

n=1

[P2J0 (aαn)− P1J0 (bαn)]J0 (aαn)

J2
0 (aαn)− J2

0 (bαn)
U2 (r, αn, κ, τ) . (21)

We introduce the notation

F2 (a, b, r, αn, κ, τ) =
1

ln (b/a)
− rπ

∞
∑

n=1

2 (lna−ln b)
ln(b/a) J2

0 (aαn)

J2
0 (aαn)− J2

0 (bαn)
U2 (r, αn, κ, τ) ;

F1 (a, b, r, αn, κ, τ) = −

1

ln (b/a)
+ rπ

(

(ln a− ln b)

ln (b/a)
+ 1

) ∞
∑

n=1

J0 (aαn) J0 (bαn)

J2
0 (aαn)− J2

0 (bαn)
U2 (r, αn, κ, τ) .

Then the equation (20) takes the form

qµ

2πrkS
= P2F2 (a, b, r, αn, κ, τ) + P1F1 (a, b, r, αn, κ, τ) .

Thence

P2 =
qµ

2πrkS − P1F1

F2
. (22)

If τ → ∞, or sufficiently large then

F2 =
1

ln (b/a)
, F1 = −

1

ln (b/a)
.

Then
P2 = P1 + ln (b/a)

qµ

2πrkS
. (23)
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6. Computational experiment

Testing of the results conducted in the computational experiment the following input parameter values:
p0 = 70 · 98066.5 (N/m2); pgzp = 50 · 98066.5 (N/m2); z = 0.9; R = 8.3144621 (J/(mol ·K)); T =
293 (K); ρ0 = 0.68 (kg/m3); µ = 0.0008 (m2/s); g = 9.8 (m/s2); α = 0.8; m = 0.28; k = 4 · 10−15;
ρ = 998 (kg/m3).

Table 1. The value of pressure in the control points by changing the
amount of available gas in UGS (a (m) is the radius of the inner con-
tour(the border “gas-water”), b (m) is the radius of the outer contour
of water, P1 (ata) is the pressure on the inner contour, P2 (ata) is the
pressure on the outer contour, h (m) is the height of the column of

water to maintain pressure on the outer contour of water).

Table 2. The distribution of pres-
sure on the outer contour of water
depending on the time (t (s) is time,
P1 (ata) is the pressure on the inner
contour, P2 (ata) is the pressure on

the outer contour).

a b− a P1 P2 h

500 500 56.29 59.24 592.8

400 600 54.97 61.43 614.7

300 700 54.12 62.87 629.1

200 800 53.87 63.85 638.9

100 900 52.18 66.91 669.6

50 950 51.36 69.16 692.06

t P1 P2

1000 56.29 59.24

5000 55.17 60.23

10000 54.24 62.47

50000 54.17 63.05

100000 54.17 63.05

7. Conclusions

The current work researches the process of gas extraction from UGS, in case the water is present in
the formation. Mathematical model of such a process is being built. Functional connection between
the mass flowrate and pressure values in the main gas pipeline and on the outer water edge is being
established. Formulas for calculating of the main UGS functioning parameters during the process
of gas extraction are obtained. Model problem and formulas for calculating underground gas store
parameters are tested during multiple experiments.
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Розрахунок параметрiв роботи ПСГ для пiдтримування процесу
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Розроблено модельну задачу процесу вiдбирання газу з ПСГ витiсненням його водою.
Побудовано зв’язок мiж дебiтом свердловини та значеннями тискiв у магiстральному
газопроводi та на зовнiшнiй межi води. Наведено формули розрахунку параметрiв
роботи ПСГ пiд час вiдбирання газу. Отриманi результати апробовано на модельнiй
задачi.
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