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A mathematical model to describe a thermoelastic state of plane-parallel plates (plate
composites) subjected to a thermal radiation is developed. The model is grounded on
phenomenological theory of radiation and quasistatic thermoelasticity. It takes into ac-
count an effect of radiation on plate surfaces, contact boundaries, and in semi-transparent
areas. It is assumed a perfect contact between the constituents of layers that boundary
contact is modeled on the plane surface defined on both sides of its radiation character-
istics of the material layers and the conditions of heat and mechanical contacts are ideal.
The methods to solve new nonlinear contact-boundaries problems of thermoelasticity are
proposed. On analysing the posed problems solutions, the new features of temperature
and stresses distributions in plates are established, dependent on radiative properties of
layers, layer’s thickness and on source temperature.
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1. Introduction

Modern technologies of thermal treatment metallic and non-metallic materials widely use thermal radi-
ation due to the possibility of uniform field intensity in a defined part or the whole surface of the sample
and the simplicity of the implementation. Very often elements of constructions and devices especially
in aerospace and aeronautical engineering, nuclear and chemical power engineering are subjected to
thermal irradiation or high temperatures when operating.

Impact of heat radiation (includes the spectral region from the ultraviolet to the far infrared
(the wavelengths 0.4 ÷ 1000µm)) on the solid made from different materials is determined by their
transparency. Opacity (full absorption of radiation energy in a very thin surface layer, the order
100 − 1000 of angstroms) is characteristic of metal, whereas partial transparency (absorption by the
thickness of a micrometer to several meters) characteristic of non-metallic. It is determined by the
peculiarities of the propagation and absorption of both the external thermal radiation, and radiation
in the body of its own, since the heated body itself is a source of radiation.

The absorption and emission of thermal energy by solids depending on their transparency has a
surface or volume character and affects the course of interrelated thermal and mechanical processes
in such solids. Given this, the statement of boundary problems of heat transfer and thermoelastic-
ity considering radiation heat transfer is a relevant and important (in particular for the destination
irradiation) for solids of various transparency and development methods for investigation of thermal
stress state in order to: predicting thermomechanical behavior of structural elements and devices, that
exploited under conditions of thermal irradiation or high temperatures; the development of theoretical
foundations for the creation of new and improvement of existing technologies and regimes of thermal
treatment of products using thermal radiation.
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Necessity of investigation the thermomechanical behavior of solids under the action of light elec-
tromagnetic radiation (includes the infrared radiation (frequencies 3 · 1011 − 3 · 1014 Hz), visible light
(3 · 1014 − 3 · 1015 Hz) and ultraviolet radiation (3 · 1015 − 3 · 1017 Hz)), as a thermal and non-thermal
(laser) has led to the formulation of a new class of problems — problems of radiation thermomechanics.
Although the heat radiation has electromagnetic nature, the use for modeling thermo mechanics of
deformable solids under conditions of thermal radiation of theories of interaction, based on the clas-
sical theory of the electromagnetic field is associated with significant difficulties. They appear as the
description of electromagnetic properties materials, and in the investigation of the propagation of radi-
ation such wavelength in the medium [1]. Therefore, in the literature to investigate the propagation of
thermal electromagnetic radiation and modeling of its effect on the thermomechanical processes in the
solids is used the phenomenological theory of radiation, based on Planck’s and Bugera’s laws (electro-
dynamic theory is more complicated) [2–6]. On its basis, the theory of heat radiation in a continuous
medium is developed [4,5], which explores the thermal state of solids of different transparency, taking
into account the absorption and emission of thermal radiation energy. At the same time, for opaque
solids, these processes are considered superficial and were taken into consideration in the balance of
heat flux on the surface of the body (the formulation of the thermal boundary conditions). In the
semi-transparent (partial transparent) solids the propagation of radiation is described by the transfer
equation, and its absorption and emission is associated with volumetric heat emission, which, as a heat
source, take into account in the heat conduction equation. A sufficiently complete review of studies
of heat transfer in semi-transparent and opaque solids, taking into account the peculiarities of the
emergence and propagation of thermal radiation in them made in [7–9].

In the radiation heat transfer theory in a continuous medium are known investigations in conjunc-
tion of radiation and heat (radiation-conductive heat transfer) in layered semi-transparent solids that
carried out primarily for two-layer plates [10–16]. The proposed models are based on a phenomeno-
logical theory of radiation semi-transparent solids, were taken into account the effects of emission and
absorption of thermal energy in the layers, the reflection and refraction of radiation at the interface,
modeled by flat physical surface with predetermined reflective characteristics on both its sides.

It is considered that such layered flat system is between opaque surfaces with predetermined ra-
diation (emitting and reflecting) properties and temperature and at the interface between layers the
conditions ideal thermal contact (equality of temperatures and heat fluxes due to heat conduction)
are satisfied. However, in the literature on heat exchange by radiation the propagation of radiation
and heat transfer in layered solids with components of different transparency have not studied. With
the use of methods radiation heat transfer theory in a continuous medium are proposed variants of
thermomechanics of homogeneous opaque solids under conditions of (convective-radiative) heat ex-
change [17–19] and semi-transparent by the thermal irradiation [20–23]. On their basis are formulated
and produced a number of concrete problems for investigation of thermomechanical behavior of solids
(in particular, temperature-sensitive, with impurities) of varying transparency, taking into account the
effect of thermal radiation [17–22, 24–29] and others. Apart from the mentioned works, some of the
problem of thermoelastic state of semi-transparent solids under the impact of thermal radiation were
considered in [30, 31], and opaque — in [32].

As part of the radiation thermomechanics not investigated thermostressed state irradiared as semi-
transparent layered solids, and solids with components of different transparency.

The article is devoted to the development of methods for studying thermal stress state of the
irradiated plane-layered bodies (plates) and to identify patterns of their thermomechanical behavior
depending on the radiative properties of the component layers, their thickness and the radiation source
temperature.
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2. Formulation of problems of thermomechanics for irradiated two-layered plates

In this paper we considered the peculiarities of radiative thermomechanics problems definitions for
irradiated layered solids using example two-layered plane-parallel solids (plates) with components of
different transparency. We assume that there is a perfect contact between the layers in which border of
contact is modeled on a plane surface defined on both sides of its radiation characteristics of the material
layers and thermal conditions and mechanical contact – ideal. Therefore, we consider components plates
which are opaque or semi-transparent solids throughout the range of the spectrum of thermal radiation

In the study of the thermal state of different transparent solids caused by heat radiation, exter-
nal thermal radiation from the heated body may be set approximately in the environment (which is
considered transparent) by spectral intensity Iλs(x, t,g0) (λ is wavelength) falling radiation on body
from the real source. This intensity on the body surface is a function of the point (characterized by
the radius-vector x), the time t and the direction (g0 is unit vector in the direction of the ray). It can
be accepted proportional to the spectral intensity blackbody radiation at the temperature Ts source,
i.e. Iλs(x, t,g0) = kλ(x,g0)Ibλ(λ, Ts), where kλ(x,g0) is defined function, which look set depending
on the energy and spectral characteristics of the real source of radiation and its location relative to
the body. This ratio we use when setting field of irradiation on the surface of a two-layer plate.

Propagation of heat radiation in a semi-transparent layer of the plate describe quasi-stationary
transfer equation [33,34] relatively spectral radiation intensity Iλs(x, t,g0), which determines the radi-
ation attenuation (aλ is spectral absorption coefficient) in the direction of the ray and also takes into
account their emission radiation (directly emitted radiation) Imλ = (nλ)

2Ibλ[T (x, t)] (T (x, t) is the
temperature in the layer, nλ is refractive index). Its solution is presented in the form [4],

Iλ(θλ, t, g0) = Iefλ (x, t,g0) exp(−θλ) +

∫ θλ

0
I∗mλ(λ, T ) exp

[

− (θλ − θ∗λ)
]

dθ∗λ, (1)

where θλ(x) =
∫ g(xi)
0 aλ(g

∗)dg∗ is the optical thikness in the layer (xi are Cartesian coordinates); Iefλ
is effective intensity radiation, which departs from the interface of the opaque layer or from the border
of the plate at the point x in the direction g0 into the layer. Effective intensities on borders of semi-
transparent layer is found using boundary conditions which express the balance of fluxes of radiation
which summarizes to the border (including a couple of reflections inside layer). These conditions are a
system of two Fredholm integral equations of the second order. In general, each of the equations can
be written as

Iefλ (x, t,g0) = Irfλ (x, t,g0)
1

π

∫

Γ
R′′

λ(x,g0,g
′
0)I

inc
λ (x, t,g′

0) cos(g
′
0 ∧ n)dΓg

′

0
(2)

Here Irfλ is the spectral intensity of radiation refracted from the environment or emited from the surface
contacting opaque layer; Iincλ (x, t, g′

0) is the intensity of the radiation falling on border from the inside
of the layer in the direction g′

0; R
′′
λ(x,g0,g

′
0) is bidirectional reflectance spectral ability of the border,

and n is a vector of normal to it. Integration is carried out by solid angle = 2π (dg′

0
is its element in

the direction g′
0). If, semi-transparent layer borders on the transparent environment (nλ ≈ 1), then

Irfλ (x, t,g′
0) = n2

λ[1−R′
λ(x,g

′′
0)]Iλs(x, t,g

′′
0), where R′

λ(x, g
′′
0) is unidirectional reflective ability border.

Directions g0 and g′′
0 are related by ratio sin(g0 ∧ n)/ sin(g′′

0 ∧ n) = nλ. On the boundary of contact

with the opaque layer Irfλ (x, t,g′
0) = Iopλ (x, t,g′

0), where Iopλ (x, t,g′
0) = ε′λ(x,g0)(nλ)

2Ibλ[T (x, t)] is
intensity of emission from the surface of the opaque layer in semi-transparent, which determine in
relation to the intensity Imλ and characterize by the unidirectional spectral emissivity ε′λ(x, g0).

Under conditions of thermal equilibrium of surface its absorbing properties also determined by
parameter ε′λ(x,g0). Then, the spectral intensity Iabsλ (x, t,g0) absorbed by opaque surface of heat
radiation at intensity falling on it Iincλ (x, t,g0), considering Kirchhoff’s law (ε′λ(x,g0) = 1−R′

λ(x,g0),
represent thus Iabsλ (x, t,g0) = n2

λ[1−R′
λ(x,g0)]I

inc
λ (x, t,g0).
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If the temperature Ts of the radiation source substantially exceeds the temperature T in the inves-
tigated homogeneous semi-transparent body in the literature to describe the propagation of external
heat radiation transport equation is used in the approximation of nonradiative material (Imλ = 0).

The solution of (1) in this case is simplified and has the form Iλ(θλ,g0) = Iefλ (x,g0) exp(−θλ). Using
this approach allows us to separate the problem of determining the radiation field and temperature in
a semi-transparent solid. For a semi-transparent layer plate as the “external” is the radiation of the
source, if it borders with the environment by exposure to irradiation or radiation from the surface of
the contacting opaque layer Such an approach for given restrictions on the temperature was used in
the second case, since the maximum energy of the thermal radiation of the opaque layer accounted for
the near and far infrared range, where the nature of the absorption is near-surface [4].

Effect of “external” radiation on the semi-transparent layer can be characterized by the temperature
factor — volumetric heat generation. In the approximation of the radiating material heat generation
in the semi-transparent layer determine the absorbed energy “external” heat radiation, and their ex-
pression of the known solutions of systems of Fredholm integral equations of the second kind effective
intensity Iefλ of radiation at the surface will be [4]

Q =

∫ ∞

λ=0

[

aλ(x)

∫

Γ=4π
Iefλ (x,g0) exp(−θλ)dΓg0

]

dλ. (3)

In the opaque layer processes of emission and absorption of thermal energy, according to the
phenomenological theory consider superficial, and emitted and absorbed energy characterize the cor-
responding flux pop and pabs on surfaces. Their expressions we get integrating the ratio for Iopλ , Iabsλ

over the spectrum and within an angle Γ = 2π

qop(x) =

∫ ∞

0

{
∫

Γ
ε′λ(x,g0)(nλ)

2Imλ

[

T (x, t)
]

dΓg0

}

dλ, (4)

qabs(x) =

∫ ∞

0

{
∫

Γ

[

1−R′
λ(x,g0)

]

Iincλ (x, t,g0) dΓg0

}

dλ. (5)

If the emissivity of the surface considered independent of direction g0 (ε′λ = ελ(x)) and wavelength
λ (diffuse-gray surface), and refractive index — independent of λ (in particular, equal to the average
interval values in real spectral range ελ(x) = ε(x), nλ = n = const), then from (5) we obtain the
Stefan-Boltzmann expression qop(x) = ε(x)(n)2σT 4(x, t) (σ is a Stefan-Boltzmann constant) for the
flux of thermal energy. Note that for diffuse reflective surfaces (such as transparent or semi-transparent
solids) relations R′

λ(x,g0) = πR′′
λ(x,g0) = Rλ(x) are valid, where Rλ(x) is a coefficient of the diffuse

reflectance, and for diffuse-gray Rλ(x) = R(x). Then the expression (5) is also simplified.
Thermal state of the two-layer plates determined from the system of heat conduction equations

that describe heat transfer in layers. At the same time heat generation (3) in a semi-transparent layer,
we consider as volumetric heat sources

κT,ii +Q = ρ cε
∂T

∂t
, (6)

where ρ, κ, cε are density, thermal conductivity and specific heat of layers. Here and below, the comma
preceding indices denotes differentiation in the corresponding coordinates xi, and the repeated indexes
means summation. For opaque areas in the equations (6) Q = 0.

The system of equations (6) supplement boundary and contact conditions formulated on the basis
of the conditions of continuity of the normal components of the heat flux vectors q(l) on the surfaces
of the plate and at the boundary layers (balance conditions), taking on the interface of the assumption
of local thermal equilibrium between the layers (the equality of their temperatures). At the same time
at the boundary between layers of different transparency or on the surface of the opaque layer, we are
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also considering fluxes qop and qabs, caused by radiation and absorption heat energy. Form of boundary
condition on the radiated surface of the plate depends on the radiative properties of the layer from the
side of irradiation. For opaque and semi-transparent layer, such conditions will be respectively [20]

q
(T )
i = qext + qop − qabs, q

(T )
i = qext. (7)

Here q
(T )
i = −κT, i ni, q

ext is the flux caused thermal conductivity and heat transfer with the envi-
ronment (in particular by convective according to the law qext(x, t) = αi[Ti(x, t) + T ext(t)], where
αi(x, t) is the heat transfer coefficients from the surfaces of layers, T ext(t) is the temperature in the
environment). Fluxes of emitted and absorbed energy are determined in accordance with (4), (5) (at
Iincλ (x, t,g0) = Iλs(x, t,g0)). Note that on not irradiated surface qabs = 0.

The view of the contact conditions depends on the radiative properties of the contacting of the j-th
and k-th layers If the opaque j-th and the semi-transparent k-th layers are contacted, these contact
conditions at the interface will be

(

κ(j)T
(j)
,i

)

ni + qop − qabs =
(

κ(k)T
(k)
,i

)

ni, T (j) = T (k). (8)

They are the ideal conditions of thermal contact considering the influence of radiation.

 

Fig. 1.

Consider a two-layer infinite plate (Fig. 1), formed by
layers 1 and 2 (thicknesses h1 and h2). The plate is sub-
jected to thermal radiation intensity Iλs(ν) from the par-
allel to this layers heated isothermal surface, which tem-
perature Ts is considered to be a predetermined. Here
ν = cos ξ, and ξ are acute angles forming the direction of
incidence of the rays from the surface of the positive di-
rection of an axis z, directed in the direction of external
normal to the layer 2. Domaines z < 0 and z > h (where
h = h1 + h2) of the environment air at a constant tem-
perature T0 (equal to the initial) accept transparent, and
the surface of the plate z = 0 and z = h and boundary
of the layer separation, z = h1 are diffusely reflecting.
We consider that heat radiation of the heated isother-
mal surface is diffuse (intensity independent of the angle ξ), and it can be described by the relation
Iλs = k 2πc1

λ5 exp(c2/λTs−1)
, k = const. The boundary of the contact z = h1 is modeled by plane surface

with the set on both sides of its radiation characteristics of layer materials.
When describing the propagation of radiation and thermal state in the plate we are using the ap-

proach of nonradiating material for semi-transparent layer. Initial relations describing the propagation
of radiation and heat transfer in the plate, we will formulate for two variants of the irradiation of the
plate.

Irradiation from the side of the opaque layer

In this case, the system of integral equations (1) formulated relatively effective intensities of radiation

I
+(2)
λ (h1, ν), I

−(2)
λ (h, ν) on surfaces of the semi-transparent layer with diffusely reflecting surface has

the form

I
+(2)
λ (h1, ν) = I

(op)
λ (h1, ν) + I

+(rf)
λ (h1, ν), I

−(2)
λ (h, ν) = I

−(rf)
λ (h1, ν), θ

(2)
λ = aλh, (9)

where

I
+(rf)
λ (h1, ν) = 2R

+(2)
λ

∫ 1

0
I
−(2)
λ (h, ν∗) ν∗ exp

[

−θ
(2)
λ /ν∗

]

dν∗,
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I
−(rf)
λ (h1, ν) = 2R

−(2)
λ

∫ 1

0
I
+(2)
λ (h, ν∗) ν∗ exp

[

−θ
(2)
λ /ν∗

]

dν∗,

and the intensity of thermal radiation I
(op)
λ (h1, ν) from the surface of the opaque layer 1 in a semi-

transparent 2 is given by I
(op)
λ (h1, ν) = ε

+(1)
λ [n

(2)
λ ]2Ibλ[T (h1, t)], ε

+(1)
λ = 1−R

+(1)
λ . Where R

+(2)
λ , R

−(2)
λ

are diffuse reflection coefficients at the border of contact and the inner surface of semi-transparent

layer; R
+(1)
λ , ε

+(1)
λ are diffuse reflection coefficients and emissivity of the internal surface of the opaque

layer.
The solution of system (9) according the consideration of a single radiation reflection in layer 2 has

the form
I
+(2)
λ (h1, ν) = A1I

(op)
λ (h1, t), I

−(2)
λ (h, ν) = A1A2I

(op)
λ (h1, t). (10)

Here A1 = 1/[1 − 4R
+(2)
λ R

−(2)
λ E2

3(θ
(2)
λ )], A2 = 2R

−(2)
λ E2

3(θ
(2)
λ ), E3(θ

(2)
λ ) =

∫ 1
0 µ exp[−x/µ]dµ is the

integroexponential function.
Heat source Q2 in layer 2 we determine in accordance (3)

Q(z, t) = 2π

∫ ∞

0
aλ

〈
∫ 1

0

{

I
+(2)
λ (h1, ν) exp [−aλ(z − h1)/ν] + I2λ(h, ν) exp [−aλ(h− z)/ν]

}

dν

〉

dλ.

(11)

Heat fluxes qabs(0), qop(0, t) on the surface z = 0 of this layer (which we assume to be diffuse gray),
connected with an external source of radiation and absorption of heat from the surface of the radiation
given by the expressions (4) and (5).

qabs(0) = k
(

1−R(s)
)

σT 4
s , qop(0, t) = ε(s)σ[T (0, t)]4. (12)

Here R(s), ε(s) are the diffuse reflectance and emissivity of this surface. Similar fluxes qop(h1, t), qabs(h1)
on diffuse gray edge contact z = h1, will be

qop(h1, t) = ε+(1)(n(2))2σ[T (h1, t)]
4,

qabs(h1) = π
(

1−R+(1)
)

∫ ∞

λ=0

{
∫ 1

0

[

I−2
λ (h, ν) exp

[

−θ2λ/ν
]

ν dν
]

}

dλ, (13)

where the expression for the intensity I−2
λ (h, ν) of the effective radiation from the surface z = h of the

semi-transparent layer is defined by the formula (9)
Thermal state of the plate (when the density ρj and thermophysical characteristics of the materials

of layers κj , cεj, j = 0, 2 are the constants), we described by the system of equations (6), which is
relatively temperature deviations θj = Tj − T0 in the plate from the initial T0 = const has the form

∂2θj(z, t)

∂z2
−

1

̟j

∂θj(z, t)

∂t
= −

Qj(z, t)

κj
, Q1(z, t) = 0, Q2(z, t) = Q(z, t). (14)

(̟j = κj/ρjcεj are coefficients of thermal diffusivity of materials of layers. Substituting expres-
sions (12), (13) in (8) we obtain the following contact-boundary conditions for the considered variant
of the irradiation (for convective heat transfer)

κ1
∂θ1(0, t)

∂z
− α1θ1(0, t) = −k

(

1−R(s)
)

σT 4
s + ε(s)σ[T (0, t)]4,

κ1
∂θ1(h1, t)

∂z
= κ2

∂θ2(h1, t)

∂ z
+ π

(

1−R+(1)
)

∫ ∞

λ=0

{
∫ 1

0

[

I
−(2)
λ (h, ν) exp

[

− θ
(2)
λ /ν

]

νdν
]

}

dλ

− ε+(1)
(

n(2)
)2
σ[T (h1, t)]

4, θ1(h1, t) = θ2(h1, t), κ2
∂θ2(h, t)

∂z
+ α2θ2(h, t) = 0. (15)
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Irradiation from the side of the semi-transparent layer

In this case, to identify effective intensities I
+(1)
λ (0, ν), I

−(1)
λ (h1, ν) on the surfaces of partially trans-

parent layer 1 we obtain a system of integral equations. The solution of this system according the
consideration of a single radiation reflection has the form

I
+(1)
λ (0, v) = B1

[

I
(s)
λ +B2I

op
λ (h1)

]

, I
−(1)
λ (h1, v) = B1

[

Iopλ (h1) +B2I
(s)
λ

]

, (16)

where B 1 = 1/[1 − 4R
+(1)
λ R

−(1)
λ E2

3(θ
(1)
λ )], B2 = 2R

−(1)
λ E3(θ

(1)
λ ), аnd I

(s)
λ is the intensity of the refracted

external radiation. The equations of heat transfer in the plate are heat equations (14) with Q2 = 0,

Q1 = 2π

∫ ∞

0
aλ

〈
∫ 1

0

{

I
+(1)
λ (0, ν) exp [−aλz/ν] + I

−(1)
λ (h1, ν) exp [−aλ (h1 − z) /ν]

}

dν

〉

dλ. (17)

Having determined the expression of heat fluxes that characterize the radiation from the surface
z = h1;h of the opaque layer 2 in a semi-transparent layer 1 and the environment we obtain such
thermal contact and boundary conditions

κ1
∂θ1(0, t)

∂z
− α1θ1(0, t) = 0,

κ1
∂θ1(h1, t)

∂z
= κ2

∂θ2(h1, t)

∂z

+ π
(

1−R−(2)
)

∫ ∞

λ=0

{
∫ 1

0

[

I
+(1)
λ (h1, ν∗) exp

[

− θ
(1)
λ /ν∗

]

ν∗dν∗

]

}

dλ− ε−(2)
(

n(1)
)2
σ[T (h1, t)]

4,

θ1(h1, t) = θ0(h1, t), κ2
∂θ2(h, t)

∂z
+ α2θ2(h, t) + ε(s)σ[T (h, t)]4 = 0. (18)

R−(1), R+(1), R
(s)
λ are the reflection coefficients at the border of contact and internal and external

surfaces of semi-transparent layer; R−(2), ε−(2) are the reflection coefficient and emissivity of the
internal surface of the opaque layer, ε(s) is the emissivity of the external surface.

Note that if there is an opaque layer in the plate then contact-boundary problem of determining
the temperature in it are nonlinear.

Thermostressed state

In accordance with the distribution of temperature, stress state in two-layer infinite plates is described
by relationships temperature problem of elasticity, formulated relatively stress tensor components [3].

σ(j)
xx = σ(j)

yy = −
Ej

1− νj
α
(j)
t θj + c

(j)
1 z + c

(j)
2 , σ(j)

zz = 0, (19)

where Ej is Young’s modulus, νj are Poisson’s coefficients, α
(j)
t are coefficients of linear of temperature

expansion of materials layers. For example, when the plate is rigidly clamped at the edges.

c
(j)
1 = 0, c

(1)
2 =

S

h1 + h2/K12
, c

(2)
2 = c

(1)
2 /K12,

K12 =
E1

(1− ν1)

(1− ν2)

E2
, S =

E1

1− ν1

∫ h1

0
α
(1)
t θ1 dz +

E2

1− ν2

∫ h

h1

α
(2)
t θ2 dz. (20)

If it is rigidly fixed — c
(j)
1 , c

(j)
2 = 0.
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3. Numerical study of heat and stress state

Irradiation from the side of the opaque layer

Using the method of the type of Green’s functions [12, 36–38], solution of the formulated nonlinear
contact-boundary problem is reduced to solving an equivalent system of nonlinear integral time Volterra
equations. This transformation is carried out using Green’s functions Kj(z, z

′, t − t0), which for the
considered heat equations are as follows

Kj(z, z
′, t− t0) =

√
κj

√

π(t− t0)
exp

{

−
(z − z′)2

4κj(t− t0)

}

. (21)

Then, taking into account the boundary and contact conditions, a system of non-linear integral equa-
tions for determining the temperature in the plate was obtained:

θ1(z, t) = θ∗(z, t) +
1

κ1

∫ t

0

〈

K1(0, z, t − t0)
{

σε [θ1(0, t0) + T0]
4 + α1, θ1(0, t0)

}

+K1(h1, z, t− t0)

{

σε [θ1(h1, t0) + T0]
4 + κ2

∂θ2(h1, t0)

∂z
− π

∫ ∞

0
I
(0)abs
λ dλ

}〉

dt0, (22)

θ2(z, t) = −
∫ t

0

[

K2(h1, z, t− t0)
∂θ2(h1, t0)

∂z
+K2(h, z, t− t0)α2θ2(h, t0)

]

dt0 − Φ [z, t, θ1(h1, t)] . (23)

Here

θ∗ (z, t) =
1

κ1

∫ t

0
K1(0, z, t − t0, )kσεT

4
s dt0,

Φ(z, t, θ1(h1, t)) =
1

4πκ2

∫ t

0

∫ h

h1

K2(z, z
′, t− t0)Q(z′, t0) dz

′ dt0

−
π

κ1

∫ t

0
K1(h1, z, t− t0)

[
∫ ∞

0
I
(0)abs
λ dλ

]

dt0. (24)

Determination of temperature in the plate from the system of equations (22), (23) include the deter-
mination of the temperature at the base plate and layer interface. Substituting values z = 0;h1 in
equation (22) and z = h1, h in equation (23), and excluding the value ∂ [θ2(h1, t0)] /∂z we obtain a
system of three nonlinear integral equations of Volterra type in time for the quantities θ1(0, t), θ1(h1, t),
θ2(h, t):

θ1(0, t) = θ(1)(0, t) +

∫ t

0

{

1

κ1
C(θ1(0, t))

[

K1(0, 0, t − t0)−
κ2K

2
1 (0, 0, t − t0)

(κ1 + κ2)K1(h1, h1, t− t0)

]

+
1

(κ1 + κ2)

[

K1(h1, 0, t − t0)D(θ1(h1, t0))−
κ1K2(h1, h, t− t0)

K1(h1, h1, t− t0)
E(θ2(h, t0))

]}

dt0,

θ1(h1, t) = θ(2)(h1, t) +
1

(κ1 + κ2)

∫ t

0

[

C(θ1(0, t0))K1(0, h1, t− t0)

+D(θ1(h1, t0))K1(h1, h1, t− t0)− κ2K2(h1, h2, t− t0)E(θ2(h, t0))
]

dt0,

θ2(h, t) = θ(3)(h, t) −
1

κ1 + κ2

∫ t

0

[

K1(h1, 0, t− t0)K2(h1, h, t− t0)

K1(h1, h1, t− t0)
C(θ1(h1, t0))

+K1(h1, h, t− t0)D(θ1(h1, t0))− (κ1 + κ2)K2(h, h, t − t0)E(θ2(h, t0))

]

dt0, (25)
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where

θ(1)(0, t) = θ∗(0, t) +
κ2

κ1 + κ2

∫ t

0

K1(0, h1, t− t0)

K1(h1, h1, t− t0)

[

Φ(h1, t, θ1(h1, t))− kσεT 4
s K1(0, h1, t− t0)

]

dt0,

θ(2)(h1, t) = Φ(h, t, θ1(h1, t))−
κ2

κ1 + κ2

∫ t

0

[

Φ(h1, t, θ1(h1, t)) −
kσεT 4

s

κ1
K1(0, h1, t− t0)

]

dt0,

θ(3)(h, t) = Φ(h, t, θ1(h1, t))−
κ1

κ1 + κ2

∫ t

0

K2(h1, h, t− t0)

K1(h1, h1, t− t0)

[

Φ(h1, t, θ1(h1, t))−

−
kσεT 4

s

κ1
K1(0, h1, t− t0)

]

dt0,

C(θ1(0, t0)) = σε [θ1(0, t0) + T0]
4 + α1θ1(0, t0),

D(θ1(h1, t0)) = σεn2 [θ1(h1, t0) + T0]
4 , E(θ2(h, t0)) = α2θ2(h, t0).

The system of equations (25) was solved by the method of successive approximations, whose conver-
gence for a obtained non-linear system of Volterra integral equations was proved in thе paper [38]. To
do this, we write the system (25) in vector form

θ(t) = θ(0) +

∫ t

0
F
[

t, t0,θ(t0)
]

dt0,

where θ(0) =
{

θ(1)(0, t), θ(2)(h1, t), θ
(3)(h, t)

}

, and components of the vector F are, respectively, the
integrand in the first, second and third equations of system (25). Then the sequence of Picard, which
determines the solution of the system is described as follows

θ(0)(t) = θ(0), θ(n) = θ(0) +

∫ t

0
F
[

t, t0,θ(n−1)(t0)
]

dt0, n = 1, 2, . . . . (26)

When the solution of the system (25) is found, then the solution of the initial nonlinear contact-
boundary problem is defined by quadrature from (22), (23).

Numerical studies is conducted for plate consisting of a opaque layer of stainless steel H18N9ТL
and semi-transparent layer of glass S95-3, the absorption coefficient which is still approximated by
piecewise constant function [5, 21].

Characteristics of glass S95-3 and the stainless steel H18N9ТL [39–41] are the following:

H18N9ТL: ε = 0.2;

κ = 16.7W/(K · m), ̟ = 4.22 · 10−6 m2/s, α = 50W/(m2 · K);

E = 198GPa, ν = 0.28, αt = 0.17 · 10−4 K−1.

S95-3: R = 0.02, λn = 273µm, a1 = 150m−1, a1 = 900m−1,

κ = 1.6W/(K · m), ̟ = 8 · 10−7 m2/s,

α = 26W/(m2 · K), E = 65.4GPa, ν = 0.215.

The plate is heated by radiation with the intensity I =
∫∞

0 Iλsdλ = 1.5 · 105 W/m2 · sr, which cor-
responds, in particular, the temperature of the radiating surface Ts = 1960K with a coefficient of
proportionality k = 1. Heating time is determined by the condition that the temperature on the
surface of contact is not exceeded 720 (temperature transformation of the glass).

For the plate with the thicknesses of layers h1 = h2 = 0.01m Fig. 2 shows the temperature change
on the surface of the plate z = 0m (curves 1), z = 0.02m (curves 3) and contact surface z = 0.01m
(curves 2) by time. The dashed curves correspond to calculations without taking into account the
radiation opaque layer of thermal energy. It is evident that the effect of heat radiation of the opaque
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layer on the calculated plate temperature is observed at the temperatures higher 530K. It is more
significant on the surface z = 0 and decreases in depth of the plate.

Fig. 2.

Fig. 3a presents the temperature distribution in thick-
ness of the plate at a fixed thickness of the glass layer
h2 = 0.01m and variable of metal layer (curve 1 — h1 =
0.01m; curve 2 — h1 = 0.005m; curve 3 — h1 = 0.001m).
The time of heating, in which the maximum temperature
in the glass layer does not exceed the glass transforma-
tion temperature respectively are t = 1000, 820 and 690 s.
The distribution of temperatures for the fixed-length of the
metal layer h1 = 0.01m and variable of glass layer (curve 1
— h2 = 0.005m; curve 2 — h2 = 0.007m; curve 3 —
h2 = 0.01m) illustrated in Fig. 3b. The times of heating
were 827, 846 and 827 s.

a b

c d

Fig. 3.

During heating this plate, the temperature decreases in depth (Fig. 2, 3), its change in thickness
depends on the heating time (Fig. 2) and the relationships between the thicknesses of the layers (Fig. 3).
By reducing the thickness of the semi-transparent layer and leaving a constant thickness of the opaque
layer, we observe the growth in the temperature difference of semi-transparent layer (curves 1, 2
Fig. 3b), which is explained by way of the heating the plate with consideration of heat exchange with
the environment conditions. In the neighborhood of the contact surface there is a fracture curves
describing the temperature of the plate (Fig. 3).

Impact of the thermal radiation of the opaque layer on the calculated temperature of the plate is
observed at temperatures 530. It is most significant at the surface z = 0 and decreases in depth of the
plate (dashed curves in Fig. 2).

Valid values for the tensile stresses of the materials constituting the parts of the plate (which is a
typical opaque and semi-transparent materials) are 400 . . . 500 and 60 . . . 100MPa respectively for steel
H18N9ТL and for glass S95-3. Therefore, the state of stress in the plate can be assessed by the level of

Mathematical Modeling and Computing, Vol. 4, No. 1, pp. 21–36 (2017)



The formulation and development of methods of solving thermomechanics problems. . . 31

the tensile stresses in the partially semi-transparent layer. When the fixed thickness of the glass layer
is h2 = 0.01m, a maximum tensile stresses reach (at h1 6 h2) in the metallic (curve 1 Fig. 3c). Their
level decreases with decreasing length of the metal layer (curves 2, 3 Fig. 3c). In this case the tensile
stress in the glass is insignificant (20 . . . 25MPa). For a fixed length h1 = 0.01m metal layer considering
changing the thickness of glass (at h2 6 h1) stress distribution is qualitatively different character —
stretching tension localized in glass (curves 1, 2 Fig. 3d). For a certain thickness h2 = 0.007m of the
glass layer and the heating time t = 827 s level of tensile stresses reaches the allowable values (curve 2
Fig. 3d). On the surface of the contact of the layers the stresses change abruptly. A size of a jump
increases with increasing thickness of the plate.

Irradiation from the side of the semi-transparent layer

In this case, the thermal state of the plate will be described by the equations (14) (j = 1, 2) with Q2 = 0
and Q1 is described by formula (17). The contact-boundary conditions is written in the assumption of
the diffuse-gray surfaces

κ1
∂θ1(0, t)

∂z
− α1[θ1(0, t)] = 0, (27)

κ1
∂θ1(h1, t)

∂z
= κ2

∂θ2(h1, t)

∂z
+ qabs [h1, θ2(h1, t), Ts]− ε−(2)

[

n(1)
]2
σ [θ2(h1, t) + T0]

4 , (28)

θ1(h1, t) = θ2(h1, t), (29)

∂θ2(h, t)

∂z
+ α2[θ2(h, t)] + ε(s)σ [θ2(h, t) + T0]

4 = 0, (30)

were

qabs [h1, θ(h1, t), Ts] = π(1−R−(1))

∫ ∞

λ=0

{
∫ 1

0

[

I
+(1)
λ (h1, ν) exp

(

−a
(1)
λ h1/ν

)

ν dν
]

}

dλ.

As before h = h1 + h2. The contact condition (28) contains (as a boundary condition (30)),
non-linearity associated with the fourth degree of the temperature.

To solve the nonlinear contact-boundary problem of the transient heat conduction (27)–(30) by
finite difference method [42,43] linearize the nonlinear contact (28) and boundary (30) conditions with
the temperature of the fourth degree of, using the procedure quasilinearization [44].

Numerical studies were conducted for a plate consisting of a semi-transparent layer of glass BS-37A
and an opaque layer of stainless steel H18N9ТL.

We have considered the temperature Ts of the radiating surface 1000K or 3000K. The integral
flux I =

∫∞

0 Iλs dλ from it in the direction of the plate were selected (changing the coefficient k, so
that the temperature in the glass layer of thickness h1 6 0.01m when the thickness of the metal
h2 = 0.01m, for the considered intensity radiations for 4 hours did not exceed the temperature of the
glass transformation — 720K.

Characteristics of glass BS-37A are the following:

R = 0.02, n = 1.66, λn = 4.8µm, a1 = 70m−1, a2 = 900m−1,

κ = 1.38W/(K · m), ̟ = 5.7 · 10−7 m2/s, αt = 9.3 · 10−6 K−1,

α = 22.4W/(m2 · K), E = 103GPa, ν = 0.277.

Distribution of the heat source, Q∗(z) = Q1(z)/Q1(0) (in steady mode temperature) in thickness
of the semi-transparent layer when the thicknesses of the component parts h1 = 0.001m, h2 = 0.01m
shown in Fig. 4a. Curves 1–3 correspond to the values of the reflection coefficient R−(1) at the interface
between the glass-steel 0.5; 0.65; 0.8 (the solid curves for Ts = 1000K, and the dashed — for Ts =
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3000K). Note that this value may depend on the surface roughness of opaque material, method of
connection components plate and so on. The value of 0.8 is typical for polished steel H18N9ТL. We
see that the level of heat source in the neighborhood of contact surface increases with increasing the
reflection coefficient. Hence, character of the distribution of the heat release is determined not only by
the absorption properties of the glass material layer and by the temperature of the radiation source,
but also by the properties of the contact surface. Distribution of Q∗ at h1 = 0.01m, h2 = 0.01m and
R−(1) = 0.8 and Ts = 1000, 3000K shown in Fig. 4b by curves 1, 2 respectively. Dashed lines were
obtained in the case of ignoring heat energy radiation by opaque element at the contact surface.

a b

Fig. 4.

As we see, ignoring radiation in thermal contact conditions significantly alters the distribution heat
source in the neighborhood of the contact, in particular, leads to an underestimation of their.

From the analysis of graphs in Fig. 4a, 4b follows that the unevenness of the heat releases in the
glass layer increases with increasing its thickness and with decreasing temperature sources.

On Fig. 5a, 5b submitted distribution of temperature and stresses by solid and by dashed lines
σ = σxx = σyy (at steady state) in thickness plates by heating source with temperature 1000K and
3000K at R−(1) = 0.8. The bases of the plates are free from efforts and moments. The coefficient
k for those temperatures was chosen equal 0.028 and 0.00035. Curves 1–3 correspond to different
thicknesses of glass when the thicknesse of the steel layer h2 = 0.01m is fixed, namely h1 = 0.003m
0.005m, 0.007m.

a b

Fig. 5.

We see that the gradient of heating of the plate increases with decreasing temperature of the source
from 3000K up to 1000K, and at a fixed temperature — with the increasing glass thickness. Should be
noted that the calculated curves of temperature distribution in the plate and known experiment of its
values on the surface, we can estimate the radiation characteristics on the border between the layers.

In consideration of thicknesses and source temperatures in both layers there are the zones of tensile
and compressive stresses. The maximum of the tensile stresses levels are achieved according to the

Mathematical Modeling and Computing, Vol. 4, No. 1, pp. 21–36 (2017)



The formulation and development of methods of solving thermomechanics problems. . . 33

thickness of the glass layer at the contact surface therein or on the surface of the metal, and compressing
— on the surfaces of contact to the metal layer or on the surface of the glass. On the surface of contact
there is the jump of stresses. The value of the jump increases with increasing thickness of the glass
layer.

a b

Fig. 6.

In Fig. 6 depicted distributions of temperature and stresses in the plate (h1 = 0.005m, h2 = 0.01m)
for R−(1) = 0.8 obtained on the basis formulated nonlinear contact-boundary problem (solid lines),
nonlinear neglecting of the radiation from the surface of contact (dashed lines) and the linear when the
heat radiation of the opaque part discarded (dot-dash line). The dashed and dash-dotted curves point
to the fact that neglecting the effects of thermal radiation in the formulation of contact problems for
layered irradiated elements (which contain opaque components) influences the calculated values of the
temperature and stresses.

4. Conclusions

1. Initial relations are obtained for describing the propagation of radiation and heat transfer in ir-
radiated two-layer plates with components of different transparency under the assumption of an
ideal contact between the constituent layers at which the contact boundary is simulated by a plane
surface with the radiation characteristics of the layer material specified on both sides of it and the
thermal contact conditions are ideal.

2. Methods for solving new nonlinear contact-boundary problems of thermoelasticity that arise in
describing heat transfer processes in two-layer irradiated plates and investigating their thermome-
chanical behavior are proposed. In determining the thermal state, they are based on methods:
reduction of one-dimensional spatial coordinates of contact-boundary heat conduction problems to
the solution of an equivalent nonlinear system of integral time equations of Volterra type using
of functions of the Green’s functions; quasi-linearization of nonlinear boundary and contact con-
ditions; successive approximations and finite differences using the implicit difference scheme and
the sweep method for solving systems of linear algebraic equations In this case, the characteristics
of the thermally stressed state in the layers are determined by an analytical-numerical method
(using numerical integration) on the basis of analytical expressions obtained from the solution of
the temperature contact problem of the theory of elasticity.

3. Based on the analysis of the solutions found, a number of new regularities in temperature distribu-
tions and stress tensor components in irradiated layered plates, depending on the fixing conditions,
the radiation properties of the constituents.
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Формулювання i розроблення методiв розв’язку задач
термомеханiки шаруватих опромiнюваних тiл

Гачкевич О., Терлецький Р., Турiй О.

Iнститут прикладних проблем механiки i математики iм. Я. С. Пiдстригача НАН України

вул. Наукова, 3б, 79060, Львiв, Україна

Запропоновано математичну модель, що описує на основi феноменологiчної теорiї ви-
промiнювання та теорiї квазiстатичної термопружностi термонапружений стан опро-
мiнюваних плоско-шаруватих тiл (пластин) зi складниками рiзної прозоростi з ураху-
ванням впливу теплового випромiнювання на поверхнях, у частково прозорих обла-
стях i на межах контакту. Записано вихiднi спiввiдношення моделi для нескiнченних
двошарових пластин за рiзних комбiнацiй радiацiйних властивостей складникiв. За-
пропоновано методи розв’язку нових нелiнiйних задач. Виявлено, на основi аналiзу
знайдених розв’язкiв, ряд нових закономiрностей у розподiлах температури та ком-
понент тензора напружень в опромiнюваних шаруватих пластинах залежно вiд умов
закрiплення, радiацiйних властивостей складникiв.

Ключовi слова: моделювання, термонапружений стан, теплове опромiнення,

теплоперенос, багатошаровi пластини, частково-прозорi та непрозорi шари.
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