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The mathematical model of the gas motion in the pipelines for the case where unstable
process is described by the fractional time derivative is constructed in the paper. The
boundary value problem is formulated. The solution of the problem is founded by the
spectral method on Chebyshev-Laguerre polynomials bases with respect to the time vari-
able and Legendre polynomials with respect to the coordinate variable. The finding of
the solution eventually is reduced to the system of algebraic equations. The numerical
experiment is conducted.
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1. Introduction

The evolution of theory and methods of the mathematical and computer modelling of the processes
and systems in various fields of human activity always based on the use of new ideas approaches and
methods from the area of analysis, applied and computational mathematics. Nowadays the one of
actual problems of modelling is the problem of the mathematical model accordance to the investigated
object. Dynamic systems as an modelling object are traditionally studied by the classical mathematical
analysis use, in particular, the apparatus of integro-differential equations on the ordinary and fractional
derivatives. In classical analysis these derivatives have integer order. However, it has been established
a long time ago [1–5] that a number of objects and processes behavior does not accord entirely to the
used mathematical models. It cause the necessity of the refined models development and use. It in
turn causes more and more attention to studying and using of the fractional derivatives mathematical
analysis [6–11].

Differential equations in partial fractional derivatives being the generalization of the partial deriva-
tives of integer order besides the theoretical curiosity to them also have a great practical mean-
ing [12–16]. A lot of physical processes are described by the dynamic systems in which taking into
account the process history is very important. The problem of right choice of mathematical models for
describing of investigated objects is very actual because the obtained results authenticity will depend
on this. The fractional derivatives use is one of the ways of the process memory effects counting. Their
appliance area is much wider then the appliance area of integer order derivatives whereas the latter are
their partial case. In mathematical terms the investigation of natural processes mathematical models
using fractional derivatives is reduced to the solving of convolution type integro-differential equations.
It’s known that the such equations are easily solved using the integral Laplace transform, which con-
verts the integral convolution to multiplication of the kernel images and desired solution of integral
equation [1, 2, 15, 16]. The orthogonal separation use gives a significant effect for such problems.
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With the development of the science and technology the requirements of the modelling of various
kinds of objects and processes, in particular, the hydrocarbon transport processes, increases. The
need to construct new models and optimize existing ones are due to the fact that the objects are
constantly complicate. It leads to increasing in both technological and financial costs, in particular,
for increasing of the prices on the energy sources. So there is the need of decreasing of the energy
costs for performing of existent tasks. Along with the mathematical models adequacy the time of
their implementation is very important parameter because the relevant processes management passes
on these results basis. Despite the fact that there is a large number of both analytical and numerical
methods for mathematical physics problems solving at present, not all of them meet the requirements
of the problems.

The spectral methods are used for solving of a wide class of mathematics and mechanics problems,
in particular for solving of mathematical physics problems. Their essence is that the functions included
into the model are presented in the form of orthogonal series in accordance to the selected basis. Finding
the solution is reduced to calculating the coefficients of orthogonal series of the desired solution in this
case. Nowadays there are few papers the solutions of mathematical physics problems are found in
orthogonal series for all independent variables in which. One of the positive aspects of this approach
is that the use of orthogonal bases is well-grounded and easy to automate calculations.

The aim of the work is the spectral method construction in the bases of classical orthogonal poly-
nomials for the solving of mathematical physics problems in the presence of the fractional derivatives,
in particular, gas motion in the pipelines.

2. Formulation of the problem

Nonstationary gas motiom in horizontal pipelines is described by the system of partial differential
equations which has the form [14]















∂ω(x, t)

∂t
+

∂p(x, t)

∂x
+ aω(x, t)− bp(x, t) = 0,

∂ω(x, t)

∂x
+

1

c2
∂p(x, t)

∂t
= 0,

(1)

here p, ω is the gas pressure and the mass velocity of gas motion accordingly; t is the time; x is the
movable coordinate x ∈ [0, L]; L is the length of pipeline; a = υ1 + υ2, b = −1

4(υ
2
1 + υ22); υ1 and υ2 are

the limits of change of gas motion velocity; c is the sound velocity in gas.
It is evident that to formulate the accordant problem of mathematical physics it is necessary to set

the initial conditions and the limiting (boundary) conditions for the gas pressure or the volumetric gas
consumption which are the desired functions. The boundary conditions for the desired functions are
set depending on known input data.

In order to take better into account of the process history let replace the time derivative ∂
∂t with

the fractional derivative in Riemann-Liouville terms [4, 10, 11, 15, 16]

Dα
t =

∂α

∂tα
ϕ(t) :=

1

Γ(µ+ 1− α)

∂µ+1

∂ζµ+1

∫ t

0

ϕ(ζ)

(t− ζ)α−µ
dζ, (2)

there µ is the integer part of real number.
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3. Research results

Since our system of equations containes the derivatives then µ = 0 in this case. We obtain the following
system of equations















1

Γ(1− α)

∂

∂t

∫ t

0

ω(x, ζ)

(t− ζ)α
dζ +

∂p

∂x
+ aω − bp = 0,

∂ω

∂x
+

1

c2
1

Γ(1− α)

∂

∂t

∫ t

0

p(x, ζ)

(t− ζ)α
dζ = 0.

(3)

Let us expand the functions p(x, t) and ω(x, t) which are included in the problem solution in Fourier
series by Laguerre polynomials Lm(t) [17]

p(x, t) =
∞
∑

m=0

pm(x)Lm(t), ω(x, t) =
∞
∑

m=0

ωm(x)Lm(t), (4)

here the coefficients pm(x), ωm(x) are determined by the integral equations

pm(x) =

∫ ∞

0
e−tp(x, t)Lm(t) and ωm(x) =

∫ ∞

0
e−tω(x, t)Lm(t). (5)

Since [17]
∫ t

0
Ln(t− τ)Lm(τ)dτ =

∫ t

0
Ln+m(τ)dτ, (6)

then, if we use the formula (6) and expand the function k(t), which is the kernel of the integral
equation (2), in Fourier series by Laguerre polynomials Lm(t), we will get the equation

d

dt

∫ t

0
k(t− τ)p(τ)dτ =

∞
∑

n=0

kn

∞
∑

m=0

pmLn+m(t) =

∞
∑

n=0

cnLn(t), (7)

there kn and pm are Fourier-Laguerre coefficients of the functions k(t) and p(t).
If we put the functions in the form of series by Laguerre polynomials in the initial system of

equation (1) we will get the following system of equations























1

Γ(1− α)

∞
∑

n=0

cn(x)Ln(t) +
∞
∑

n=0

p′n(x)Ln(t) + a

∞
∑

n=0

ωn(x)Ln(t)− b

∞
∑

n=0

pn(x)Ln(t) = 0,

∞
∑

n=0

ω′
n(x)Ln(t) +

1

c2
1

Γ(1− α)

∞
∑

n=0

dn(x)Ln(t) = 0.

(8)

In the latter formula

cn(x) =
n
∑

m=0

kmωn−m(x) =
n
∑

m=0

ωm(x)kn−m, dn(x) =
n
∑

m=0

kmpn−m(x) =
n
∑

m=0

pm(x)kn−m.

If we equate the coefficients at the same values Ln(t) from the system (8) we will obtain the following
system of ordinary differential equations for the determining of unknown coefficients















1

Γ(1− α)
cn(x) + p′n(x) + aωn(x)− bpn(x) = 0,

ω′
n(x) +

1

c2
1

Γ(1− α)
dn(x) = 0.

(9)
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For n = 0 c0(x) = k0ω0(x), а d0(x) = k0p0(x). Thus for determining p0(x) and ω0(x) we have the
following system of ordinary differential equations















(

1

Γ(1− α)
k0 + a

)

ω0(x) + p′0(x)− bp0(x) = 0,

ω′
0(x) +

1

c2
1

Γ(1− α)
k0p0(x) = 0.

(10)

The solution of the latter system we will find in the form of exponential Fourier series of such type

pn(x) =

∞
∑

j=−∞

pnj(τ) e
jπix/l, x ∈ (0, l), (11)

there

pnj(τ) =
1

l

∫ l

0
pj(x) e

−nπix/l dx. (12)

As a result of applying of the series (11) to the system (10) we obtain the following system of
algebraic equations for the determining of the generalized spectra p0j and ω0j











2

l

(

p0(l)(−1)j − p0(0)
)

+
jπi

l
p0j − bp0j + γωjω0j = 0,

2

l

(

ω0(l)(−1)j − ω0(0)
)

+
jπi

l
ω0j + γpjp0j = 0,

(13)

there

γω0j =
1

Γ(1− α)
k0 + a, γp0j =

1

c2
k0

Γ(1− α)
.

If we use the following notations

αp0j = −
2

l

(

p0(l)(−1)j − p0(0)
)

, βp0j =
jπi

l
− b, αω0j = −

2

l

(

ω0(l)(−1)j − ω0(0)
)

, βω0j =
jπi

l
,

then the system (13) will look like

{

βp0jp0j + γω0jω0j = αp0j,

γp0jp0j + βω0jω0j = αw0j.
(14)

The values of the coefficients p0(0), p0(l), ω0(0), ω0(l) are calculated by the presentation of boundary
conditions in series by Laguerre polynomials.

p0(x) =

∫ ∞

0
e−tp(x, t)L0(t) dt, ω0(x) =

∫ ∞

0
e−tω(x, t)L0(t) dt. (15)

The unknown values p0j and ω0j of the system (14) are calculated by the formulas

p0j =
∆p0j

∆0j
, ω0j =

∆ω0j

∆0j
, (16)

where ∆0j = βp0jβω0j − γω0jγp0j , ∆p0j = αp0jβω0j − γω0jαω0j , ∆ω0j = αp0jγp0j − βp0jαω0j .
Then

p0(x) =

∞
∑

j=−∞

p0je
− jπix

l . (17)
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The formulas for the determining of the coefficients pnj and ωnj for the arbitrary values n are
obtained similarly

pnj =
∆pnj

∆nj
, ωnj =

∆ωnj

∆nj
,

where ∆nj = βpnjβωnj − γωnjγpnj,

∆pnj = αpnjβωnj − αωnjγωnj −
βωnj

Γ(1− α)

n
∑

i=1

kiωn−i +
γωnj

c2Γ(1− α)

n
∑

i=1

kipn−i,

∆ωnj = αpnjγpnj − αωnjβpnj −
γpnj

Γ(1− α)

n
∑

i=1

kiωn−i +
βpnj

c2Γ(1− α)

n
∑

i=1

kipn−i.

If the coefficients pnj and ωnj are found then the functions pn(x) and ωn(x) are calculated by the
formulas of the type (11) and the values of desired solutions are calculated by the formulas:

p(x, t) =

∞
∑

n=0

∞
∑

j=−∞

pjn(τ) e
nπjx/lLn(t), (18)

ω(x, t) =

∞
∑

n=0

∞
∑

j=−∞

ωjn(τ) e
nπjx/lLn(t). (19)

The numerical values of the coefficients cn(x) and dn(x) depend on the coefficients of the expansion
of the integral equation kernel k(t) = t−α in series by Laguerre polynomials which look like

km =
Γ (m+ α)

Γ (m+ 1)

Γ (1− α)

Γ (α)
.

If m → ∞, then

km =
Γ (m+ α)

Γ (m+ 1)

Γ (1− α)

Γ (α)
≈

Γ (1− α)

Γ (α)
mα−1.

In practical problems the fractional derivative parameter α is almost equal to one. Therefore the
coefficients km will slowly approximate to zero. It, in turn, will lead to slow series (18) and (19)
convergence. In this regard, it is expedient to use Chebyshev-Laguerre polynomials Lλ

n(t) to find
the solution of the formulated problem, there λ > −1 is the arbitrary parameter, and for functions
approximation to use the representation of type [17]

k(t) = tλ
∞
∑

m=0

km

rm
Lλ
m(t). (20)

In such representation the series coefficients will look like

km =

∫ ∞

0
e−tLλ

m(t)k(t)dt, (21)

and the normalizing multiplier rm is calculated by the formula

rm =

∫ ∞

0
e−xLλ

m(x)Lλ
m(x)dx =

(1 + λ)m(λ)m
m!m!

3F2(−m, 1, 1 − λ;λ+ 1, 1− λ−m; 1).
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In our case k(t) = t−α and generalized Fourier-Laguerre spectra for this function is calculated by the
formula

km =
Γ(m+ λ+ α)Γ(1 − α)

Γ(m+ 1)Γ(λ+ α)
. (22)

Then for the large values m

km ≈
Γ (1− β)

Γ (λ+ β)
mλ+α−1.

The latter formula gives the opportunity to evaluate the impact of the free parameter λ on the conver-
gence velocity of the accordant series. However, the function representation by the series of type (20)
has advantage in that the agreement of the choice of parameter λ with the behavior of the function k(t)
accelerates the rate of the series convergence. Let us submit the functions k(t) and p(x, t) in the form

of Fourier series by the polynomials Lλk
n (t), λk > −1, and L

λp
n (t), λp > −1, accordingly. Since [17, 18]

∫ t

0
(t− τ)λkLλk

m (t− τ)τλfL
λf
n (τ) dτ =

(n+m)!

n!m!
B (λk +m+ 1, n + λf + 1) tλk+λf+1L

λk+λf+1
n+m (t),

Then the equation
∂ω

∂x
+

1

c2
1

Γ(1− α)

∂

∂t

∫ t

0

p(x, ζ)

(t− ζ)α
dζ = 0

will look like

∂ω

∂x
+

1

c2
1

Γ(1− α)

∂

∂t

∞
∑

m=0

m!km
Γ(m+ λk + 1)

∞
∑

n=0

n!pn(x)

Γ(n+ λp + 1)

×
(n+m)!

n!m!
B (λk +m+ 1, n+ λp + 1) tλk+λp+1L

λk+λp+1
n+m (t) = 0,

or

∂ω

∂x
+

1

c2
1

Γ(1− α)

∞
∑

m=0

m!km
Γ(m+ λk + 1)

∞
∑

n=0

n!pn(x)

Γ(n+ λf + 1)

×
(n+m)!

n!m!
B (λk +m+ 1, n + λp + 1) (n+m+ λk + λp + 1)1 t

λk+λpL
λk+λp

n+m (t) = 0.

If we regroup the additions in double sum of the right part of the latter formula we will obtain the
equation

∂ω

∂x
+

1

c2
1

Γ(1− α)
tλk+λp

∞
∑

n=0

dn(x)L
λk+λp

n+m (t) = 0.

In the latter formula

dn(x) =

n
∑

m=0

kmpn−m(x) =

n
∑

m=0

kn−mpm(x).

If we note the mass consumption ω(x, t) as the series

ω(x, t) = tλk+λp

∞
∑

n=0

n!ωn(x)

Γ(n+ λp + 1)
L
λk+λp
n (t),

Mathematical Modeling and Computing, Vol. 4, No. 1, pp. 87–95 (2017)



Solving of differential equations systems in the presence of fractional derivatives. . . 93

we will obtain the following recurrent system of ordinary differential equations relatively the unknown
coefficients ωn(x) and pn(x)

n!

Γ(n+ λp + 1)

dωn(x)

dx
−

1

c2
1

Γ(1− α)
dn(x) = 0. (23)

A similar system is obtained from the first equation of the system (3)

1

Γ(1− α)

∂

∂t

∫ t

0

ω(x, ζ)

(t− ζ)α
dζ +

∂p

∂x
+ aω − bp = 0.

Applying similar expansions in the latter equation, we get

n!

Γ(n+ λp + 1)

dpn(x)

dx
+

1

Γ(1− α)
cn(x) + aωn(x)− bpn(x) = 0, (24)

cn(x) =

n
∑

m=0

kmωn−m(x) =

n
∑

m=0

kn−mωm(x).

The systems (23) and (24) are recurrent relatively the unknown generalized spectras. If we solve them
we will find ωn(x) and pn(x) for the arbitrary values n by the spectral method described above.

4. Discussion and conclusions

The proposed approach makes it possible to construct the effective algorithm for solving of differential
equations or the systems of differential equations in the presence of the fractional time derivative. Since
the properties of orthogonal polynomials are well-studied then it allows one to do a significant amount
of calculations once and use them in subsequent cases. More, if the input data is set in a descrete form
then similar to the paper [17] the algorithm can be submitted in matrix form. The efficiency of such
approach is confirmed by the computational experiment. In Table 1 the results of calculations of the
series (20) coefficients for different parameter λ values are presented.

Table 1. The results of calculations of the series (20) coefficients for different parameter λ values.

α = 0.9

n kn, λ = −α− ε kn, λ = −α kn, λ = −α+ ε

0 4.590417 4.590417 4.590417

1 −0.0459041725945783 0.000000 0.0459041725945783

2 −0.0227225654343163 0.000000 0.0231816071602621

3 −0.0150726350714298 0.000000 0.0155316767973756

4 −0.0112667947158938 0.000000 0.0116875867900251

5 −0.00899090218328323 0.000000 0.00937344460560015

6 −0.00747743364909722 0.000000 0.00782682624567612

7 −0.00639854679401319 0.000000 0.0067198893909305

8 −0.00559073026126903 0.000000 0.00588830307880285

9 −0.00496332608750439 0.000000 0.00524058974013454

10 −0.00446203015266645 0.000000 0.00472177135586122

From the results obtained it follows that if λ = −α then the coefficients of function k(t) = t−α are
equal to zero. That is for such a choice of the parameter λ we will have the following formulas

dn(x) = k0pn(x), cn(x) = k0ωn(x).
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94 Pyanylo Ya., BratashO., Pyanylo G.

However, as can be seen from the formula (22) such an approach to choosing the parameter λ allows
one to eccelerate the convergence of accordant Fourier-Laguerre series.

It is necessary to notice that the summing of Fourier-Laguerre series is sensitive to parameter λ

selecting. From the results obtained we can conclude that the sensitivity of Furier-Laguerre series
summing to the choice of parameter and the need of addititonal researches in summing operations of
these series are confirmed whereas Chebyshev-Laguerre polynomials have significant disadvantage is
that for the large n their behavior is following

Lλ
n(t) = O

(

et/2t−(2λ+1)/4n(2λ−1)/4
)

.

This property of the polynomials considerably narrows the class of problems Chebyshev-Laguerre poly-
nomials are used in which because there are the computational difficulties during the series summing
for the large values t. In practice this problem is solved by the introduction of the scaling multiplier.
However, the change of the scaling multiplier requires redefining the problem and leads to instability
in calculation of the desired function. Therefore, the Chebyshev-Laguerre transform is generalized as
follows.

Introduce the integral transform

fn =

∫ ∞

0
tνλ+ν−1e−µtνLλ

n(µt
ν)f(t) dt,

there n = 0, 1, 2, . . ., µ > 0, |ν| < ∞, ν 6= 0. Then the formula of the reverse will look like

f(t) =
∞
∑

n=0

n!fn
Γ(n+ λ+ 1)

Lλ
n(µt

ν).

Choosing of free parameters µ and ν allows us to construct the regularizing algorithm for calculating
of Fourier-Laguerre coefficients fn and summing of accordant orthogonal series.
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Застосування ортогональних многочленiв для розв’язування
систем диференцiальних рiвнянь за наявностi похiдних дробового

порядку

П’янилоЯ., Браташ О., П’янилоГ.

Центр математичного моделювання

Iнституту прикладних проблем механiки i математики

iм. Я. С. Пiдстригача НАН України

вул. Д. Дудаєва, 15, 79005, Львiв, Україна

В працi побудовано математичну модель руху газу в трубопроводах для випадку, ко-
ли неусталений процес описується похiдною дробового порядку за часовою змiнною.
Сформульована крайова задача. Рiшення задачi знаходиться спектральним методом
в базисах многочленiв Чебишева-Лагерра за часовою змiнною та многочленiв Ле-
жандра за координатою. Знаходження рiшення в кiнцевому результатi зведено до
системи алгебраїчних рiвнянь. Проведено числовий експеримент.

Ключовi слова: математична модель, рух газу в трубопроводах, спектральнi

методи, ортогональнi многочлени.
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