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The influence of the axial rotation on degenerate dwarfs characteristics is calculated within

the three- and four parametric model. It was shown that the relative increase of dwarf’s
mass is about 5%. Therefore the maximal mass in standard model with paramagnetic
electron subsystem reaches 1.52M,, and in the model with spin-polarized electron sub-
system is 2.15My. The dependence of the dwarf’s shape was found as a function of the
model parameters (the density in the stellar center, the chemical composition parameter,
the rotation frequency and the degree of polarization).
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1. Introduction

Degenerate dwarfs are the simplest type of compact objects, which formed at the final stage of the
evolution of not massive stars. The first dwarf — the faint companion of brightest star in the Northern
sky of Sirius — was discovered by american astronomer U. Adams in 1914 [1]. It is believed now that
the degenerate dwarfs are the most common types of stars in the universe and there were registered
several thousand of dwarfs with different characteristics in the solar vicinity. Their masses do not
exceed 1.5M), radii are in the range (1 +3) - 1072R, and the luminosity is varying between 107> L,
and 10Lg, where My, Rs, Lo are the characteristics of the Sun.

The theory of cold dwarfs was created in the first half of the last century in the works of A. Fowler [2]
and S. Chandrasekhar [3,4]. It is based on the idea, that without any energy sources the stability of
degenerate dwarfs is provided by the pressure of degenerate relativistic electron gas at high concen-
trations [5|. At the densities of the order 10° g/cm® the matter of dwarfs is in the metallic state in
extreme conditions of high pressure and temperature, when there is no localized states of electrons and
the electron subsystem is relativistic completely degenerate and poorly ideal.

Within two-component model, that consists of degenerate relativistic electron gas at
T = 0K in the paramagnetic state and nuclear subsystem, which is described as continuous classic
environment, S. Chandrasekhar found the existence of the upper limit of the dwarf mass and peculiar
relation between mass and radius. According to the last one all dwarfs on the plane mass-radius must
be on the same curve. In the last century the S.Chandrasekhar’s theory was generalized by consid-
eration of cooling of dwarfs [6], the influence of particle interactions [5]|, neutronization process [7],
stability of dwarfs [8] and et. al. Development of theory was constrained by the lack of observational
data.

The situation has been changed at the end of the last century with discovering of dwarfs with a
large diversity of characteristics using modern space observatories. That dwarfs cannot be interpreted
in the frame of S. Chandrasekhar’s model. It is the complicated task to create a correct general theory
of the structure of degenerate dwarf, which also would take into account other important factors
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— incomplete degeneration of electrons subsystem, variable along the radius chemical composition,
particle interactions, axial rotation, influence of the magnetic fields and general relativity effects.
According to the hypothesis, that the massive dwarfs can be precursors of type Ia supernova, urgent
necessity is to find the mechanisms, which contribute to increase of the degenerate dwarfs’ mass. It
was shown in our works, that incomplete degeneration increases the dwarfs mass, but for massive stars,
which are on the stability edge, it is insignificant [9, 10]. Particle interactions decrease the internal
pressure and it leads to decreasing mass [11]. Increase of mass of single dwarfs can be caused by the
magnetic fields and axial rotation. In work [12] it was found that the spin-polarization of electron
subsystem of dwarf, caused by the influence of a magnetic field, increases its mass, and in the case of
full polarization the maximal mass exceeds the S. Chandrasehar’s limit by v/2 times. For the dwarfs in
the double systems there can be additional mechanism — accretion, which may be the most important.

In this work we consider the influence of axial rotation of dwarf on its characteristics, which can
be important as for single stars, as well as dwarfs in binary systems.

2. The equilibrium equation of dwarf with axial rotation

To investigate the influence of rotation on dwarf’s characteristics, we have used two-component
S. Chandrasekhar’s model with ideal relativistic electron subsystem in paramagnetic phase and solid
body rotation is considered. The structure of star is determined by the equation of mechanical equi-
librium

VP(r) = —p(r) V{®@grav(r) + Cc(r)}, (1)
where i 0
T 3 dt
Py =8 e [ &)
3h 0 1+ ¢2
is a local value of pressure of the degenerate relativistic electron gas at T' = 0K,
2(r) = —— (3x%n(r))"” Q
moc

is a local value of the relativistic parameter in a point with the number density of electrons n(r), mg
is the electron mass;

() = mupen(r) = e 3 () (00’ (4)

is a density of matter concentrated in the nuclei, m, is the atomic mass unit, p. = (A4/z) is the
chemical composition parameter, which is considered a constant (A is the mass number of the nucleus,
z is its charge);
r’) dr’
= 5)

r|

is the gravitational potential in the point with radius-vector r, and the centrifugal potential
L2 2. 2
D .(r) = ~3 Q%r<sin” 6. (6)

We use here the spherical coordinate system with the beginning in the stellar center and axis Oz
coincides with the axis of rotation with the frequency Q.
Taking into account the formulae (2)—(6) the equilibrium equation can be rewritten in the following

form:
Q02 mypu 3272 G (M pemoc?)?
2 1/2 urte 2 2 _ u e 3
A{[l—i—x (r)]/? -1 5 e r*sin 9} =— 30hc)? x°(r). (7)
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Introducing the dimensionless variables

E=r/A u66) = 5 {1+ 2@ -1}, c=clw) =0+ -1]  (@®)

and auxiliary function

~ ~ Q2 fuc N
PlE0) =y(6,0) ~w(6,6), w(6,6) =D Esin’e, 0= (9)
the equation (7) is transformed to the equation for function ¢(¢,6):
, 2 3/2
Al 0)¢16.0) = ~{ [p(&.0) + (0] + 2 6.0 +ut6.0)] | (10

where A(&, 6) is the Laplace operator in dimensionless variables (£, ), and the length scale \ is deter-
mined by expression
322G
3(hc)3
The equation (10) is the two-dimensional nonlinear differential equation of second order in partial

variables. At fixed value of angle # the equation becomes one-dimensional, and 6 in it appears as
independent parameter (0 < 6 < 7):

{moczeomu,ue)\}2 =1 (11)

@ e+ 2 loen = [en rueo) + Zpen ruen]) . (2
dé-Q(p ) §d§<p ) - SO ) w ) 60(10 ) w ) .
Regular (at & — 0) solutions of the equation correspond boundary conditions
d
In the equation (12) also appears dimensionless 1 )
parameter €22, which is fairly large values of the 081 %,=1.0, Q,,,=0389
relativistic parameter xg is a small value: 061
0.4
Q=0T ue_l/2€0_3/2, (14) 027 1 ;
0
where -0.2 1 3
o\ 372 04
Ty = \/§M0 G (_u> 673, 0.6 1
mo 08|
1/2 3/2 (15) 3
3 1 (hc 9 -1 : : : : : : :
My = 3 w\a m,, 0 02 04 06 08 1 12 14 16

Fig. 1. The equation (12) solutions at fixed value of
are the scales of rotation period and mass (M ~  the relativistic parameter zo and the maximal rota-
2.89... Mg, Ty ~ 1.6... s) for degenerate dwarfs. tional frequency Qma'z (curve 1 Correspon'ds to stan-

The equation solutions (12) are found by us dard model, 2 — function ¢(&, 0), 3 — function (£, 6)).
with numerical integration. In Fig.1 was illustrated the solution at §# = 7 /2: curve 1 corresponds to
dwarf without rotation (€ = 0), and curves 2 and 3 represent the functions @(¢,6) and y(&,6) at the

maximal possible rotational frequency, which are determined by conditions:

W/ =0, e/ =0 (16)

3 =
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where £ is the dimensionless equatorial radius, which corresponds to the maximal rotational frequency.
In Fig. 2a was depicted dependence of the 4., and in Fig. 2b — 2,4, on the relativistic parameter xg.

1.4 11— 45
Qmwc Qmax’ Srl
121 “
3.5
1 4
3 4
0.87 2.51
0.6 1 21
1.5
0.4 1
14
027 0.5
0 = 0 il
0 5 10 15 20 25 0 5 10 15 20 25
a b
Fig. 2. Dependence of the Qmaz and 2,4, on the relativistic parameter x.
1.2 3 The polar radius coincides with the radius of dwarf without rotation
15 == and determined by the condition
0.8 0
0.6 ¢o(&1) =0, (17)
04 where (&) is the equation solutions (12) at Q = 0.
02 \ The condition
0
0.2 / y(€1,0) =0 by Q2 = const (18)
-0.4
06 determines shape of surface at fixed value of the relativistic parameter xg
08 (see Fig.3). In dimensional variables, this surface is described by the
1 _— expression
a1 : Ro
12 R(zo, prelf) = &1(0]zo), (19)
0 02040608 1 1.2 Heco
Fig.3. Shape of the dwarf where a\2 | /33 /2
in the model with parameters Ry = <_> il <_> , (20)
20 =1.0, Q =0.95 Q00 2 4 \ cG My Mo

are the scale of the characteristic sizes of degenerate dwarfs (Rg ~ 1.12 - 1072Ry,).

3. The characteristics of dwarf with rotation

We consider the model which has three parameters (e, o and Q). The formulae (12)-(20) give the
possibility to calculate dependence of the macroscopic characteristics of star on model parameter at

arbitrary value . and zp in the frequency range 0 < Q < Q42 (20). Mass of a dwarf is

M, ~
M (zo, fte, Q) = /,o(r) dr = H—;M(xo,a),

- /2 51(2) 3/2
Mo, = [ sinoan | 52{y2<5,0>+§y<5,6>} de.
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where £1(0) is determined by the condition (18). The dependence of maximal mass of dwarf, which
corresponds to Qmam (xo) on the relativistic parameter is shown in Fig. 4. It was also shown dependence
on the parameter zy of dwarf mass without rotation. As can be seen from Fig. M (zg, e, ) is
monotonically increasing function of the relativistic parameter, similarly to the case M (zg, i) without
rotation. Within large values of the relativistic parameter a mass of dwarf with axial rotation can exceed
corresponding one without rotation by about 5%. Thus the maximal mass of a dwarf can exceed the

value of 1.52M. Dwarfs with such masses are found in the binary systems [6].

22
[, 1 10 :
2 91" !
181
8 4
16
14 1
o 6 ] 2
121
5 4
.
081 47
0.6 1 3
0.4 - 27
0-2 7 l .
0 ‘ ‘ : : : o 0 ‘ ‘ : il
0 5 10 15 20 25 30 0.1 1 10 100 1000

Fig. 4. Dependence of the dwarf mass M on the rel-

ativistic parameter xo (curve 1 corresponds to the

case with rotation with maximal frequency Qmaz, 2
— without rotation).

In Fig. 5 was shown dependence of the dimen-
sionless equatorial radius of dwarf on the param-
eter xp at maximal frequency rotation (curve 1),
and dwarf without rotation (curve 2). As was
shown from the figure the influence of rotation is
reduced to occurrence of the ellipsoidal of dwarf,
and the value

{&1(z0,7/2) — &i(zo) (& (o)) ™" (22)

is proportion to Q2 and does not exceed 30% at
maximal rotation frequency.

Let us introduce the moment of inertia of a
dwarf with parameters p., xg, € relative to the
axis of rotation:

My R3

2e8 ¢

I(:COauea Q) —

J(.To,Q),

Fig.5. Dependence of the dimensionless radius on
the relativistic parameter (curve 1 — & (2, 7/2), 2 —

&1(0,0)).

1.4 J0x), )

0.6 1
0.4 1

0.2 1

0 \ \ \ \ \
0 2 4 6 8 10 12

Fig. 6. Dependence of the function J(zg,$2) on the

relativistic parameter o (curve 1 corresponds to the

moment inertia with maximum rotational speed, 2 —
without rotation).

(23)

™ £1(0) 3/2
Han) = [Tsitoan [T e freor s Zuen}

As can be seen from Fig.6, the moment of inertia depends on rotational frequency and is a non-
monotonic function of the relativistic parameter and the difference

I(.%'(), e, Q) - I(II,'O, e, 0)

at fixed z is proportional to 2.
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4. Dwarfs with spin-polarized electron subsystem

In the work [12] it was proposed the model of a degenerate dwarf, in which electron subsystem is in
the partial spin-polarization under influence of the magnetic field. In the frame of this model in the
low temperature regime the momentum distribution is as follows

o = 0(kf — k), o==, (24)

moreover k; > kp, kp < kp, where kr is the Fermi wave number in paramagnetic phase. The partial
number density of electrons

SN e =Y e (25)
k k

determines the degree of spin-polarization

ny —n—

= 0SC<L (26)
SO n n
ny = 5(1 +¢), n_= 5(1 - (), (27)

where n = ny +n_, and the Fermi waves numbers for particular subsystem are following: k},t =kriy,
kp = krA_, kp = (372n)'/3, Ay = (1£¢)/3. To simplify the calculations in this model the parameter
(C is considered as a constant and coordinate independent.

The expression for the pressure of an ideal polarized electron gas generalizes formula (2),

mac’
r) = Z Py (z4(r)) = Z 3}?3 Folzs(r)),
o==+ o==+ (28)

To 4
Fo(ze) = 4/0 \/tljl__tty Zo(r) = hk%(r)/moc = z(r) s,

where z(r) is the relativistic parameter in paramagnetic state. The ratio ]5(1') to the pressure in
paramagnetic model at z > 1 is equal 3 >° A2 =1+ Y ons1 an(? and at z < 1 the ratio is 3> A2 =
1+ Zn>1 b,(?", where a,,b, > 0. Such increase of pressure leads to increasing mass of a dwarf.

The equilibrium equation takes the following form:

64712 G (moc?my e )? My e
Yo XA [(1 a2 (r)Y2 - 1] = - (3(26)3 S 30r) 1 402 e (29)

Proceeding to dimensionless variables r = ES\,

YR +a2m) -1},
€S = Z)\g{[l +a2222]7 - 1},
From the expression (30) we find that

=lr) = <A8 — %)) — )}
a(y) = {b2 a8 )2c(y)}1/2 7
b(y) = {()\8 -+ )\8 ) [(602/) + 4589] 4 4()\+)\_)3()\i n )\‘E)} 7
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cy) = [(882/)2 + 468?/] {[(681/)2 +4egy] + 4(A+A—)3} : (31)

In dimensionless form the equilibrium equation without rotation is as follows:

3
A©)y(&) = —{ V20§ = X)) ' bly) — aw)] 7} (32)
Thus the length scale ) is defined by condition
2
321G < &§
W {moczmuue )\EO} =1. (33)

The equation (32) satisfies the boundary conditions y(0) = 1, ¢/(0) = 0 and condition y(&) > 0.

In work [12] the equation solutions (32) have been found using the numerical integration at fixed
values of parameters xg and (. Since the main object of our study are massive dwarfs, in this work
we find solution of equilibrium equation of dwarf which rotation in the range of intermediate and high
values of the relativistic parameter using the approximate ratio

1/2
£(r) 2§\ + A {zﬁ(s) 5 y<s>} , (34)

€0

so the equilibrium equation simplifies and takes the form of equation (12).

An important is the case of full polarization, when A, = 21/3, \_ = 0. To compare results with ones
for paramagnetic state, it is appropriate in this case to modify slightly the definition of dimensionless
variables: let r = ES\,

pi(6,0) = ) {1+ A322(w)] 2 - 1},

p (35)

ef = [1+ \af] 1.

Then the equilibrium equation takes in the form

2
€0+ Z5eon€0) = ~{[er6 0) 0 + Zlon6 o) +unen]) (@0)

where ) <
~ . ~ Qmy e\
SOJr(S’ 9) = er(ga 9) - WJF(S’ ‘9)5 W4 (55 9) = Qa— 52 Sln2 ‘9’ Q%,- = 2+7/J'2’ (37)
€y MocC
and the scale X is determined by expression
1672G < 2
W{moczmu,ue)\ear} =1. (38)

As can be seen from the comparison of ratios (11) and (38), the product 5\53 = /2 \ey, therefore
the expression for the mass of dwarf with full polarization subsystem of electrons can be written as

M,
M—i—(xO’/J’e’Q) - \/§ 20 M-}—(xOvQ-f—)v

N /2 &) 9 3/2
M (a0, 01s) = /0 o as [ 52{yi<s,e>+€—+y+<s,e>} . (39)
0
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where £ (6) is determined by the condition y(&,6) = 0 for given values zo and Q.. Hence, in the
region of sufficiently large values of the parameter xg, where & (0) and &;(0) are almost independent
on this parameter, mass of a dwarf with polarized electron subsystem is about in v/2 times larger than
the mass of dwarf with paramagnetic subsystem at the same rotation speed.

5. Conclusions

As was shown from the calculations, the influence of the axial rotation and spin-polarization lead
to increase the mass and radius of a dwarf comparing with the standard model without rotation.
Maximal increase of dwarf mass by axial rotation is about 5% in the both models. Hence, the absolute
value of maximal dwarf mass with fully polarized electron system and the maximal rotation speed is
about 2.15M.
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Bnnue ocboBoro obepraHHs Ha XxapakKTepucTukmn
BMPOO>KEHNX KAapPJINKIB

Baspyx M., Cmepeunucekutii C., 3zikoBcbkwuit 1.

Jvsiscoruti Haytonaavrutl yrisepcumem imeni Ieana DPpanka
eyn. Kupuaa i Megodis, 8, 79005 Jlveis, Ykpaina

PospaxoBamno 3miny XapakTepuCTHK XOJIOMHAX BUPO/ZKEHUX KAPJIMKIB IIiJ] BILIMBOM OChO-
BOro ObepTaHHs y MeXKax TPH- Ta doTupunapamerpuanol mozesnei. [lokazamo, mo Big-
HOCHe 30LJIbLIIeHHST MAach KapJiuKa CTaHoBUTHL npubsmsao 5 %. Tomy makcumasbHa Maca
y CTaHJAPTHiN MoJiesi 3 mapaMartiTHOIO eJIEKTPOHHOIO IificucreMoro jocarae 1.52M, a
B MOJIeJI 31 CHIH-TIOJISIPU30BAHOI0 €JIEKTPOHHOIO mmincucremoro — 2.15My. 3uaiizeno 3a-
JIe2KHICTD (DOPMHU KapJMKa Bij IapaMeTpis Mogeseil (rycTHHHU y 1eHTDi 30pi, HapaMeTpa
XIMIYHOrO CKJIaJLy, 4acTOTU OOEPTAHHS 1 CTYIIEHS OJISPU3AILL).

KntouoBi cnoBa: supodoicenutl Kapauk, 2ycmuna Yy UeHmpi 30pi, napamemp Timiurozo
CKAGDY, 4ACMOMaG 06EPMAHHA, CIMYNITHD NOAAPUSAUTL.
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