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Resonant modes of the motion of a cylindrical reservoir on a movable
pendulum suspension with a free-surface liquid
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The article deals with an investigation of the system of “reservoir — liquid with a free
surface”, when the reservoir is fixed on pendulum suspension, which suspension point
performs a given motion. The system behavior is studied for the below-resonant, near-
resonant and above-resonant modes. The description of the system behavior is done based
on a nonlinear model of motion, which takes into account the combined character of motion
of the system components. The numerical modeling shows that general regularities of the
system behavior coincide qualitatively with known experiments.

Keywords: liquid oscillations, reservoir on pendulum suspension, near-resonant modes
of motion, amplitude modulation.
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1. Introduction

Modern studies in the field of dynamics of structures with liquid show that combined modes of system
motion result in a considerable change of dynamical properties of structures with liquid. This manifests
itself both at the linear level (change of frequencies) and in the new tendencies of the system behavior
in resonant modes. Considering a combined character of motion leads to the considerable increase of
frequencies of motion of a free surface of a liquid relative to antisymmetric normal modes, at the same
time frequencies of the rest of normal modes do not change. This results in changing of the order
of distribution of frequencies of normal modes, when the frequency of the first antisymmetric normal
mode becomes not the lowest one and, therefore, the manifestation of its resonant is not so clear.

In the case of a movable pendulum suspension of the cylindrical reservoir with liquid, the lowest
frequency of combined system motion is closer to the pendulum suspension frequency. Therefore, we
study the system behavior for the given motion of the suspension point according to the harmonic law
in a vicinity of this frequency.

2. Mathematical model

The mathematical model of the system is selected based on a nonlinear dynamical model of combined
motion of the reservoir with liquid. The reservoir can perform translational and rotational motion. A
liquid is supposed to be ideal, homogeneous, incompressible, and its motion is supposed to be potential.
The reservoir is modeled as an absolute rigid body with a cylindrical cavity. The general form of the
dynamical model aimed at the study of transient processes was developed in [1|. The specific peculiarity
of the model in our problem is considering of a translational motion as given and the presence of a
movable pendulum suspension. In this case, we consider as combined both the angular motion of the
reservoir and a liquid sloshing. The general form of equations in parameters of angular motion «;
of the reservoir and the amplitude parameters of excitation of normal modes of oscillations of a free
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surface of the liquid a; is the following
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The denotations in the systems (1), (2) are selected according to [1]. Here all denotations with
indexes are computed as integrals over undisturbed free surface of liquid from normal modes of liquid
oscillations and the Stokes—Zhukovsky potential. In the mathematical sense, this system represents a
nonlinear system of ordinary differential equations, which are linear according to the second derivatives
of unknowns. This property makes it possible to reduce the system to the Cauchy form and solve it
numerically by the Runge-Kutta procedure.

3. Numerical results

For numerical examples, we choose the following parameters of the system. The modeling was done
based on a mathematical model with 12 normal modes of oscillations of a free surface of liquid. The
radius of a free surface R = 1 m, the liquid depth is H = R, the ratio of masses of the reservoir and
liquid is M, = 0.1Mj, the parameters of the inertial tensor are chosen following [1| (thickness of the
tank walls is 1.5 cm, thickness of the tank bottom and cover is 1.2 cm, the height of the reservoir is
1.5R), the suspension length of the pendulum is | = R, [ = 2R, | = 8R (for comparison). The angular
oscillations of the system are considered to be plane and they are characterized only by a single angle
a1 = ¢. We do not use the dimensionless time since the system frequency for different examples
varies, therefore, for comparison of different examples we use the real time. Further the dimension of
frequencies is given in 1/sec, the liquid elevation is normalized relative to the reservoir radius R.

To study the resonant properties of the system of reservoir — liquid on a pendulum suspension, it is
necessary initially to study the frequencies of oscillations of the system in the case of combined motion
of its components. The results of these calculations are shown in Table. For three suspension lengths
(1,2,8), we compute frequencies of oscillations (three variants). The second and third columns show
normal frequencies of oscillations of the system in the case of not combined motion, so, these are the
partial frequencies. The fourth column shows the frequencies of combined motion of the system in the
case when the translational motion of the system is given, but the sloshing and the angular motion of
the system are coupled. The fifth column shows the frequencies of combined motion of the system when
the translational and rotational motions and the sloshing are coupled. In the fourth and fifth columns,
we show two frequencies corresponding to the combined motion, here the upper value of frequency is
closer to the partial frequency of pendulum oscillations, and the lower ones correspond to the sloshing
(the first normal mode of oscillations with respect to the antisymmetric mode). As it is seen from Table,
the normal frequency of angular oscillations changes slightly (about 10%), however, the frequency of
sloshing can change by 1.5 (column 4) and 3 (column 5) times. In this case, the frequency of the first
antisymmetric normal mode becomes even greater than the frequencies of sloshing, corresponding to
the circular numbers m = 2 and m = 0. Therefore, the sharpness of manifestation of the resonance
with respect to the first antisymmetric normal mode is weaker than the resonance with respect to
pendulum frequency.

Variant  Partial frequency  Partial frequency of  Frequency of combined Frequency of
of liquid the pendulum oscillations without completely combined
translational motion oscillations
=1 4.14431 2.47842 2.24312 2.26729
6.69986 16.63085
=2 4.14431 1.96189 1.85304 1.86112
6.10821 12.45135
=8 4.14431 1.07442 1.05895 1.05934
5.52733 9.75099

Further we analyze the system input into the resonance in the case of the pendulum suspension
length [ = 2R for the below-resonance mode (excitation with frequency 75% of the frequency of normal
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oscillations relative to the angular mode of motion, Figs. 1, 2), for the near resonance mode (excitation
with frequency 102% of the frequency of normal oscillations relative to the angular mode of motion,
Figs.3,4) and for the above-resonance mode (excitation with frequency 125% of the frequency of
normal oscillations relative to the angular mode of motion, Figs.5,6). Here figures with odd numbers
correspond to variation of the angular coordinate in time, figures with even numbers correspond to
variation of elevation of liquid near tank wall in time.

§ ®
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First of all, it is necessary to note that in spite of conclusions of numerous articles [2—4| for all
modes of motion the input to the steady mode form of motion does not take place. This property is
confirmed by the experimental results [5-8] and was predicted by theoretical results of articles |9, 10]
for translational and angular modes of motion of the reservoir.

§ 0_?? .I|I||“|“|II|l|n|
| I \\ ML o AR AARAATA B AR
. L o i RO R
u \ V \l V V w W “ o0 | ‘Wﬂ‘l‘l’l‘l?lﬂ1l||\llImIII!I!IM;IU1I!l!lml||||¥|||1IIHl!l\l!lHIHI!IIl!l!l!l!ll||ﬂ|l|}l!|!l!I’l!l!l!IW[I‘Hlll'lL
01 HH | (i
_015 'I"”ll“l"'l'lll
0 25 50 & t 0 50 100 150 200 250 t
Fig.3. Elevation of a free surface for the near- Fig.4. Angular oscillations for the near-resonance
resonance mode mode
£ @
0.02
0.15
h 0.01
0 0
LA GRS
-0.15
-0.02
0 25 50 75 t 0 25 50 75 t
Fig.5. Elevation of a free surface for the above- Fig.6. Angular oscillations for the above-resonance
resonance mode mode

The numerical results show that for the below-resonance mode of motion, the drift of the mean
values of variation of both the inclination angle and the elevation of liquid occurs, the presence of
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high-frequency normal modes of motion is evident. The effect of modulation is comparatively weak. In
the near-resonance mode, the period of modulation is very great, but the effect of the mean value drift
and the presence of high-frequency modes of oscillations is weakly observed. For the above-resonance
mode of motion, the effect of modulation of oscillations is considerable. At the same time, the presence
of high-frequency modes of oscillations is also evident.

4. Conclusions

For the problem of a complex motion of the system of ‘reservoir — liquid with a free surface* on a
pendulum suspension, we consider the case when for a part of the system motion parameters (for
parameters of translational motion of the point of suspension) the law of motion is given in advance,
and the liquid oscillations together with a rotational motion of the reservoir are considered within the
framework of the combined mode of the motion. In this case, the frequencies of normal oscillations
considerably differ from partial frequencies of motion of the system components. The obtained results
of the system behavior in the below-, near- and above-resonance modes of motion are in good qualitative
correlation with known theoretical and experimental results.
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Pe3oHaHCHiI pexxumun pyxy LuuaiHgApPUYHOro pesepByapy Ha pyxXxoMoOMYy
MAassTHMKOBOMY MNiABICI 3 PIAUHOIO 3 BIJIbHOKO NOBEPXHELD

Jlmmapuenko O., Hedrwomos O.

Kuiscokutl nayionarvrut ynisepcumem iment Tapaca Illesuenka,
sys. Boaodumupcovka, 64/18, Kuis, 01033, Yxpaina

Hocnimkeno cucreMmy “pesepByap — pijiHa 3 BUIBHOIO TOBEPXHEIO”, KOJU Pe3epByap 3Ha-
XOJINTHCA Ha MaITHAKOBOMY ITiIBiCi 3 TOYKOIO i ABiCy, 110 BUKOHYE 3aaHnii pyX. Busueno
[IOBEJIIHKY CUCTEMU [IJIsi JIOPE30HAHCHOTO, OLISIPE30HAHCHOTO i 3aPE30HAHCHOTO PEXKUMIB.
OmnrcaHo MOBEJIHKY CHUCTEMHU HA OCHOBI HEJIHIHOI MOesi PyXy, 3riJHO 3 SIKOK IIPHii-
MA€ThCS JIO YBaru CyMiCHUIl XapakTep pyXy KOMIOHEHT CUCTeMU. JucesbHe MOJIe/TIOBaH-
HSI II0Ka3aJ10, 110 3araJibHi 3aKOHOMIDHOCTI HIOBEIHKHM CHCTEMHU SIKICHO Y3TOJ/KYIOThCS 3
BITOMUMH €KCIIEpUMEHTAMHU.

Knw4osi cnoBa: xoausarhs piouru, pesepeyap Ha MAAMHUKOBOMY NI08ICT, 0iaspe30-
HAHCHT PEAHCUMU PYTY, AMNATMYOHG MOIYAAULA.
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