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Dynamical behavior of liquid in a reservoir of revolution under vibration disturbance of
reservoir motion is studied within the framework of the model of combined motion. We
focus main attention on the system behavior in below resonant range. For analysis of
peculiarities of the system behavior we compare the development of wave generation for
cylindrical, conic, spherical, hyperboloid (one-sheet and two-sheet) reservoirs.
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1. Introduction

Structures containing reservoirs with a free-surfaced liquid are used in aerospace engineering, for liquid
storage and transport. The problem of development of the model of combined motion of structures
with liquid in the case of non-cylindrical shape of reservoirs is urgent. Analysis of the system behavior
under force loading shows that new types of dynamic effects manifests for combined modes of motion.
The ratio of masses of liquid and reservoir, peculiar for combined motion [1], considerably affects the
development of liquid and reservoir motions and even values of normal frequencies of oscillations. Re-
cent investigations [2, 3] showed that system behavior for below resonant, near resonant and above
resonant ranges differ considerably. In the present article we focus our attention of the above reso-
nant range of oscillations for horizontal motion of the reservoir under harmonic force, applied to the
reservoir. The cases of cylindrical, conic, spherical, hyperboloid (one-sheet and two-sheet) reservoirs
are considered for comparison. The problem is studied within the framework of nonlinear combined
model of motion with considering 10 normal modes of oscillations.

Objective of the present publication is study of peculiarities of the system behavior in the below
resonant range of force disturbance and analysis of effect of reservoir shape on development of wave
processes.

2. Mathematical model

Known publication [1–8] considered nonlinear problems of oscillations of liquid in reservoirs of cylin-
drical and conic shapes. We investigate problems of waves generation for other shapes of the reservoirs
in combined mode of motion. For investigation of such types of the problems we make use of the
mathematical method [4], developed for arbitrary type of reservoir of revolution.

Let us denote τ to be the domain, occupied by liquid; S0 and S are a liquid free surface in its
perturbed and unperturbed motion; Σ0 and Σ are boundaries of the contact of liquid with reservoirs
walls in perturbed and unperturbed motion; η(x, y, z, t) = 0 is the equation of a liquid free surface;
ε is the vector of displacements of the reservoir with respect to absolute reference frame. Liquid is
supposed to be ideal, homogeneous, incompressible and initially its motion is vortex-free. Effect of
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capillary forces is supposed to be negligible. The reservoir is considered as absolute rigid body. Under
these assumptions, the liquid motion can be described by the velocity potential.

Mathematical statement of the problem about motion of the system reservoir–liquid — consists of
kinematical constraints, dynamical conditions, dynamical equations and initial conditions. Kinematical
conditions are considered as mechanical constraints, which should be satisfied before application of the
variational principle of Hamilton–Ostrogradsky. For the considered system kinematical conditions
include the continuity requirement in the domain τ

∆ϕ = 0 in τ ;

nonflowing condition on the boundary of contact reservoir–liquid Σ with the unit vector of external
normal n

∂ϕ

∂n
= ε̇ · n on Σ;

and nonflowing condition on a free surface of liquid

∂ξ

∂t
+∇ξ ·∇ϕ =

∂ϕ

∂z
on S;

The dynamical boundary condition corresponds to the requirement of pressure balance on a free
surface of liquid

∂ϕ

∂t
+

1

2
(∇ϕ)2 −∇ϕ · ε̇− g · r = 0 on S.

The velocity potential for liquid is represented as Φ = ϕ+ ε̇·r, where r is the radius-vector of points
of the domain τ . The first term corresponds to wave motion of liquid, the second one is connected
with translational motion of the reservoir.

According to [4], the dynamical boundary conditions and the motion equations are obtained from
the Hamilton–Ostrogradsky variational principle

δ

∫ t2

t1

Ldt = 0;

with the Lagrange function

L =
1

2
ρ

∫

τ

(∇ϕ)2dτ +
1

2
Mp(ε̇)

2
−

1

2
ρg

∫

S0

ξ2dS − (Mp +Mf )εzg,

where ρ is the liquid density, Mp is the reservoir mass, Mf is the liquid mass, g is the free falling
acceleration.

For passing to the resolving system of ordinary differential equations, we use decomposition of
unknown variables into series according to [4], and take into account that for vortex-free motion of
homogenous incompressible ideal liquid motion of liquid boundary completely characterizes motion of
its volume

ξ = ξ(t) +
∑

i

aiψ̄i(α)Ti(θ).

After elimination of kinematical conditions according to the method [4], we obtain the variational
problem for a free system for which it is possible to write the Lagrange equations of the second kind

∑

i

äi

{

V 1
ir +

∑

j

ajV
2
irj +

∑

j,k

ajakV
3
irjk

}

+ ε̈ ·

{

U1
r +

∑

i

aiU
2
ri +

∑

i,j

aiajU
3
rij +

∑

i,j,k

aiajakU
4
rijk

}
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=
∑

i,j

ȧiȧjV
2∗
ijr +

∑

i,j,k

ȧiȧjakV
3∗
ijkr + ε̇

{

∑

i

ȧiU
2∗
ir +

∑

i,j

ȧiajU
3∗
irj +

∑

i,j,k

ȧiajakU
4∗
ijkr

}

− g

{

∑

i

aiW
2
ir +

3

2

∑

i,j

aiajW
3
ijr + 2

∑
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aiajakW
4
ijkr

}

, r = 1, 2, . . . , N (1)

ρ

(Mp +Mf )

{
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äi
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i +
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ijk


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}

+ ε̈

=
F

(Mp +Mf )
− gz0 −

ρ

(Mp +Mf )

∑

j

ȧj ȧj

{

U2
ij + 2

∑

k

akU
3
ijk

}

. (2)

The construction of the nonlinear discrete model of dynamics of combined motion of the reservoir
with liquid was done based on the Kantorovich method applied to the variational statement of the
problem. Here two generalized coordinates were used, namely, ai are amplitudes of excitations of the
normal modes of liquid oscillations; εi are parameters of translational motion of the reservoir.

In the general form we represent the motion equations for the system as

N
∑

n=1

prn (ak, t) än +

N+3
∑

n=N+1

prn (ak, t) ε̈n−N = qr (ak, ȧl, t) , r = 1, N + 3.

Here prn is a quadratic matrix, qr is a column of dimension N . The expressions for prn and qr can be
recovered from the system (1), (2).

3. Numerical results

Let us consider combined motion of the reservoir with liquid of radius R in the horizontal plane under
the action of the external periodic force F = A sin(ωt). Here H is liquid filling level.

The problem is studied for the frequencies 0.5ωN and 0.75ωN , where ωN is the frequency of normal
oscillations of combined motion of liquid with the reservoir, which depends on ratio of their masses and
does not equal the partial frequency of oscillations of liquid in an immovable reservoir. For translational
motion of the reservoir this difference can exceed 50−70%. Amplitudes of force were selected such
that maximum amplitudes of oscillations of a free surface were within the range 0.15R − 0.2R.

System behavior was analyzed for time interval about 50 s, which corresponds to about 40 periods
of oscillations. It was assumed that the reservoir mass is equal to 0.2 of the liquid mass. For the
considered reservoirs we take R = 1m, the liquid depth is H = R for all reservoirs besides the
spherical one, where H = 0.5R. We consider the resolving system, which takes into account 10 normal
modes of oscillations. Previously, this model was successfully tested for fulfillment of conservation
laws [4,8]. At the same time, the results for a conic reservoir qualitatively coincide with the results of
experimental publications [6, 8].

Simultaneously with investigation of behavior of liquid in the below resonant frequency range
we are going to investigate peculiarities of the influence of geometric shape on the development of
dynamical processes. We consider and compare numerical results for cylindrical, conic, spherical and
hyperbolical (one-sheet and two-sheet) reservoirs. Let us analyze amplitudes of excitation of liquid
sloshing on tank walls in time for the frequencies of force disturbance 0.5ωN and 0.75ωN . Figs. 1–8
represent the dependence of amplitudes on time. The parameter A is the amplitude of exciting force.
Figs. 1–3 correspond to the frequency 0.5ωN ; Figs. 4–6 correspond to the frequency 0.75ωN . For the
first frequency range drift of mean value of amplitudes of oscillations manifests. At the same time the
presence of high frequency modes of oscillations in the resulting amplitude of oscillations is considerable.
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The general tendency of behavior of amplitude — time dependence for different shapes of reservoirs
is similar; however, manifestation of both drift of mean value of oscillations and the presence of high-
frequency modes is stronger for the conic reservoir. In the case of oscillations with exciting frequency
0.75ωN (Figs. 4–6) the presence of modulation dominates, and similar to the previous frequency range
for the conic reservoir this effect manifests stronger. Similar results are represented for one-sheet and
two-sheet hyperboloid in Figs. 7–10 for 0.5ωN (Figs. 7, 8) and 0.75ωN (Figs. 9–10). General behavior
of the system does not change, however, it is necessary to note that manifestation of high-frequency
modes for one-sheet hyperboloid is much stronger than for other reservoirs, besides the conic one.
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Fig. 1. Amplitude–time dependence for cylinder
A = 0.7.

Fig. 2. Amplitude–time dependence for cone
A = 0.5.

0 10 20 30 40 50
-0.1

-0.05

0

0.05

0.1

0.15

0 10 20 30 40 50
-0.2

-0.1

0

0.1

0.2

Fig. 3. Amplitude–time dependence for sphere
A = 0.5.

Fig. 4. Amplitude–time dependence for cylinder
A = 0.4.
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Fig. 5. Amplitude–time dependence for cone
A = 0.35.

Fig. 6. Amplitude–time dependence for sphere
A = 0.45.
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Fig. 7. Amplitude–time dependence for one-sheet
hyperboloid A = 0.42.

Fig. 8. Amplitude–time dependence for two-sheet
hyperboloid A = 0.4.
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Fig. 9. Amplitude–time dependence for for one-
sheet hyperboloid A = 0.3.

Fig. 10. Amplitude–time dependence for two-
sheet hyperboloid A = 0.25.

The general property for all cases of reservoirs shapes and for both ranges of frequencies is that
the system does not tend to steady mode of motion. This property is confirmed by the results of
experiments [6, 8]. Mathematically this is caused by the simultaneous considering of both exciting
frequencies (including their multiple values) and normal frequencies of all modes of oscillations, which
are not divisible. In contrast to this, the result publications [5, 6] neglect the mentioned normal
frequencies of oscillations and obtain results of system asymptotical tending to a steady mode of
oscillations, which is not confirmed experimentally. One of the attribute of the necessity of inclusion
of normal modes of oscillations with their eigenfrequencies is reflected in the strong manifestation of
high-frequency modes in variation of amplitudes of liquid motion on the reservoir wall. It is necessary
to note also that on increase of perturbation frequency contribution of high-frequency modes decreases
and the effect of modulation of oscillations dominates.

4. Conclusions

The problem of force motion of liquid with a free surface in movable reservoir of revolution was
considered. Numerical results were obtained for cylindrical, conic, spherical and hyperbolic (one-sheet
and two-sheet) reservoirs. We analyzed variation in time of excitations on tank walls of a free surface
for the frequency range smaller that the resonant frequency of normal oscillations (below frequency
range).

It was ascertained that for the below frequency range drift of means value of oscillations is strongly
manifested. On tending of the perturbing frequency to the resonant value effect of modulation of

Mathematical Modeling and Computing, Vol. 4, No. 2, pp. 156–161 (2017)



Dynamical behavior of liquid in reservoir of revolution under harmonic force disturbance . . . 161

oscillations dominates. Manifestation of high-frequency modes occurs too. The effect of geometrical
shape of reservoir on these properties was discussed also.

For all shapes of reservoirs and different perturbing frequencies the system has no tendency of
converging to a steady mode of motion, which is confirmed experimentally [6, 8].
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Динамiчна поведiнка резервуара в формi тiла обертання пiд дiєю
гармонiчної сили в дорезонансному дiапазонi частот

ЛимарченкоО., ПаранкiнаО., СлюсарчукЮ.

Київський нацiональний унiверситет iменi Тараса Шевченка

пр. Глушкова, 4-е, Київ, Україна

Вивчено динамiчну поведiнку резервуара в формi тiла обертання пiд дiєю гармонiчної
сили в межах моделi сумiсного руху. Головну увагу зосереджено на поведiнцi сис-
теми в дорезонансному дiапазонi змiни частот. Для аналiзу особливостей поведiнки
системи порiвняно розвиток хвилеутворення для резервуарiв цилiндричної, конiчної,
сферичної i гiперболоїдальної (однопопорожнинний i двопорожнинний) форм.

Ключовi слова: резервуар, вiбрацiї, з’єднаний рух, вiльна поверхня рiдина, неци-

лiндрична форма, дрейф коливань, модуляцiя, високочастотнi моди.
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