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1. Introduction

Along with wide adoption of thin-walled thermoplastic pipes (cylindrical shells) in thermal power sys-
tems, a problem of calculation of strains that arise as a result of the nonuniformity of heat distributions
both in length and in time often emerges, which may cause the loss of operational capability by not
only an individual element of the structure but also by the whole system. The problem of thermal
stresses in a cylindrical shell is highlighted by many scientific studies [1–4], but in the study of ther-
moelastic processes in thermoplastics, it is necessary to take into account the deformative features of
their behavior (in particular, their ability to interlayer shears of individual fibers), which is represented
in [5–8]. These features are taken into account in the model of S. Tymoshenko [9], according to which
the normal to the surface of the shell in the process of deformation turns through some angle, without
changing its length. In this formulation, previously we solved [10, 11] the axisymmetric problem of
thermoelasticity both for infinitely long and short shells under the action of local longitudinal heat
sources in the steady regime of heating, and we carried out a comparison of the results with the cor-
responding values of the calculated values obtained for the problem in the classical formulation [12]
without taking into account the interstrains of the layers.

In this paper, we have considered four cases of heating of a volumetrically elastic cylindrical shell of
a finite length by local heat sources acing in the time modes actual for practical applications, and have
established the quantitative differences of the effect of interstrain at various degrees of the yielding of
the material.

2. The problem formulation

The quasistatic problem of thermoelasticity for a cylindrical shell with the wall thickness 2h and the
radius R for the time-dependent (t is the time) axisymmetric heat sources Q(x; τ), where x is the
axial radius-referred coordinate, consists in the consequent solving the heat equation [13] under the
condition of Newtonian heat transfer to the environment
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∂2T

∂x2
−
∂T

∂τ
− β2T (x; τ) = −

R2

αt

Q(x; τ) (1)

and the equation of the shell bending with taking into account the interstrain of the fibers

d4W

dx4
− 2g2

d2W

dx2
+ 4k4W (x; τ) = 4k4Rβt

(

T (x; τ)− ε
d2T

dx2

)

, (2)

where T (x; τ) is the difference between the temperature at any point of the shell and the constant
temperature of the environment referred to the middle surface, W (x; τ) are the normal deflections
of the shell, τ = t/(αR2), β2 = κR2/(αth), α = Cvρ/αt, Cv is the specific heat of the material at
a constant volume V , ρ is the specific density, αt and κ are the coefficients of heat conduction and
heat emission respectively, 2g2 = E/(k′G′), 4k4 = 3(1 − ν2)(R/h)2, ε = g2/(2k4), E is the Young’s
modulus, k′ and G′ are the shear coefficient and the shear modulus, ν and βt are the Poisson’s ratio
and the coefficients of linear expansion of the shell material.

The distribution of heat sources acting in the ring x ∈ [0; a] of the shell, we give with the function
finite in time

Q(x; τ) = Q0θ(x; a)
[

C∗θ(τ) + Pm(τ)e−β2

0
τ
]

, (τ > 0), (3)

where Q0 = const, C∗ = const, β0 are the parameter of sources damping, Pm(τ) =
∑m

k=0Ckτ
k is a

polynomial, θ(x; a) = θ(x+ a)− θ(x− a), θ(x) is the Heaviside step function.

3. Construction of the temperature field

The solution of Eq. (1) for the shell with the length l referred to the radius R and with the initial
condition

T (x; 0) = 0 (4)

we construct with the help of the Laplace transform, which, under the condition of the temperature
being finite in time, for τ → ∞ leads to the usual differential equation

d2T̃

dx2
− (p + β2)T̃ (x; p) = −

R2

αt

Q̃(x; p), (5)

where T̃ (x; p) =
∫∞

0 T (x; τ)e−pτdτ , Q̃(x; p) =
∫∞

0 Q(x; τ)e−pτdτ are the Laplace transforms with the
transformation parameter p.

It is easy to show that the mapping of the source function (3) has the form:

Q̃(x; p) = Q0 θ(x; a)

(

C∗

p
+

m
∑

k=0

Ckk!

(p+ β20)
k+1

)

. (6)

By expansion of the function of the sources (3) in an even manner with the period 2l over the
entire axis 0x, the solution of Eq. (5) can be given in the Fourier series [14] with coefficients ãn(p),
(n = 1, 2, 3, . . .) as functions of the transformation parameter p:

T̃ (x; p) =
ã0(p)

2
+

∞
∑

n=1

ãn(p) cos(λnx), λn =
nπ

l
. (7)

The unit step function θ(x; a) from Eq. (3) can be also presented in the final form in a similar
series:

θ(x; a) =
a

l
+

2

π

∞
∑

n=1

sin(λna)

n
cos(λnx).
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Substituting these series into Eq. (5) and equalizing the coefficients for the same harmonics, we
find the expressions of the coefficients ãn(p):

ã0(p) =
2aq0

βtl(p + β2)

(

C∗

p
+

m
∑

k=0

Ckk!

(p+ β20)
k+1

)

, (8)

ãn(p) =
2q0
πβt

[

C∗

p
+

m
∑

k=0

Ckk!

(p+ β20)
k+1

]

sin(λna)

n(p+ ω2
n)
, (9)

where q0 = βtR
2Q0α

−1
t , ω2

n = λ2n + β2.
The expression of the mapping of the temperature field (7) acquires the following form:

T̃ (x; p) =
q0
βt

(

C∗

p
+

m
∑

k=0

Ckk!

(p+ β20)
k+1

)(

a

l(p+ β2)
+

2

π

∞
∑

n=1

sin(λna)

n(p+ ω2
n)

cos(λnx)

)

.

Decomposing the fractions with denominators p(p + β2), p(p + ω2
n), (p + β2)(p + β20)

k+1, (p +
ω2
n)(p + β20)

k+1 into common fractions and using the table of Laplace inversions and the theorem on

the differentiation of the mapping of the function f̃(p) — the original of f(τ), namely (−1)n dnf̃(p)
dpn

↔

τnf(τ), after simplifications, we obtain the expression of the temperature field:

T (x; τ) =
q0
βt

{

C∗

[

a(1− e−β2τ )

β2l
+

2

π

∞
∑

n=1

(

1− e−ω2
nτ
) sin(λna)

n
cos(λnx)

]

−
a

l

m
∑

k=0

Ck

(

k!e−β2τ

(β20 − β2)k+1
−

1

k + 1

k
∑

j=0

τ je−β2

0
τ

(β20 − β2)k−j+1

)

+
2

π

∞
∑

n=1

m
∑

k=0

Ck

[

k!e−ω2
nτ

(β20 − ω2
n)

k+1
−

1

k + 1

k
∑

j=0

τ je−β2

0
τ

(β20 − ω2
n)

k−j+1

]

sin(λna)

n
cos(λnx)

}

. (10)

This formula determines the temperature distribution when the shell is heated by heat sources (3)
in a wide range of time regimes, which is ensured by a proper selection of coefficients C∗ and Ck.

4. Temperature field under the action of individual cases of heating the shell

Let us consider several shell heating modes important for application:

I. C∗ = 0, C0 = 1, Ck = 0, (k = 1, 2, . . . ,m) : Q(x; τ) = Q0 θ(x; a)e
−β2

0
τ ; (11)

II. C∗ = 0, C0 = 0, C1 = 1, Ck = 0, (k = 2, 3, 4, . . . ,m) : Q(x; τ) = Q0 θ(x; a)τe
−β2

0
τ ; (12)

III. C∗ = 1, C0 = −1, Ck = 0, (k = 1, 2, . . . ,m) : Q(x; τ) = Q0 θ(x; a)(1 − e−β2

0
τ ); (13)

IV. C∗ = C0 = 1; Ck = 0, (k = 1, 2, . . . ,m) : Q(x; τ) = Q0 θ(x; a)(1 + e−β2

0
τ ). (14)

It is obvious, the distribution (11) describes the process of heating the shell in a damping mode with
the maximal value of the density of the sources Q = Q0 at the moment of their activation τ = 0;
the distribution (12) describes the process of gradual heating of the shell from the zero state of the
sources to the level with the maximal density Q = (eβ20 )

−1Q0 at the time moments τ = β−2
0 with its

subsequent monotone descent to zero in the asymptotic mode (τ → ∞); the distribution (13) describes
the process of heating the shell with sources of increasing density from zero for τ = 0 to Q = Q0 at
τ → ∞; and the distribution (14) is the heating process with asymptotic twice decrease in the density
of sources from the maximal value Q = 2Q0 at the moment of their activation to Q = Q0 at τ → ∞.
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The expressions of the temperature corresponding to the sources distributions (11)–(14) are derived
from (10) and are expressed by the formula common to all cases:

T (x; τ) =
2q0
βt

[

a

2l
ψ
(j)
0 (τ) +

1

π

∞
∑

n=1

ψ(j)
n (τ)

sin(λna)

n
cos(λnx)

]

, (j = 1, 2, 3, 4) (15)

where the time functions are introduced:

ψ(1)
n (τ) = ν−2

n (e−β2

0
τ − e−ν2nτ ), ψ(2)

n (τ) = ν−4
n (e−ω2

nτ + (ν2nτ − 1)e−β2

0
τ ),

ψ(3)
n (τ) = ω−2

n − ν−2
n e−β2

0
τ + β20(ν

2
nω

2
n)

−1e−ω2τ
n , ψ(4)

n (τ) = ω−2
n +ν−2

n e−β2

0
τ−(ν2nω

2
n)

−1(ν2n+ω
2
n)e

−ω2
nτ ,

ν2n = ω2
n−β

2
0 , (n = 0, 1, 2, . . .), note that the upper index in the expressions ψ

(j)
n (τ) means the number

of sources (11)–(14).

Since ψ
(j)
n (0) = 0, (j = 1, 2, 3, 4), then from the solution (15) it is clear that the initial condition (4)

is satisfied in all cases of the action of the sources Q(x; τ).
We also note that under the equality of the reduced coefficient of heat conductivity-emission β and

the parameter of sources damping β0 after the disclosure of uncertainties from (15) follows the equality:

T (x; τ) =
2q0
βt

[

a

2β2l
lim
β0→β

ψ
(j)
0 (τ) +

1

π

∞
∑

n=1

ψ(j)
n (τ ;β0 = β)

sin(λna)

n
cos(λnx)

]

, (j = 1, 2, 3, 4), (16)

and for all distributions of sources lim
β0→β

ψ
(j)
0 (τ), there exist simple expressions, which are not repre-

sented here.

5. Construction of functions of deflections, forces, and moments

The solution of the deflection equation (2) with regard to the parity of the perturbing stress-deformed
shell state functions of the sources (3) and of the temperature (15), which automatically ensures the
satisfaction of the boundary conditions of the parity, i.e. the conditions for the absence of angles of
rotation and of the cross-sections forces at the ends of the shell, namely

W ′
x(0; τ) =W ′

x(l; τ) = 0, W ′′′
xxx(0; τ) =W ′′′

xxx(l; τ) = 0, (17)

we also represent in a Fourier series with the time-dependent coefficients of expansion:

W (x; τ) =
b0(τ)

2
+

∞
∑

n=1

bn(τ) cos(λnx).

Consistently substituting this series together with the expressions of temperature (15) into Eq. (2)
and equalizing the coefficients for the same harmonics cos(λnx), we determine the coefficients — the
functions bn(τ) — and, finally, we obtain:

W (x; τ) = 2Rq0

[

a

2l
ψ
(j)
0 (τ) +

4k4

π

∞
∑

n=1

1 + ελ2n
µ4n

sin(λna)

n
ψ(j)
n (τ) cos(λnx)

]

, (β0 6= β), (18)

W (x; τ) = 2Rq0

[

a

2β2l
lim
β0→β

ψ
(j)
0 (τ) +

4k4

π

∞
∑

n=1

1 + ελ2n
µ4n

sin(λna)

n
ψ(j)
n (τ) cos(λnx)

]

, (β0 = β), (19)

where we denote µ4n = λ4n + 2g2λ2n + 4k4.
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For the known deflections W (x; τ), we find the ring forces N(x; τ) and axial moments M(x; τ) [9,15]:

N(x; τ) = 2Eh
(

R−1W (x; τ)− βtT (x; τ)
)

, (20)

M(x; τ) = DR−1
(

2g2(2Eh)−1N(x; τ)−R−1W ′′
xx(x; τ)

)

, (21)

here D = (2/3)Eh3/(1 − ν2) is the cylindrical rigidity of the shell.
Substituting into these dependences the expressions of temperature (15), the deflection (18) and

its derivative of second order W ′′
xx with respect to the axial coordinate x, we obtain the formulas of

forces and moments which are valid for arbitrary ratios between β0 and β:

N(x; τ) = −
4

π
Ehq0

∞
∑

n=1

λ4n
µ4n

sin(λna)

n
ψ(j)
n (τ) cos(λnx), (j = 1, 2, 3, 4); (22)

M(x; τ) =
4

π
EhRq0

∞
∑

n=1

λ2n
µ4n

sin(λna)

n
ψ(j)
n (τ) cos(λnx), (j = 1, 2, 3, 4). (23)

6. The case of free thermal expansion of a shell for different heating modes

We note that in the limit case of heating the entire shell (a = l), from (15) the partial cases of free
thermal expansion of the shell in time are derived with the constant longitudinal normal displacements

W (τ) = RβtT (τ) caused by the temperature T (x; τ) = β−1
t q0ψ

(j)
0 (τ), (j = 1, 2, 3, 4) which, according

to (11)–(14), is determined by the formulas:

I. T (τ) =
q0
βtβ2∗

(e−β2

0
τ − e−β2τ ), β0 6= β;

T (τ) =
q0
βt
τe−β2τ , β0 = β; (24)

II. T (τ) =
q0
βtβ4∗

e−β2

0
τ (e−β2

∗
τ + β2∗τ − 1), β0 6= β,

T (τ) =
q0
2βt

τ2e−β2τ , (β0 = β); (25)

III. T (τ) =
q0
βtβ2

(

1−
β2e−β2

0
τ − β20e

−β2τ

β2∗

)

, β0 6= β,

T (τ) =
q0
βtβ2

(

1− (1 + β2τ)e−β2τ
)

, β0 = β; (26)

IV. T (τ) =
q0
βt

(

1

β2
+

1

β2∗
e−β2

0
τ −

β2 + β2∗
β2β2∗

e−β2τ

)

, β0 6= β,

T (τ) =
q0
βtβ2

(

1− (1− β2τ)e−β2τ
)

, β0 = β, (27)

where β2∗ = β2 − β20 .
Since at the heating of the entire shell sin(λna) = sin(nπ) = 0, then, as it can be seen from

Eqs. (22) and (23), for all sources distributions (11)–(14), the forces and axial moments in the shell
are completely absent.

It is also easy to show that in this case, the maximal temperature levels, and, hence, the displace-
ments (shell expansion), are reached at the certain moments of time τ = τk (k = 1, 2, 3, 4) and are
determined by the equalities:

I. max T (τ) = T (τ1) =
q0
βtβ

2
0

(

β0
β

)2β2

β2
∗

, τ1 = 2
ln(β/β0)

β2∗
, (β0 6= β); (28)

max T (τ) =
q0
βtβ2

, τ1 = β−2, (β0 = β);
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II. max T (τ) = T (τ2) =
q0
βtβ2

τ2e
−β2

0
τ2 , (β0 6= β), (29)

where τ = τ2 is the only non-zero root of the transcendental equation

e−β2
∗
τ + (β0/β)

2β2∗τ − 1 = 0, (30)

maxT (τ) =
2q0

β4βte2
, τ2 =

2

β2
, (β0 = β);

III. Under the action of sources (13), when the entire shell (a = l) is heated, the temperature
function has no critical values of time. It is obvious that in this case, the temperature increases over
the entire time interval τ ∈ (0;∞) from 0 to q0(βtβ

2)−1, and for any width of the heating ring a 6 l
it reaches its maximal level in the asymptotic heating regime at τ → ∞:

max T (x; τ) = T (x;∞) =
q0
βt

(

a

β2l
+

2

π

∞
∑

n=1

1

ω2
n

sin(λna)

n
cos(λnx)

)

, (31)

which coincides with the results [11], where the density of heat sources is given by the unit step function
θ(τ) so that at the infinity the sources for both distributions act with constant intensity Q = Q0.

IV. In this case, at a = l the maximal temperatures of the shell and the critical values of the time
parameter are given by the formulas:

max T (τ) = T (τ4) =
q0
βtβ2

[

1 +

(

β20
β2 + β2∗

)

β2
0

β2
∗

]

, τ4 =
1

β2∗
ln

(

β2 + β2∗
β20

)

, (β0 6= β), (32)

maxT (τ) =
q0
βtβ2

(1 + e−2), τ4 =
2

β2
, (β0 = β).

For all sources distributions Q(x; τ), the criti-
cal values of τ and the corresponding maximal val-
ues of the temperature T (x; τ) = (q∗0/βt)T

∗(x; τ)
for the uniform heating of the entire shell, where
here and thereafter, the product of the reduced
density of sources and the widths of the heat-
ing ring are constant, i.e. q∗0 = aq0 = const, for
the shell length l = 2 (two radii) and β2 = 2.32;
β20 = 2, are represented in Table 1 (a = l).

Table 1.

Q(x; τ) I II III IV β0/β
τ 0.464 0.95 ∞ 0.868

10T ∗(x; τ) 0.852 0.306 2.155 2.536 0.86
0.791 0.251 2.155 2.447 1

N(x; τ) 0 0 0 0 —
M(x; τ) 0 0 0 0 —

7. The case of placement of sources along the directing line of a shell

If, on the contrary, we shrink the width of the heating ring a to zero, while maintaining the total density
of the sources to be constant in the infinitely narrowing domain [0; a] of heating, then from Eqs. (15),
(18) and (22), and (23) after disclosure of the uncertainty of the type of the first important limit, the
formulas follow that determine the highest levels of the calculated values for a certain time of each
distribution (in comparison with the calculated values for any ring widths of the heating a ∈ (0; l]):

T (x; τ) =
2q∗0
βtl

[

1

2
ψ
(j)
0 (τ) +

∞
∑

n=1

ψ(j)
n (τ) cos(λnx)

]

, (33)

W (x; τ) =
2Rq∗0
l

[

1

2
ψ
(j)
0 (τ) + 4k4

∞
∑

n=1

1 + ελ2n
µ4n

ψ(j)
n (τ) cos(λnx)

]

, (34)
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N(x; τ) = −4Ehl−1q∗0

∞
∑

n=1

λ4nµ
−4
n ψ(j)

n (τ) cos(λnx), (35)

M(x; τ) = 4Ehl−1Rq∗0

∞
∑

n=1

λ2nµ
−4
n ψ(j)

n (τ) cos(λnx), (j = 1, 2, 3, 4). (36)

For the distributions I –IV, the critical values of time τ and the temperature values T (0; τ) =
q∗0β

−1
t T ∗(0; τ) at which the ring forces N(0; τ) = −2Ehq∗0N

∗(0; τ) and bending moments M(0; τ) =
2EhRq∗0M

∗(0; τ) at the left end of the shell, where the sources of infinitely great densities are concen-
trated, acquire the maximal values shown in Table 2 (a→ 0).

Table 2.

Q(x; τ) I II III IV E/G′ β0/β

τ 0.065 0.545 ∞ 0.090 — —

10T ∗(0; τ) 2.334 0.947 6.397 5.602 — 0.86
2.304 0.824 6.397 5.146 — 1

0.806 0.178 0.972 1.721 0 0.86
10N∗(0; τ) 0.581 0.129 0.699 1.238 40 0.86

0.516 0.113 0.620 1.098 60 0.86

0.162 0.045 0.256 0.368 0 0.86
102M∗(0; τ) 0.108 0.032 0.180 0.248 40 0.86

0.094 0.028 0.159 0.216 60 0.86

8. Conclusions

It is easy to show that in the general case for arbitrary values of 0 < a < 0.5l, the maximal levels of
the calculated values for all considered distributions of heat sources are also reached at the beginning
of the reference x = 0 and are determined by the corresponding sums (15), (16), (18), (19) and (22),
and (23). With the subsequent expansion of the heating ring of the shell, the maxima of forces and
moments are steadily shifted to the right along the shell base with the simultaneous decrease of their
levels to zero in the limit case of free thermal expansion (a = l).

With this, the critical values of the time parameter τ = τ∗j , (j = 1, 2, 3, 4), to which correspond the
highest temperatures, can be found approximately, putting in the corresponding expressions x = 0.
Thus, at the above values β0 and β for the heating ring width a = 0.2, the critical value of the time
parameter τ∗1 ≈ 0, 275 is for the sources (11), τ∗2 ≈ 0.750 is for the distribution (12), τ∗3 → ∞ is for (13),
and τ∗4 ≈ 0.525 is for the distribution (14). In the case β0 = β, the critical values τ are insignificantly
different from the indicated above and no qualitative differences contribute to the calculated values,
but note that with the approach of the parameter of sources damping β0 to the reduced coefficient of
heat conductivity-emission β, the level of forces and moments is slightly reduced.

It should be noted that calculated in the same way the maximal levels of ring forces for the source
distributions I, II and IV in the general case of an arbitrary width of the heating ring of the shell
are reached somewhat sooner than the values τ∗j mentioned above which correspond to the maxima
T (0; τ), which is explained by considerably higher temperature gradients in the initial stages of the
heating of the shell in comparison with subsequent stages of its heating. Thus, for the distribution
(11), the greatest value of the force (compression) N(0; τ) is reached at τ0 ≈ 0.09 and 30% higher than
it is at the time τ0 = 0.275 when the temperature T (0; τ) reaches the maximum. For the distribution
of sources (12), the greatest force (compression) corresponds to the moment of time τ0 = 0.545 and
only 7% exceeds the level of force calculated at τ0 = 0, 750, i.e. the time during which the temperature
rises to its maximum, which is explained by a much smoother temperature change in time for this time
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mode. For the distribution (14), the maximum of force is reached for x = 0 at τ0 ≈ 0.138 and it is
22% higher than the force that is reached at τ0 = 0, 525 when the temperature in the shell increases
to a maximum. These peculiarities to the same degree the bending moments M(0; τ) feature, and as
numerical calculations show, concern all cross-sections and all considered shell heating modes.

These comparisons are made for the classical case of deformation of the shell (E/G′ = 0), since, as
the numerical analysis shows, even though the taking into account the finite rigidity for the shear of
the fibers (E/G′ = 40 and E/G′ = 60) to a large extent affects the values of the forces and moments,
it contributes no significant differences to their relations in comparison with the classical case. The
quantitative differences, as a consequence of the enrichment of the classical model of shell deformation
by the shear factor, for those moments of time in which the forces and moments at the left end of the
shell reach maximum, can be seen in Table 3.

Table 3.

Q(x; τ) I II III IV E/G′

τ 0.090 0.545 ∞ 0.138 —

0.349 0.079 0.435 0.746 0
10N∗(0; τ) 0.219 0.050 0.266 0.466 40

0.185 0.042 0.232 0.392 60

0.133 0.047 0.207 0.308 0
102M∗(0; τ) 0.089 0.025 0.146 0.210 40

0.077 0.022 0.129 0.182 60

The change of the calculated values along the shell base for the width of the heating ring a = 0.2
for the sources I –IV at the time moments corresponding to the maximal levels of ring forces in the
case of E/G′ = 0 is represented in the graphics of the temperature (Fig. 1), the ring forces (Fig. 2),
and the axial moments (Fig. 3).
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Fig. 1. Fig. 2. Fig. 3.

These Figs. show that in the distance of two radii from the beginning of the reference the magnitudes
of these values practically disappear. At the same time, we note that with an increase in the ratio of
E/G′, these values steadily decrease with the simultaneous damping of the convergence along the axis
0x.
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До розрахунку термопружних процесiв у цилiндричнiй оболонцi з
локальними джерелами тепла

Максимук О.1, Ганулiч Н.2

1Львiвський нацiональний унiверситет iменi Iвана Франка
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вул. Наукова, 3-б, 79060, Львiв, Україна

Розв’язано квазiстатичну задачу термопружностi для пiддатливої на зсув цилiндрич-
ної оболонки скiнченної довжини за дiї осесиметричних джерел тепла у широкому
дiапазонi режимiв нагрiвання. Здiйснено числовий розрахунок температурних полiв,
кiльцевих зусиль i згинних моментiв за тих значень часу, за яких вони досягають
максимальних рiвнiв. Дослiджено вплив ступеня зсуву.

Ключовi слова: термопружнiсть, цилiндрична оболонка, джерела тепла, кiль-

цевi зусилля, згиннi моменти, ступiнь зсуву.
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