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1. Introduction

The setting of the parameters of the underground gas storage work for the gas taking off (pumping)
process keeping in the presence of the water in the layers is an important problem for their effective
exploitation. The water presence is found practically in all of the gas storages (gas deposits) created in
the depleted deposits. Nowadays, with a large number of researches an exhaustive theory for describing
of the processes occurring in the layers-collectors of the gas storages in the presence of water does not
exist yet. Due to the increase in the cost of the energy carriers the requirements for the calculation of
the underground gas storages work parameters increase. Since, there is the water in the underground
gas storages layers the part of the gas can diffuse or dissolve in it. The proportion of the gas present in
the water largely depends on the pressure distribution in it. It requires the formation of appropriate
adaptive models and methods which using the measured parameters (pressure, flow, etc.), allow to
determine the pressure distribution in the water, that will give an opportunity to estimate the amount
of the gas in it. To solve this problem the spectral methods are used in this paper.

The spectral methods are used both in theoretical studies and for solving a wide class of problems of
mathematics and mechanics. Their essence is that the functions included into the model are presented
in the form of orthogonal series in accordance to the selected basis. The solution finding is reduced to
the coefficients calculating of the orthogonal series of the desired solution. It is shown [1, 2] that the
choice of the orthogonal basis should be coordinated with the definition domain of the desired solution.
The positive sides are those that many orthogonal bases are studied well enough, they are easy to use,
and the solving algorithms constructed on their basis are easy for automation. The negative side is
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that the summing of corresponding series is, as a rule, an incorrect problem. Further not all the criteria
that are set to the solutions of the problems can be satisfied by means of using of one orthogonal basis.
Due to this fact, to meet the broader criteria we modify the existing bases or construct new ones. One
of the methods of these comments consideration is the use of the biorthogonal expansions. Nowadays,
there are a few papers devoted to their research and practical application. It is mainly due to the fact
that the formation of these biorthogonal bases is related to significant difficulties of calculation and
they are not studied enough.

2. Formulation of the problem

An infinite layer of the thickness l, 0 < y < l is considered. The pressure values on the boundaries
are equal to ϕ1(t) and ϕ2(t). The initial pressure is f(x). The calculation of the water pressure
distribution p(y, t) in a flat infinite medium of the thickness l is determined as the solution of one-
dimensional filtration equation [3, 4]

∂

∂y

[

kh

µ

(

∂p

∂y
+ ρg

)]

= 2αmh
∂p

∂t
, (1)

where k is the layer permeability, µ is the dynamic viscosity of the water, α is the water saturation
coefficient, m is the porosity of the layer. Since the layer thickness is insignificant and is considered to
be constant, the equation (1) has the form

∂

∂y

(

k

µ

∂p

∂y

)

= 2αm
∂p

∂t
.

In this case, the problem is as follows:
find the solution of the equation

κ

∂2p

∂y2
=

∂p

∂t
(0 < y < l) (2)

under the initial condition
p(y, 0) = f(y), (3)

and the boundary conditions
p(0, t) = ϕ1(t), p(l, t) = ϕ2(t). (4)

As the boundary conditions we will consider the following: on the bottom surface of the layer, the
pressure can be considered to be constant, equal to hydrostatic pressure of the water pn; on the upper
surface, the pressure value is calculated on the basis of the hydraulic coupling GCP — obliteration
zone — GWC [1–3] and is also considered to be constant pv.

The initial distribution of the water pressure in the water layer

p(y, 0) = ρg (h0 + y) , 0 < y < l.

The solution of the problem is a partial solution of a more general problem. Here κ = k/ (2µαm).

3. Solving the problem

Since the boundless layer of the thickness l, 0 < y < l, is considered and functions which help us to
solve this problem are considered on the interval [−1, 1], then we make a replacement y = 0.5l(x+ 1).
Then

p (y, t) = p

(

l (x+ 1)

2
, t

)

= P (x, t) , (5)
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∂2p(y, t)

∂y2
=

4

l2
∂2P (x, t)

∂x2
.

Considering the formula (5), we write the equation (2) and the conditions (3), (4) in the form

κ

4

l2
∂2P (x, t)

∂x2
=

∂P (x, t)

∂t
, (6)

P (x, 0) = ρg
l (x+ 1)

2
, (7)

P (−1, t) = ϕ1 = const, P (1, t) = ϕ2 = const. (8)

The solution of the problem (6)–(8) we find in the form [5,6]

P (x, t) =
n+2
∑

i=1

V n+ī
i (x)Gi(t), (9)

where V (x) are the basis functions, for which the following relations are true

d2V n+ī
i (x)

dx2
= − V n+ī

i (x)

λn
i+(−1)ī+1

+
τn
i+(−1)ī+1

λn
i+(−1)ī+1

T ′
n+1+ī(x), i = 1, . . . , n,

d2V n+1
n+1 (x)

dx2
=

(n+ 2)2π

8

n
2
∑

k=1

c̄2k2
λn
2k

V n+1
2k−1(x)

Nn
2k−1

+
1

15
n(n+ 1)(n + 3)(n + 4)T ′

n+2(x),

d2V n
n+2(x)

dx2
=

(n+ 1)2π

2

n
2
∑

k=1

c̄2k−1
1

λn
2k−1

V n
2k(x)

Nn
2k

+
1

15
(n− 1)n(n+ 2)(n + 3)T ′

n+1(x),

where V n+1
n+1 (x) = T ′

n+2(x), V n
n+2(x) = T ′

n+1(x), ī = 0 for the even values of i, and ī = 1 for the
odd values of i. Tn+1 = Tn+1(x) and Tn+2 = Tn+2(x) are the Chebyshev polynomials of degree
n + 1 and n + 2, λn

i , i = 1, . . . , n are the eigenvalues of the integral operator π∞
1 L = π∞

1

∫ x
−1

∫ x1

−1,

U2s
2i (x) =

∑s
j=1 c

2i
2j T̃2j(x), U2s−1

2i−1 (x) =
∑s

j=1 c
2i−1
2j−1T̃2j−1(x) are the eigenfunctions of this operator,

T̃j(x) are modified Chebyshev polinomials, Ū2s
2i (x) =

∑s
j=1 c̄

2i
2jT2j(x), Ū

2s−1
2i−1 (x) =

∑s
j=1 c̄

2i−1
2j−1T2j−1(x)

are the eigenfunctions of this turned operator, τ2s2i (x) =
c2i2s

4(2s+1)(2s+2) , τ
2s
2i−1(x) =

c2i−1
2s−1

4(2s)(2s+1) , τ̄
2s
2i (x) =

c̄2i2s
4(2s)(2s+1) , τ̄2s2i−1(x) =

c̄2i−1
2s−1

4(2s−1)(2s) , are the biorthogonal functions V n+ī
2i−ī

(x) =
∫ x
−1 U

n−ī−(−1)ī

2i−1+ī
(x1)dx1,

V̄ n+ī
2i−ī

(x) = −
√
1− x2

∫ x
−1

Ū
n−ī−(−1)ī

2i−1+ī
(x1)√

1−x2
1

dx1, i = 1, . . . , n/2, Nn
i =

∫ 1
−1

V n+ī
i (x)V̄ n+ī

i (x)√
1−x2

dx, i = 1, . . . , n is

the norm of the biorthogonal functions [5, 6]. Let us substitute (9) into the equation (6) and obtain

κ

4

l2

n+2
∑

i=1

∂2V n+ī
i (x)

∂x2
Gi(t) =

n+2
∑

i=1

V n+ī
i (x)

∂Gi(t)

∂t
. (10)

Let us multiply the equation (10) by V n+ī
i (x), i = 1, . . . , n and integrate it with respect to x with the

weight r(x) = (1−x2)−1/2 from x = −1 to x = 1. We will obtain the system of n differential equations
of the first order of the kind

4

l2



− Ni

λn
i+(−1)ī+1

Gi(t) +
(n+ 1 + ī)

2

22̄i+1
π
c̄
i+(−1)ī+1

1+ī

λn
i+(−1)ī+1

Gn+2−ī(t)



 = Ni
∂Gi (t)

∂t
, i = 1, . . . , n. (11)
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From the boundary conditions (7), considering Vi(−1) = Vi(1) = 0, we have

ϕ1 + ϕ2

2(n+ 1)2
= Gn+2(t),

ϕ2 − ϕ1

2(n+ 2)2
= Gn+1(t). (12)

Taking into account the formula (12), we write the system (11) in the form

∂Gi(t)

∂t
+

4κ

l2λn
i+(−1)ī+1

Gi(t) =
κπ

22̄il2Ni

c̄
i+(−1)ī+1

1+ī

λn
i+(−1)ī+1

(

ϕ2 + (−1)iϕ1

)

, i = 1, . . . , n. (13)

Therefore, the following functions will be the solutions of the equations of the system (13)

Gi(t) =
c̄
i+(−1)ī+1

1+ī
π

22̄i+2Ni

(

ϕ2 + (−1)iϕ1

)

(

1− e
− 4κ

l2λn

i+(−1)ī+1

t
)

+Gi(0)e
− 4κ

l2λn

i+(−1)ī+1

t

, i = 1, . . . , n, (14)

where the coefficients Gi(0) are found from the initial condition (7) by the formula

Gi(0) =
1

Ni

∫ 1

−1

P (x, 0)V̄ n+ī
i (x)√

1− x2
dx. (15)

Thus, we have found the solution of the equation (6) on the interval x ∈ [−1, 1], namely

P (x, t) =

n+2
∑

i=1

V n+ī
i (x)





c̄
i+(−1)ī+1

1+ī
π

22̄i+2Ni

(

ϕ2 + (−1)iϕ1

)

(

1− e
− 4κ

l2λn

i+(−1)ī+1

t
)

+Gi (0) e
− 4κ

l2λn

i+(−1)ī+1

t


 .

Let us return to the variable y in obtained solution and obtain the solution of the equation (2)

p(y, t) =

n+2
∑

i=1

V n+ī
i

(

2y − l

l

)

×





c̄
i+(−1)ī+1

1+ī
π

22̄i+2Ni

(

ϕ2 + (−1)iϕ1

)

(

1− e
− 4κ

l2λn

i+(−1)ī+1

t
)

+Gi(0)e
− 4κ

l2λn

i+(−1)ī+1

t


 .

4. Computational experiment

The results of the solution of the equation (2) for k = 4·10−12, µ = 1.1·10−6
(

m2/s
)

, α = 0.8, m = 0.28,
p0 = 6.864655 (MN/m2), p1 = 5.3936575 (MN/m2), ρ = 998 (kg/m3), g = 9.8 (m/s2), h0 = 541 (m) is
indicated in the tables.

Table 1. The values of the water pressure in an infinite layer of the thickness l = 10m for different values of
the time t and the coordinate y(meters) at n = 10, the time value t is indicated in hours in the table.

t
y

0 1 2 3 4 5 6 7 8 9 10

0 70.0000 56.0267 52.6886 55.1106 54.3511 53.7224 55.4532 54.0919 54.9389 54.6221 55.0000

24 70.0000 60.4508 55.6144 54.4376 54.3707 54.4451 54.5601 54.6542 54.7525 54.8763 55.0000

120 70.0000 65.3781 61.3767 58.3828 56.4559 55.4035 54.9364 54.7972 54.8148 54.8966 55.0000

240 70.0000 66.7222 63.6759 61.0459 58.9397 57.3793 56.3153 55.6536 55.2837 55.0979 55.0000

360 70.0000 67.3318 64.7914 62.4891 60.5032 58.8729 57.5973 56.6414 55.9437 55.4259 55.0000

480 70.0000 67.6952 65.4725 63.4048 61.5476 59.9338 58.5711 57.4429 56.5106 55.7188 55.0000

720 70.0000 68.1024 66.2438 64.4597 62.7777 61.2156 59.7792 58.4621 57.2462 56.1038 55.0000
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Table 2. The values of the water pressure in an infinite layer of the thickness l = 10m for different values of
the time t and the coordinate y(meters) at n = 10, the time value t is indicated in hours in the table.

t
y

1 2 3 4 5 6 7 8 9
168 66.0826 62.5512 59.6844 57.5939 56.2329 55.4537 55.0777 54.9471 54.9466
336 67.2362 64.6141 62.2544 60.2411 58.6131 57.3652 56.4553 55.8149 55.3603
504 67.7511 65.5780 63.5482 61.7136 60.1054 58.7315 57.5771 56.6069 55.7689
672 68.0429 66.1309 64.3045 62.5958 61.0249 59.5984 58.3087 57.1350 56.0455
840 68.2190 66.4656 64.7646 63.1356 61.5913 60.1360 58.7652 57.4662 56.2194
1008 68.3270 66.6710 65.0471 63.4676 61.9403 60.4677 59.0472 57.6710 56.3271
1176 68.3934 66.7973 65.2210 63.6721 62.1552 60.6721 59.2211 57.7973 56.3935
1344 68.4344 66.8752 65.3282 63.7980 62.2876 60.7980 59.3282 57.8752 56.4344
1512 68.4596 66.9231 65.3942 63.8756 62.3692 60.8756 59.3942 57.9231 56.4596
1680 68.4751 66.9526 65.4348 63.9233 62.4194 60.9233 59.4348 57.9526 56.4751
1848 68.4847 66.9708 65.4598 63.9528 62.4504 60.9528 59.4598 57.9708 56.4847
2016 68.4905 66.9820 65.4753 63.9709 62.4694 60.9709 59.4753 57.9820 56.4905

Table 3. The values of the water pressure in an infinite layer of the thickness l = 10m for different values of
the time t and the coordinate y(meters) at n = 10, the time value t is indicated in hours in the table.

t
y

1 2 3 4 5 6 7 8 9
720 68.1024 66.2438 64.4597 62.7777 61.2156 59.7792 58.4621 57.2462 56.1038
1440 68.4502 66.9053 65.3697 63.8469 62.3390 60.8469 59.3697 57.9053 56.4502
2160 68.4938 66.9881 65.4837 63.9808 62.4798 60.9808 59.4837 57.9881 56.4938
2880 68.4992 66.9985 65.4980 63.9976 62.4975 60.9976 59.4980 57.9985 56.4992

5. Solving of differential equations systems in the presence of fractional derivatives
using the orthogonal method

During the modeling many physical processes, in particular the mass transfer, it is important to
consider the process history. Mathematical modeling of physical processes is usually reduced to the
differential equations construction (or their systems) in partial derivatives and the formulation of the
appropriate problems of mathematical physics. The models of such kind do not take into account
the history of the process. Therefore, fractional (differential and integral) calculations are increasingly
used for the study of such processes [7–12]. The analytical methods for solving of the problems that
arise are usually constructed on the basis of Laplace operational transform [13]. The available tables of
correspondence between the originals and the images or the use of contour integration don’t always lead
to the desired result. The use of the approximate methods of inversion can’t guarantee the necessary
accuracy of the original restoring. One of the effective approaches to avoid this problem is the use of
the spectral methods in different bases in particular in the Laguerre polynomials basis to apply the
problems of the fractional calculus.

The proposed paper has a purpose to research the method of solving of differential fractional
derivatives using the spectral method in the Chebyshev-Laguerre polynomials basis.

5.1. Fractional derivatives definition

Several types of the fractional derivatives and integrals are introduced in the literature. The frac-
tional derivatives in Caputo and Riemann-Liouville terms are the most used. The fractional derivative
operator in Caputo terms is defined as follows [9–12]:

cDα
τ =

c∂α

∂τα
ϕ(τ) :=

1

Γ(m+ 1− α)

∫ τ

0

(

∂m+1

∂ξm+1
ϕ (ξ)

)/

(τ − ξ)α−mdξ, (16)
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where m = [α], [·] is the integer part of real number, and in Riemann-Liouville terms

Dα
t =

∂α

∂tα
ϕ(t) :=

1

Γ(m+ 1− α)

∂m+1

∂ξm+1

∫ t

0

ϕ(ξ)

(t− ξ)α−m
dξ. (17)

Taking into account the given definitions we can conclude that the fractional derivatives are nothing
but an integral convolution of the desired solution and another function, e.g. the power function. It
is known [2, 14, 15] that in such cases it is expedient to apply the Chebyshev-Laguerre polynomials
because they are orthogonal on the semi-axis and during the expansion of the desired solution and
the kernel by the given polynomials the integral convolution passes exactly to the convolution of the
accordant series. Herewith, the sampling procedure which contributes a significant error into the end
result in such operations is excluded.

5.2. Formulation of the problem

To solve many applied problems related to the nonstationary gas motion process in horizontal pipelines
the linearized system of the partial differential equations that looks like the formula (18) [15] is used











∂ω(x, t)

∂t
+

∂p(x, t)

∂x
+ aω(x, t)− bp(x, t) = 0,

∂ω(x, t)

∂x
+

1

c2
∂p(x, t)

∂t
= 0,

(18)

where p, ω are the pressure and the mass velocity of gas motion accordingly; t is the time; x is the
movable coordinate, x ∈ [0, L]; L is the length of pipeline, a = υ1 + υ2, b = −1

4

(

υ21 + υ22
)

, аnd υ1 and
υ2 are the limits of change of gas motion velocity, c is the sound speed in gas.

It is evident that to formulate the accordant problem of mathematical physics, it is necessary to
set the initial and limiting (boundary) conditions for the gas pressure and or the volumetric mass
consumption which are the desired functions. The boundary conditions for the desired functions are
set depending on known input data.

In Riemann-Liouville fractional derivatives terms (17), the system (18) will be written in the form















1

Γ(1− α)

∂

∂t

∫ t

0

ω(x, ζ)

(t− ζ)α
dζ +

∂p

∂x
+ aω − bp = 0,

∂ω

∂x
+

1

c2
1

Γ(1− α)

∂

∂t

∫ t

0

p(x, ζ)

(t− ζ)α
dζ = 0.

(19)

The problem is to find the pressure distribution and the volumetric flow rate over the given domain
under the given initial and boundary conditions on the desired functions (the pressure and volumetric
flow rate).

5.3. Solving of the problem

Let us present the unknown functions p(x, t) and ω(x, t) in the form of the series by the orthogonal
Chrbyshev-Laguerre polynomials Lλ

n(t), where λ > −1 is the arbitrary parameter [2]

p(x, t) = tλ
∞
∑

m=0

pm(x)

rm
Lλ
m(t), ω(x, t) = tλ

∞
∑

m=0

ωm(x)

rm
Lλ
m(t), (20)

where the coefficients pm(x), ωm(x) are determined by the integral relations

pm(x) =

∫ ∞

0
e−tp(x, t)Lλ

m(t)dt and ωm(x) =

∫ ∞

0
e−tω(x, t)Lλ

m(t)dt. (21)
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The integral equations kernel is also presented in a similar way (19)

k(t) = tλ
∞
∑

m=0

km
rm

Lλ
m(t). (22)

In such presentation the series coefficients will have the form

km =

∫ ∞

0
e−tLλ

m(t)k(t)dt, (23)

and the normalizing multiplier rm is calculated by the formula

rm =

∫ ∞

0
e−xLλ

m(x)Lλ
m(x)dx =

(1 + λ)m(λ)m
m!m!

3F2(−m, 1, 1 − λ;λ+ 1, 1 − λ−m; 1).

In our case generalized Fourier-Laguerre spectra for the function k(t) = t−α are defined as follows

km =
Γ(m+ λ+ α)Γ(1 − α)

Γ(m+ 1)Γ(λ+ α)
. (24)

For the large values m

km ≈ Γ(1− β)

Γ(λ+ β)
mλ+α−1.

The latter formula gives the opportunity to evaluate the impact of the free parameter λ on the conver-
gence velocity of the accordant series. However, the function representation by the series of type (20)
and (22) is advantages even more so that the agreement of the choice of parameter λ with the behavior
of the function k(t) accelerates the rate of the series convergence. Let us represent the functions k(t)

and p(x, t) in the form of Fourier series by the polynomials Lλk
n (t), λk > −1, and L

λp
n (t), λp > −1,

accordingly. Since [2]

∫ t

0
(t− τ)λkLλk

m (t− τ)τλfL
λf
n (τ)dτ =

(n+m)!

n!m!
B(λk +m+ 1, n+ λf + 1)tλk+λf+1L

λk+λf+1
n+m (t),

then the equation
∂ω

∂x
+

1

c2
1

Γ(1− α)

∂

∂t

∫ t

0

p(x, ζ)

(t− ζ)α
dζ = 0

has the form

∂ω

∂x
+

1

c2
1

Γ(1− α)

∂

∂t

∞
∑

m=0

m! km
Γ(m+ λk + 1)

∞
∑

n=0

n! pn(x)

Γ(n+ λp + 1)

× (n +m)!

n!m!
B (λk +m+ 1, n+ λp + 1) tλk+λp+1L

λk+λp+1
n+m (t) = 0,

or

∂ω

∂x
+

1

c2
1

Γ(1− α)

∞
∑

m=0

m! km
Γ(m+ λk + 1)

∞
∑

n=0

n! pn(x)

Γ(n+ λf + 1)

× (n+m)!

n!m!
B (λk +m+ 1, n + λp + 1) (n+m+ λk + λp + 1)1 t

λk+λpL
λk+λp

n+m (t) = 0.
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If we regroup the summands in the double sum in the right side of the latter formula, we will obtain
the equation

∂ω

∂x
+

1

c2
1

Γ(1− α)
tλk+λp

∞
∑

n=0

dn(x)L
λk+λp

n+m (t) = 0.

In the latter formula

dn(x) =

n
∑

m=0

kmpn−m(x) =

n
∑

m=0

kn−mpm(x).

If we represent the mass consumption ω(x, t) as the series

ω(x, t) = tλk+λp

∞
∑

n=0

n!ωn(x)

Γ(n+ λp + 1)
L
λk+λp
n (t),

we will obtain the following recurrent system of ordinary differential equations of the unknown coeffi-
cients ωn(x) and pn(x)

n!

Γ(n+ λp + 1)

dωn(x)

dx
− 1

c2
1

Γ(1− α)
dn(x) = 0. (25)

A similar system is obtained from the first equation of the system (18)

1

Γ(1− α)

∂

∂t

∫ t

0

ω(x, ζ)

(t− ζ)α
dζ +

∂p

∂x
+ aω − bp = 0.

Applying similar expansions in the latter equation, we obtain

n!

Γ(n+ λp + 1)

dpn(x)

dx
+

1

Γ(1− α)
cn(x) + aωn(x)− bpn(x) = 0, (26)

cn(x) =

n
∑

m=0

kmωn−m(x) =

n
∑

m=0

kn−mωm(x).

The systems (23) and (24) are recurrent relatively the unknown generalized spectra. Solving them we
find ωn(x) and pn(x) for the arbitrary values n by the spectral method described above.

If we substitute the expansions (20) and (22) in the system (19) we will obtain the recurrent system
of ordinary differential equations for determining of the unknown coefficients ωn(x) and pn(x).















1

Γ(1− α)
cn(x) + p′n(x) + aωn(x)− bpn(x) = 0,

ω′
n(x) +

1

c2
1

Γ(1− α)
dn(x) = 0.

(27)

The solution of the latter system we can find in the bases of the orthogonal or biorthogonal poly-
nomials [2, 5, 6, 14].

6. Discussion and conclusions

The numerical values of the pressure presented in the tables 1–3 confirm authenticity of the obtained
theoretical results and the efficiency of applying of the constructed biorthogonal polynomials for solving
problems of the mathematical physics. The proposed algorithm is easy to automate and can be
effectively used to solve other practical problems.

The proposed approach gives us an opportunity to construct the effective algorithm for solving of
the differential equations or the systems of the differential equations in the presence of the fractional
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time derivative. More, if the input data is set in a discrete form the similar to the paper [2] the
algorithm can be submitted in matrix form.

From the results obtained it follows that if λ = −α then the coefficients of function k(t) = t−α are
equal to zero for orders greater than one. So, for such a choice of the parameter λ we will have the
following formula

dn(x) = k0pn(x), cn(x) = k0ωn(x).

However, as can be seen from the formula (24) such an approach to choosing of the parameter λ allows
one to accelerate the convergence of accordant Fourier-Laguerre series.

It is necessary to note that the summing of Fourier-Laguerre series is sensitive to the parameter
λ. Therefore, there is a need of additional researches in summing operations of these series because
Chebyshev-Laguerre polynomials have significant disadvantage that for the large n their behavior is
following

Lλ
n(t) = O

(

et/2t−(2λ+1)/4n(2λ−1)/4
)

.

This property of the polynomials considerably narrows the problems class when the Chebyshev-
Laguerre polynomials are used because there are the computational difficulties during the series sum-
ming for the large values t. In practice this problem is solved by the introduction of the scaling
multiplier. However, the change of the scaling multiplier requires the redefining of the problem and
leads to instability in the desired function calculation. Therefore, Chebyshev-Laguerre transform is
generalized as follows.

Introduce the integral transform

fn =

∫ ∞

0
tνλ+ν−1e−µtνLλ

n(µt
ν)f(t)dt,

where n = 0, 1, 2, . . ., µ > 0, |ν| < ∞, ν 6= 0. Then the reverse formula has the form

f(t) =
∞
∑

n=0

n!fn
Γ(n+ λ+ 1)

Lλ
n(µt

ν).

Choosing the free parameters µ and ν allows us to construct the regularizing algorithm for calculating
Fourier-Laguerre coefficients fn and summing the corresponding orthogonal series.
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Дослiдження масоперенесення в складних пористих середовищах
та трубопроводах за допомогою спектральних методiв

П’янило Я., Собко В., Браташ О.

Центр математичного моделювання
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На основi побудованих авторами бiортогональних полiномiв запропоновано метод
розв’язування задач математичної фiзики, зокрема для знаходження розподiлу тиску
у водi в пластах пiдземних сховищ газу. Дослiджено спосiб розв’язування задачi мето-
дом роздiлення змiнних у базисi бiортогональних полiномiв. Розв’язок задачi знайде-
но у виглядi суми ряду бiортогональних та квазiспектральних полiномiв. Проведено
порiвняльний аналiз для рiзних значень параметрiв. Вивчено вплив параметрiв ме-
тодiв, зокрема порядку часткової суми, розрядної сiтки та похибки обчислення на
точнiсть отриманого розв’язку. Результати обчислень подано у виглядi таблиць. По-
будовано алгоритм дослiдження процесу руху газу в трубопроводах з використанням
похiдних дробових порядкiв.

Ключовi слова: спектральнi методи, математична модель, розподiл тиску, ор-

тогональнi, бiортогональнi та квазiортогональнi полiноми, диференцiальнi рiвнян-

ня в частинних похiдних та похiдних дробових порядкiв.
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