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ESTIMATION OF THE EARTH’S TENSOR OF INERTIA FROM RECENT
GEODETIC AND ASTRONOMICAL DATA

The transformation of the second-degree harmonic coefficients C,, and S,, in the case of a finite

commutative rotation was derived instead of the traditional Lambeck’s approach based on an infinitesimal
rotation. The modified Lambeck’s formulae avoid uncertainty in the deviatoric part of inertia tensor and allow
simple transformation of the 2nd-degree harmonic coefficients and zonal coefficients of an arbitrary degree
(including their temporal changes) via orthogonal matrixes. These formulae together with exact solution of the
eigenvalue-eigenvector problem are applied to determine static components and accuracy of the Earth’s tensor of

inertia from the adjustment in the principal axes system of C,,, S,, from recent four gravity field models
(EGM2008, GGMO03S, ITG-GRACEO03S, and EIGEN-GL04S1) and eight values Hp of the dynamical ellipticity
all reduced to the common MHB2000 precession constant at the epoch J2000. The second solution contains the
same parameters based on these four sets of C,,,S,, and only one Hp from the MHB2000 model and

corresponds better to the IERS Conventions 2003 and latest gravity field determinations. Two solutions for static
components consist of the adjusted five 2nd-degree harmonic coefficients related to the IERS reference pole
given by the conventional mean pole coordinates at the epoch 2000 (IERS Conventions 2003), the orientation of
principal axes in this system, the principal moments (4, B, C) of inertia, and other associated parameters. The
evolution with time of the above-mentioned static parameters was estimated in the principal axes system from

the GRACE time series of C,,,(?), S,,,(t) derived in five different centers of analysis over the time interval
from 2002 to 2008. Special attention is given to the direct computation of temporally varying principal axes and
moments of inertia based on C,, (f), S,, (f) and the estimation of their mean values together with periodic
constituents on given time-period. Stability of the positions of the equatorial inertia axes (A, B ) and the angle
between two quadrupole axes located in the plane of the axes 4 and C of inertia is found. The estimated
longitude A5 of the principal axis 4 as the parameter of the Earth’s triaxiality in the precession-nutation theory
and J, precession rate p, of the precession constant are recommended for the Earth’s rotation theory.

Additionally to some permanent constituents periodic components at seasonal and shorter time scale were
evaluated.

Key words: the earth’s inertia tensor; principal axes and moments of inertia; Lambeck’s approach.

Introduction

Estimation of the Earth’s fundamental
parameters including elements of the tensor of
inertia is the traditional area of interest of the IAG
[Bursa, 1995; Groten, 2000; Groten 2004]. Suitable
solutions for the Earth’s principal moments of
inertia (4, B, C), principal axes (4, B, C ), and
other fundamental constants were obtained in
[Marchenko, Schwintzer, 2003; Marchenko, 2007]
from the adjustment (in the principal axes system)
at one chosen epoch of several sets of the second
om> S, of the

2m
Earth’s gravity models all referred to different
epochs with a spacing of 18 years in between and

values of the dynamical ellipticity /. Derived

degree harmonic coefficients C

from GRACE observations recent gravity field
models give more accurate solutions for the time-

dependent coefficients C,, (), S,,(). In
addition, latest determinations of the dynamical
ellipticity /,, are based on the non-rigid Earth’s
rotation theory including the MHB2000 precession-
nutation model [Mathews et al., 2002] estimated

from VLBI observations during the time-period of
20 years, adopted by the IAU, and recommended by
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the IERS Conventions 2003 [McCarthy and Petit,
2004]. After the launch of CHAMP and GRACE
satellites the combination of new gravity field
models, Earth’s orientation series, and geophysical
fluids data have led to a number of important

contributions with the treatment of H, = H ()

and C,, (), S,,(t) as the sum of constant and

variable (secular or/and periodic) parts caused by
mass redistribution within the Earth’s system
[Marchenko and Schwintzer, 2001; Bourda and
Capitaine, 2004; Chen et al., 2005; Fernandez,
2007; Gross et al., 2007]. The consistency of such
investigations and the modeling of the time
evolution require additionally to the consistent set
of fundamental constants more precise theories to
determine the dynamic figure of the Earth, the
orientation of the principal axes in the Earth’s-fixed
system and its evolution with time from geodetic

C,, (1), S,,() and astronomical H ()

parameters.

This study aims to derive more accurate
expressions for the transformation of the second-
degree coefficients and zonal coefficients of an
arbitrary degree through a finite commutative
rotation instead of the most widely used



approximate Lambeck’s approach based on an
infinitesimal rotation [Lambeck, 1971; Reigber,
1981]. The modified Lambeck’s formulae for polar
coordinates considered at the sphere avoid
uncertainty in the deviatoric part of inertia tensor in
comparison with the usual planar approximation
and allow simple reduction of the 2nd-degree
harmonic coefficients and zonal coefficients of an
arbitrary degree together with their temporal

changes to the figure axis C . On the other hand,
S2m

transformed in the (Z , B , C ) system and H , -

estimates (expressed through (4, B, C)-values)
represent initial information for the determination
of the principal moments (4, B, C) via simultaneous
adjustment by iterations providing in this way their
agreement with different sets of geodetic and
astronomical constants [Marchenko and Schwin-
tzer, 2003]. The Ilast approach is analyzed
additionally to select initial values for iterations,
which can be slightly differed from the mean

moment of inertia of a homogeneous planet.
In contrast to the previous papers [Marchenko
and Schwintzer, 2003; Marchenko, 2007] the fully
S

2m

various solutions of the coefficients C,, ,

normalized coefficients C are selected

2m>
from the recent four gravity field models
EGM2008, GGMO03S, ITG-GRACEO03S, and
EIGEN-GLO04S1 constructed in different centers of
analysis, based on different data sets, and referred
to various epochs with a spacing of 5 years in
between. The secular change in the 2nd-degree
zonal coefficient C,, =1.1628-10"yr™" s
adopted for these gravity fields together with the
simple linear model for C,,, S,, represented by
the mean pole’s drift with the reference mean pole
coordinates X,(f,)=0.054", y (¢))=0.357" at

the epoch #=2000 according to the IERS
Conventions 2003 [McCarthy and Petit, 2004]. It

has to be pointed out that C,,, S, ~of the
conventional solution EGM96 given at epoch 1986
(IERS Conventions 2003) were replaced by C

2m

2m>

S,, of the new gravity field model EGM2008

based on surface gravity data only [Pavlis et al.,

2008] and referred to epoch J2000 with C,,, S5,

selected in agreement with this epoch [Pavlis,
2008]. The Earth’s fundamental parameters were
estimated from the weighted least squares

adjustment of the new set of C,,, S,, of four

gravity field models and eight values Hp of the
dynamical ellipticity [Williams, 1994; Souchay and
Kinoshita, 1996; Hartmann et al., 1997; Bretagnon
et al., 1998; Roosbeek and Dehant, 1998; Mathews
et al., 2002; Fukushima, 2003; Capitaine et al.,
2003] all reduced to the common value

T'eonesis

p, =50.2879225"/yr  of the MHB2000

precession constant at epoch J2000.
Because the modified Lambeck’s approach

allows simple transformation of C,,,S, ~via

orthogonal matrixes based on a finite commutative
rotation the corresponding formulae were applied in
the adjustment of the geodetic-only parameters
C,,,»S,, of the four gravity field models to the
IERS reference pole. Hence, the solution for static
components consists of the adjusted C,, ,S,, -

coefficients related to the reference IERS pole at
the epoch 2000, the orientation of principal axes in
this system, the principal moments of inertia (4, B,
C) of the Earth, Hp, the coefficients in the Eulerian
dynamical equations, and other associated values.
Another solution contains the same parameters

based on these four sets of C,,,,S,,, and only one

Hp from the MHB2000 theory recommended by the
IERS Conventions 2003. In this way the second
solution for the time-independent principal
moments of inertia and other associated parameters
as a by-product of this adjustment at epoch
corresponds better to the frequently used IERS
Conventions 2003 and latest gravity field
determinations instead of the old conventional
model EGM96.

Secular changes of dynamical ellipticity H ,

and precession constant were estimated via C,,

temporal variation preliminary transformed via
modified Lambeck’s formulae to the figure axis

C . These estimates were compared with other
results. Temporally varying components of the
tensor of inertia were found from adjusted value of
the dynamical ellipticity Hp, the secular variation

H,, and the GRACE time series of C,, (),

S,,,(¢) derived in five different centers of analysis

on the period from 2002 to 2008: 1) CNES-GRGS;
2) CSR Release 04; 3) GFZ Release 04; 4) JPL
Release 04.1; 5) ITG-GRACEO03S. Special attention
is given not only to the direct computation of
temporally varying principal axes and moments of

inertia based on these time series of C,, (),

S,,,(?) but to the estimation of their mean values

and periodic components on given time-period from
time-frequency analysis at seasonal and shorter
time scale. As a result, additionally to some
permanent constituents of discussed parameters as
mean values at mean epoch their periodic stable
changes were also detected.

Transformation of 2nd degree harmonic
coefficients based on the Lambeck’s approach
Simultaneous adjustment of appropriate sets of

the harmonic coefficients (C,,,,S,,) to the
adopted reference pole based on the standard
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approach [Lambeck, 1971; Reigber, 1981] was
considered in [Marchenko and Schwintzer, 2003]
by means of the equation:

gZny ‘87 (1)
where the matrix ny depends only on the

coordinates X,,y, of the mean pole at chosen

epoch including also order 2 terms; the vector
~ ~ o ~ o T
gz[czovczlaszl’czzoszz] > (2a)
(hereafter the symbol T denotes transposition) of
the fully normalized second degree coefficients
C,, and S,, , adopted in the Earth body-fixed

frame XYZ, shall be denoted by
- = 5 = = 7T
gz :[Azo,AzuszAzzaBzz] ) (2b)

if given in the coordinate system X'Y'Z', which
is close to XYZ but with a difference in the
orientation of the third axis with Z-Z' being equal to
the mean pole coordinates.

According to [Lambeck, 1971] the pole

coordinates x,,y, are connected in the planar
approximation with the so-called amplitude 6, and
azimuth A, as

xp=0,c084,, yp=—0,sind,, (3)

that leads to the expressions for 6,,4, in the
following form

-y
0,=yx,+y,", tand, = x L@

P
To avoid the planar approximation (3) and the

corresponding non-orthogonal matrix P, we will

consider the angles 6,, 4, and x,,y, at the unit

sphere for further determination 6,,4, from the

solution of associated spherical triangles. It is easy
to verify that after some simple algebra the
following relationships are valid

tan6, :x/tam2 x, +tan” Yy (5a)
—tan
tan A, = —Yy , (506)
tanx,
tanx, =tand, cos 4, , (6a)
tany, =—tan6,sin 4, (66)
COS X, COS
cosf, = P , (7)

p .2 .2
x/l—sm x,smn”y,
which give exact expressions for the polar

coordinates 6,, 4,. Eqs. (5 — 7) will get a special
importance for similar to Eq. (1) transformation,

cos® A,(cos@, —1)+1

sin A, cos Ap(cos@, —1)

where the non-orthogonal matrix ny will replace

by some orthogonal matrix Ry, which is

depended on the polar coordinates 6,, 4, adopted
now in spherical approximation.
Thus, we will consider a transformation of the

coefficients (C,, ,S,, ), defined in the coordinate
system (X,Y,Z), into the coordinate system

X'Y'Z', which is obtained by a certain finite
rotation of the XYZ — system around the origin.
Hence, the potential V, of the 2nd degree may be
written in the following forms

2
v, (P) = l G]MSa r Hr = XYZsystem  (8a)
r
2
v, (P) = 1 G]\Jsa r'"H'r' = X'Y'Z system (8b)
r
where

\/Eézz - \/gézo NN 2 \/Eézl

H= 155, 22 - “/Eézz - \/gézo \15s. 21 8
NE Gy MRS 21 2./5 C

\/Ezzz *“/gzzo “/Egzz \/Ezzl

H'= “/Egzz - “/E‘Zzz - \/gzzo \/Egzl o)
15 4y \15B 21 2.5 Ay

The matrices H and H' are defined in the
geocentric  coordinate systems (X,Y,Z) and

(X'Y'Z"), respectively, representing the

deviatoric part of inertia tensor; the vectors r' and

r'T contain the Cartesian coordinates of the current

point P in these systems. GM is the product of the
gravitational constant G and the planet’s mass
M ; a is the semimajor axis of the ellipsoid of
revolution; r is the distance from the origin of a
coordinate system to the current point P.

It should be pointed out that the rotation of the
system XYZ around the origin can be expressed via
the three matrixes of elementary rotations R,(¢;),

R,(a,), Rjy(ay). According to [Madelund,

1957] there are only two kinds of commutative
rotations. First one is an infinitesimal rotation.
Second one is a finite rotation about the fixed axis.
An infinitesimal rotation was considered in
[Marchenko and Schwintzer, 2003] for the

adjustment of C,, ,S,, -coefficients. To resolve a

2m >
possible ambiguity for various sequences of finite
rotations we will use this second type of a
commutative  rotation with the following
transformation of the coordinate  vector

—cosApsind,

Q =|sinA, cosA,(cosf, —1) cos’ 1,(1—cosf,)+cosf, —sini,siné, |, (10)

cosApsiné,
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r=Q-rr, (11)
is the rotation matrix depended on the polar
coordinates of the axis Z' in the system XYZ: 6, is
the polar distance of the axis Z' and 4, is the
longitude of this axis defined by the Eqs. (5-7).

It is easy to verify that the matrix Q can be
constructed in the following way

Q=R;(=4,)R,(6,)R;(4p), 12)
where
cos(a,) 0 —sin(er,)
R,(a,) = 0 1 0 , (13a)
sin(ar,) 0 cos(a,)
cos(ar;) sin(ery) O
R,(a;)=| —sin(a;) cos(a;) 0], (13b)
0 0 1

by means of the rotation about the angles
o, =16, and oy =+A, around the nodes line of
the XYZ and X'Y'Z' systems. Clearly, the inverse
transformation reads

r=Q'.r'= R;(=2p)R, (=0p)R; (Ap)r", (14)
due to the orthogonality of the rotation matrix Q.
By inserting (11)and (14) into (8) we get

2
VZ(P)zéGA{a r'T[QHQT]-r’, (15a)

1GM
n(p)=o el asy)

Eq. (15a) represents now the potential V, with
reference to the X'Y'Z' system and the harmonic
coefficients C,,,,S,, given in the XYZ system. Eq.
(15b) describes the potential ¥, in the XYZ system
with the harmonic coefficients A2m,B related to
the X'Y'Z' system.

It has to be noted that the tesseral coefficients

C,,(IERS) and S,,(IERS) related to the IERS

reference pole are based on the [Lambeck, 1971;
Reigber, 1981] formulae

C,,(IERS) = (\/gézo —Cp)x, +85,y,,(163)

S, (IERS) = _(\/7C20 +Cy )Yy~ 22x » (160)
used also in the approximate form

Cy (IERS) =[3Cyx,, (17a)

S, (IERS) = —[3Cy, 3, . (176)

Thus, Eq. (16) is recommended by IERS
Conventions 2003 [MacCarthy and Petit, 2004] for

the computation of C,,(/ERS), S,,(IERS) . But

Lambeck’s standard approach may be developed to
the expressions for all 2nd degree coefficients

(_jzo(lERS) = C_jzo +\/§(_:22()_C; —y;)/Z—
_520()_513 +)_’,2;)/2_\/§§223?p)_’p , (18)

T'eonesis

Cy, (IERS) = 7,2,)/\/5, (192)
Sy (IERS)=8,, —2Cyx,7,//3,  (196)
and we can verify Egs. (16 — 17) by considering the

characteristic equation of the matrices H' (or H)
and deriving the first invariant /| = Trace(H") for

new harmonic coefficients A4,, =C,, (IERS),
=3S,,,(IERS) through Egs. (16 — 19). Of
course, the equality I, =0 is satisfied by Egs. (9)

Cy, +Cy (x

trivially for arbitrary sets of C,,,S,, or

A,,,,B,,, - Nevertheless, after some easy algebra

we may get using Egs. (18 — 19):
1,UERS) = ¥2(J/5C, +/15C,, )+

+577 (\/g(_?zo ~J15C,, )— 2%,7,7158,,, (20)

as a rule non-zero value in Eq. (20), if the planar
approximation [Egs. (16 — 19)] was used.

For example, the application of Eq. (20) to the
conventional EGM96 gravity model leads to

I,(IERS) = —0.2-10™" instead of the trivial case
and we note again that /,(JERS)=0 can be

obtained only by the direct computation of the first
invariant based on Eq. (9). Hence, Eq. (20) allows
us to demonstrate a level of accuracy of the planar
approximation. Transformation in Eqgs. (15) via the
matrix Q represents here an exception, because all

C,, S,, or A,,,B,, are results of the

2m>
commutative orthogonal rotatlon that always gives

zero value of [, =Trace(H) = Trace(QH x
x Q") =Trace(H)=0.

Thus, in contrast to the Lambeck’s formulae in
planar approximation, the transformation (15) of 7,
from XYZ to X'’YZ’ system by applying the matrix
Q makes available to keep the first invariant 7; of
the deviatoric part H of inertia tensor. In this case
all elements of the matrix H, expressed through
C.

_ ' .
oms o, or all elements of the matrix H',

B.

commutative orthogonal rotation that leads to

expressed via A are connected by the

2m >~ 2m >

I, =0 in both cases. If the non-orthogonal matrix

ny is used instead of the matrix Q, we get the

non-zero first invariant [, = Trace(H') # 0 =
~107"

Basic relationships for the adjustment of 2"
degree harmonic coefficients to adopted reference
pole

Let us now consider the vector g, consisting

of the harmonic coefficients 4,,,B,, in the

X'Y'Z' system and taking into account Eq. (15b) we
find the following auxiliary matrix
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H, =R;(1,)H'R;(-4,). (21)
After simple manipulations in Eq. (21), we
come to the possibility of direct transformation of

the vector g, to some vector g, =

A A GA A oA . .
= [CZO’CZI’SZI’C229S22 of harmonic coeffici-
ents

g, =R, (4p)-g,,

1 0 0 0 0

0 cosd, sind, 0 0 ,(22)
R,(4;)=|0 -sind, cosi, 0

0 0 0 cos24, sin2i,

0 0 0 —sin24, cos24,

where R, (A4p) is the (5x5)-orthogonal matrix of

rotation about the angle Ap. Making our
manipulations in the same manner we can get some
new auxiliary matrix

H,, =R,(-6,)H,R,(6,). (23)
or the auxiliary vector
A0 A0 A0 A0 A6
g0 :[Czo ;G185 ,C S

of harmonic coefficients

8.0 =Ry(-0p)-8,. 24)
where
3co26, +1 \BsinZH,, \BcosZH,, +ﬁ 0
4 4 2 4 4
7\651;2‘9” c020, 0 7sm§9,, 0
—0,)=]
R,(6) 0 0 cod) 0 sing,
\/gcos’ZHP +ﬁ sir26, 0 cof6, +§ 0
4 4 2 4 4
0 0 —sing 0 cod)p
b
25)

is the (5x5)-orthogonal matrix of rotation about the
angle 6. Taking into consideration Eq. (14) finally
we come to the following transformation of the

vector g, given in the X'Y'Z’ system, to the vector

g=[Cy.C,,5,,,C,,,8,,|" adopted in the X¥Z
system

g=R,(-4,)-g,, (26a)

g=R,(-1,)R,(-6,)R ;(1,)-g, . (266)

Then taking into account some properties of

these  orthogonal  matrixes, the  inverse
transformation from the vector g (XYZ system) to

the vector g, (X'Y'Z' system) reads
g, =R, (=4p)R,(6,)R,(1)-g. (27)

Eq. (27) can be considered as the observational
equations for further adjustment of different sets of
the 2nd degree harmonic coefficients g, to the
IERS reference pole fixed by the conventional
mean pole coordinates. Additional conditions for
the harmonic coefficients 4, =B,; =0 can be

obtained from Eq. (27), if the axis Z’ will coincide
with the figure axis C.

28

The harmonic coefficients of the degree »=2 can
be derived from Eq. (26) and represented now in
the matrix form

" ) h3  Na Nis

—hy In I3 Ty Ins (28)
=R — ’
E=Ry 8z =|"Ns Iy I3 Ty I35 |82

Ng  —hy —hy Ty Tygs

hs —hs —hs Iys TIss

with the elements (29), (30). Then, according to Eq.
(27) the inverse transformation admits the

representation with the orthogonal matrix R;1
obtained by the transposition of the orthogonal
matrix R, in Eq. (28) with elements given by
Eqgs. (29 —30):

7, =Bcos’ 0, —1)/2,

1, =—J/3cosdpsiné, cosb,,
13 =—/3sin A, sin@, cosb,,
ny = (3sin® Gpu,)/2,

Hs = xﬁcoslp sin A, sin? Op,
Fyy = 08> Aptt, +cosOpsin® Ap,

7y; =Cc0SApsin @, (u, —cosbp),

y, =—CcosApsinBpu,, (29)
Fys = —sin A, sin @, (2cos® Apus +1),
Fyy =€08° Ap cosBp +sin’ Apu,,
Fy4 = sin A, sin @, (cos @, —2cos® Apusy),
735 = —Cc0S Ap sin Gpus,
ryy = —(4cos® Apsin® Apu; —cos® 0, —1)/2,
F4s = COS Ap sin Apusu,,
Fs =200s° Apsin® Apus +cos6,,
Where
u, =2cos* A, —1,
u, =2cos’ @, —1,
uy; =cosf, —1, (30)

— 02
u, =cosBpu, +2sin” Ap,

us =2c0s” Ap +2c0s@,sin’ A, —1.

gz = Rg/i 8- (31)

The last relationship together with Eqgs. (29 —
30) will be considered as basic equation for the
adjustment to the adopted IERS reference pole of
different 2nd degree harmonic coefficients g,

chosen as observations according to various gravity
field models.

In particular, making further manipulations, it is
easy to verify that the degree n zonal harmonic
coefficients in these two coordinate systems can be
formed as



nm

C,= Zn:(—l)’”(zm cosmAp +B,, sinml)- P, (cosp) ,(322)
m=0

4, =>.(C,,cosmA,+85,,sinml,)P, (cosb,)> (32b)

nm
m=0

where P, (cosf,) are A. Schmidt’s quasi-
(2=8,0) Gy

(n+m)!

normalized by the factor

associated Legendre functions of the first kind
(o is the Kronecker delta). If m=0 these

m0
functions coincide with P,, (cosé,). If m>0 we
have for the fully normalized Legendre functions
P, (cosup,)  the following  relationship:

P, (cosup,)=~2n+1P, (cosup).

Then we will split up the matrix (18) onto two
parts

RH(_QP) = Rfonst + R9 > (33)
1 3
- 0 0 £ 0
4 4
0 00 O O
RI,.=[ 0 00 0 0f (34)
3 3
£ 00 = 0
4 4
0O 00 O O
3co0s26, [3sin 20, 0 _ «/500526’13 0
4 4
_ 3sin 20, 0820 0 sin20, 0 ?
R? = 2 ’ 2
0 0 cost, 0 sind,
_ «/ECOSZQP _sin26, 0 c0s20, 0
4 2 4
0 0 —sind, 0 cosf,
35)
that leads to extracting in Eqs. (26 — 27) some
constant terms, longitude — only terms, and

longitude — polar distance terms. The constant
terms exist in the expressions for C,,, C,y, Sy,
coefficients only.

If the coefficients C,,, and S,, are given, Eq.
(28) to Eq. (30) can be applied to compute 4,,
and B,, related to the axis Z'. 4,; and B,, then
read

Ay =11,Chp + 1 Coy + 12385 —134,Cy — 135S, (360)
By = 13Chg + 153Gy + 13385 = 134Cy — 13555, 436b)
where the harmonic coefficients 4,, and 5,, must
be zero by definition, if the axis Z' and the figure
axis C are coinciding at #. By this, Egs. (36) give
a tool to test whether gravity field models are

referred to a common axis C .

Transformation of 2nd degree harmonic
coefficients from initial to principle axes
coordinate system
Assuming our initial information consisting of

T'eonesis

the vector g (Eq. (2a)) of 2nd-degree coefficients
and their variance-covariance matrix, we will use

for the transformation of (C,,,S,,) to the

principal axes system the exact closed solution of
the eigenvalue problem with accuracy estimation by
rigorous error propagation. Let us give briefly
according to [Marchenko and Schwintzer, 2003;
Marchenko, 2003] the corresponding closed
expressions for the transformation of (C,,,,S,,,)
defined in an adopted Earth’s-fixed coordinate
system X, Y, Z), to the vector
g= [ZZO’ 0, 0, A4,,, O]T of the two nonzero

harmonic coefficients A20 , A22 in the coordinate
system of the Earth’s principal axes of inertia

(Z ,E , C ). The potential V; of the second degree
may be written in the following way

2
v,(P)= g Gﬂfa ¥F'HY  (37a)
r
2
v,(P)= @ GMSa r'Hr (376)
r

where the deviatoric matrix H is defined by Eq.
(9a) and

]
Azz—% 0 0
~ - A
H= 0 —Azz—% 0 (38)
A.
0 0 20
V3

The matrix H is adopted in the system of prin-
cipal axes of inertia (A4 ,B,C ); the vector '
contains the Cartesian coordinates of the current
point P in this system; (4,,,4,,) are fully
normalized harmonic coefficients in the Earth’s
principal axes of inertia system (A , B ,C ).

The computation of the harmonic coefficients
A,y, Ay, rtequires a transformation of the matrix H
[Eq. (9a)] into the diagonal form H [Eq. (38)].
Solving the eigenvalue problem for the
corresponding deviatoric tensor (Eq. (9a)) in the
case of the given quadratic form r Hr we get

eigenvalues A; in the following non-linear form
[Marchenko and Schwintzer, 2003]:

sin((er”j

A, , 3 3
A, =2 2. —sing , 39
2 3 3 (39)

A, @ ”j

sin| = ——

(3 3

where the auxiliary angle @ is expressed by means
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of the invariants /, =—k, and /5:

~ s -1 3\/5 13 n _ ., 7
p=sm | ——- s T SPs

2 @ 2 2

(1, :Trace(H):O), (40)
with

2
ky=-1I,= Z(ézzm "’gzzm): 2220 +Zzzz , (41)
m=0
2C Cop(r = _ _
I, =det(H)="2+=2(C2 +S§2 -2C2 —-28% ) +
3 ( ) 3ﬁ ﬁ( 21 21 22 22)
+Cyp(C2 =52 )42, 85,55, = det(H) . (42)

Here the 2nd degree variance k, and I,

represent the invariant characteristics of the gravity
field, which are independent of linear
transformations of the coordinate system (X, Y, Z).
Thus, Egs. (39) to (42) provide the computation
of the harmonic coefficients (4,y,A4,,) in the

principle axes coordinate system via the simple

expressions
\/§A3 — Al _Az
2

Ay = Ay = .43
2
The matrix H can be used also in the following
way

B+C-24 0 0
0 A+C-2B 0 =
0 0 A+B-2C
A, 0 0
=JISH=A+15 0 A, 0 |, 44
0 0 A,

where A, B, and C are the Earth‘s principal
moments of inertia normalized by the factor

1/Ma*. As a result, if the eigenvalues A, are

found, we come after some ecasy algebra to the
following relationships for differences between
these normalized moments of inertia

215 154,

B—A:—g—@pC—Az—g—ﬁﬂﬁ@w@@

c_B:_WSR)Azz_ﬁAZO, (456)

represented by means of the harmonic coefficients
( Ay, A,,) in the principal axes system. Similarly,
these differences can be expressed also through

parameters of the Earth’s gravitational quadrupole
[Marchenko, 1979; Marchenko, 1998]:

M, _\/Ezzz _\/gf
3

Coa=iy=" 2 = Ay, (46)
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C-B 1l-cosy ..,7

= s’ —, (47a)
C—-A4 2 2
cosy = A+ 3y (476)
AZZ - ﬁAZO

where M, is the moment of the quadrupole and 7
is the angle between two quadrupole axes, located
in the plane of the axes A and C . The parameter
cosy of the Earth’s triaxiality as the cosine of an
angle has a bounded range of variation,
—1<cos¥ <1, and enables us via Eqs. (46, 47)

to obtain “limiting” relationships between the
principal moments of inertia, 2nd degree
harmonic coefficients in the principal axes

system 0 < A, <—4,,/2, and the polar f, and
equatorial f, flattenings 0< f, < f, [Marchen-

ko, 1979].
The estimation of the normalized principal
moments of inertia can be obtained now by

involving the dynamical ellipticity H ,:

5 Ay

C=- with
D
—A- 54
-4 B_ 54, 48)
2C C
Substitution of Eq. (48) into Eq. (45) gives
_ 154. 54
A=-/54y 154y _J5ay . (49%)
3 H,
_ A A
B=-/54, +m n IS4y . (496)
3 H,

Therefore, with H , known, the computation
of the polar moment of inertia (normalized by the
factor 1/Ma®), C=—/54,/H,, the trace
Tr(I):

Tr(l)= A+ B+ C=-/54,, -3 =31, ,(50)
Hy,
of the Earth’s tensor of inertia I considered in the
principal axes

4 0 0
I=|0 B 0, (51
0 0 C

and functions of the principal moments of inertia

(a, B, y - dynamical flattenings) used in the

integration of the Eulerian dynamical equations

[Bretagnon et al., 1998; Hartmann et al., 1999]:
g8 g C4 B4

A B C
are straightforward, if the fully normalized
harmonic coefficients, A4,,,4,, are computed

through Eqgs. (39 — 43). Then the orientation of the



principal axes in the XYZ frame is based on the

exact solution of eigenvector problem, using C
S,, only without the dynamical ellipticity H)
[Marchenko and Schwintzer, 2003].

2m >

Estimation of the Earth’s fundamental parameters
in the principal axes coordinate system
The harmonic coefficients of 2nd degree and their
temporal variations are selected from the following
four gravity field models derived in various centers
of analysis: three solutions resulting from satellite
tracking data and GRACE observations for
different time-periods, GGMO03S [Tapley et al.,
2007], ITG-GRACEO03S [Mayer-Giirr, 2007], and
EIGEN-GLO04S1 [Forste et al., 2008], and one
gravity field model of high resolution, EGM2008

T'eonesis

(Pavlis et al., 2008), based on surface gravimetry
only. The time variable coefficients in these models
are referred to different epochs with a spacing of 5
years in between. Among these models the
harmonic coefficients of ITG-GRACEO03S have
non-calibrated errors, which were multiplied on the
factor 10 according to the recommendation of
[Mayer-Gtirr, 2008]. To be consistent, the
following transformations were applied to values
given (after reductions) in Table 1: (a) prediction of

C,,®, S,,(t) for a common epoch 2000, (b)

reduction of C,, to a common permanent tide

system, and (c) scaling of these coefficients to
common values of GM=398600.4415 km®/s* and
a=6378136.49 m.

Table 1.
Geodetic parameters in the zero-frequency system (GM=398600.4415 km®/s*; a=6378136.49 m;
epoch: £=2000; x, = 0.054", y,= 0.357").

Model Chy 10° C,, -10° S5, -10° C,, -10° S5, -10°

EGM2008 -484.16928852 -0.00020662 0.00138441 243938343 -1.40027362
£0.000007 £0.000007 +0.000007 +0.000007 £0.000007

ITG-GRACEO3 -484.16928857 | -0.00026548 0.00147539 2.43938345 -1.40027368
+0.000006 £0.000006 +0.000006 +0.000006 £0.000006

GGMO3S -484.16929290 | -0.00020659 0.00138442 2.43934997 -1.40029646
£0.000047 £0.000008 +0.000008 +0.000008 £0.000008

EIGEN-GL04S1 -484.16944263 -0.00024172 0.00137671 2.43936442 -1.40028586
£0.000025 +0.000016 +0.000016 +0.000017 £0.000017

For the transformation of C,, from the tide-free

system (72{) to the zero-frequency tide system ézf)
the following relation was used :

CL =Cj -3.1108-10%.0.3/-/5. (53)

The IERS Conventions 2003 recommends the

simple linear model representing the mean pole’s
drift as

i } - {x” (t‘))} + {f” (l‘))}(t 1), (54)
Y, V,(t)] | 7,()
where ¥,(7,)=0.054", y,(#,)=0.357" are the
mean pole coordinate at the reference epoch
1,=2000; x,(1,)=0.00083 ["/yr],
¥,(t,)=0.00395 ["/yr] are the secular variations

in x,(,),7,(#) valid in the vicinity of #. The

linear model (54) can be applied only for the
transformation of the harmonic coefficients C,,

and S,, caused by a linear drift of the mean pole

[Eq. (17)], involving into the temporal variations
621 and §21:
Cp () =Cy (1) +(t=1,)-Cyy,  (550)
Sy (1) =8y (tg) +(t—15)- Sy,  (556)

Cy =3Cy %, (1,) = —0.337-10" yr ", (56a)
Sy =—3Cy 7, () =1.606-10"" yr ", (566)

because for other coefficients we get from Eq. (54)
C,, =C,, =S, ~0. Additionally to Egs. (55 —

56) we will take into account the non-tidal secular
drift in the zonal coefficient

Cao (1) = Cog(tg) + (1 —15) - Cyy, (57a)

Cy =1.1628-10"yr " (576)

In order to determine the Earth’s normalized
principal moments of inertia A,B,C we use Egs.
(48 — 49). Table 2 lists eight estimations of H ),
and the values of the underlying precession
constant p ,. The first five H, were discussed in
Dehant et al. (1999) as ‘the best values to be used’
in the rigid nutation theory in the year 1999.
Another three solutions for the dynamical flattening
correspond to the non-rigid Earth’s rotation theory
including the MHB2000 precession-nutation model
[Mathews et al., 2002] estimated from VLBI
observations during the time-period of 20 years,
adopted by the IAU, and recommended by the
IERS Conventions 2003 [McCarthy and Petit,

2004]. The value H,, by [Krasinsky, 2006] has a

large deviation from other determinations /,, and
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for this reason was omitted. For only three selected

H |, accuracy estimates are found in the literature.
From the initial values of the dynamical

ellipticity H,, given in Table 2 (also assumed to

refer to J2000) seven values differ in the adopted
according to IERS Conventions 2003 (IAU2000
Precession-Nutation model) precession constant

p,=50.2879225"/yr. To transform the
associated quantities from different p, to the

p, =50.2879225"/yr  the

common value

differential relationship of Souchay and Kinoshita
(1996) was used

dH ) = é;—]deA = 6494710 7dp,, (59)

P 4
where dp, is expressed in arcseconds per Julian
century and we get the values H, given as
‘transformed Hp to the MHB2000 precession
constant’ in Table 2. Egs. (48 — 50) reflect a direct
dependence of 4, B, C, and of the mean moment of
inertia /,, = Tr(I)/3

Table 2.
Determinations of the dynamical ellipticity Hp
Initial val fth Transformed Hj, to the
Referenc fecossion constant | Imial valueofthe | MHB2000 precession
clerence P "er]. 12000 dynamical ellipticity Hp constant
palhyrl; p, =50.2879225"/ yr
Williams, 1994 50.287700 0.0032737634 0.003273777851
?g;ghay and Kinoshita, 50.287700 0.0032737548 0.003273769251
Hartmann et al., 1999 50.288200 0.003273792489 0.003273774466
Bretagnon et al., 1998 50.287700 0.003273766818
+0.000000000023 0.003273781269
Iligogogbeek and Dehant, 50.287700 0.0032737674 0.003273781851
Mathews et. Al., 2002, 50.2879225 0.0032737949
(MHB2000) +0.000018 +0.0000000012 0.003273794900
. 50.287955 0.0032737804
Fukushima, 2003 +0.000003 +0.0000000003 0.003273778289
Capitaine et al., 2003 50.28796195 0.00327379448 0.003273791918
The parameter B— A4 = 2@222 /3 is also slightly 2C-A-B 7o 0
depending on the adopted permanent tide system 20 =Hp e
C. ; - 1 . .
because C,, enters into the computation of the (A+B-2C) =4 2( ({) + 85 6)’ (59)

coefficient A4,, through Eq. (43). The indirect effect
of the permanent tide may either be included in the
C,, -coefficient (zero-frequency tide system) or
excluded (tide-free system). It is assumed that the
H |, values are related to the zero-frequency tide
system [Bursa, 1995; Groten, 2000].

With given variance-covariance matrices of

Ay, Ay, , the Earth’s principal moments of inertia

A,B,C are determined from a weighted least-
squares adjustment of the astronomical and
geodetic parameters, all referred to a common
permanent tide system and one epoch 2000. As
‘observations’ generally are taken (a) the eight
values for H, (Table 2) and (b) the four sets of

A4,,, A,, in the principal axes system, computed

from the coefficients given in Table 1 by applying
Eq. (43). Using Eq. (45) and Eq. (48) we get the
over-determined system of non-linear observation
equations
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3
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with respect to the normalized principal moments
(4, B, ©). HY(=12,.k), A, and 43

(=1,2,..]) are treated as observations with ¢ being

(B—A)=A43) + &Y,

an error component. For k values of H (Di) and for /
sets of degree 2 harmonic coefficients Zz(oj ),

Ay) of 1 gravity field models we get according to

[Marchenko and Schwintzer, 2003] the system of
(k+21) observation equations,
1 1 Ay +B,

26, 26, 20¢ {AA] AHYY (&9 (60)

1 1 1 b :
— —= = || AB|=| ALY |+| Y
25 2.5 5 g 20
5o ) (w4

ZZZ
215 2415

where 4,,B,,C, are some approximate values of

A,B,C; AHY =HY -H},



A _ 4 _ 40 T — ) _ g0,
Ady' = Ay5’ — Ay, Ady’ = Ay’ — A4y 5 and
AA,AB,AC are the corrections provided by the

solution of the normal equation system following
from Eq. (60) through iterations.

A number of iterations depends on the initial
values A4y, By, C, in Eq. (60). Traditional
characteristic for such an adjustment of
astronomical and geodetic parameters is a high
close to +1 correlation between the solved
parameters, the three moments of inertia.
Nevertheless, the selection of the value /,=0.4 of
the mean moment of inertia of a homogencous

T'eonesis

planet as initial values for 4=By=Cy=0.4 leads also
to the convergence process but requires about 10
iterations. Finally in zero approximation were
adopted A;=By=0.3 and C;=0.35. Usually with the
last amounts of 4y, By, and Cj it is enough to make
4 — 5 iterations. For each of the 8 values Hp an
identical standard deviation oyy =4+0.799-10
derived from the scattering about the mean value
was assumed for the weighting in the subsequent
adjustment by applying weights two times greater
for the last three values Hp from Table 2,
corresponding to the non-rigid rotation theory, than
for other Hp.

Table 3.

Results of the simultaneous adjustment of the astronomical H ,, and geodetic 4,,, 4,, parameters (zero-frequency-
tide system; GM=398600.4415 km3/s2; a=6378136.49 m, epoch: 2000)

Parameter S1: 8 Hp+ 4 gravity field models S2: 1 Hp+ 4 gravity field models
Solved

A 0.329612131 + 0.00000073 0.329611131 + 0.00000019

B 0.329619393 + 0.00000073 0.329618393 + 0.00000019

C 0.330698397 + 0.00000073 0.330697398 + 0.00000019
Derived

1, 0.329976640 + 0.00000073 0.329975641 £ 0.00000019
H, 0.0032737850 £ 0.0000000072 0.0032737949 £ 0.0000000019
(C-4A)- 10° 1086.266646 + 0.000049 1086.266646 + 0.000049
(C-B)- 10° 1079.004263 £ 0.000049 1079.004263 + 0.000049
(B-A)- 10° 7.262383 £ 0.000043 7.262383 £ 0.000043
a=(C-B)/A4 (3273.5575 +0.072) -10° (3273.5674 +£0.019) -10°
B=(C—-A)/B (3295.5180 + 0.073) -10°° (3295.5280 + 0.019) -10°°
y=(B-A4)/C (21.9607 + 0.001) -10°° (21.9608 + 0.0001) -10°

Ay .10 —484.1692942 + 0.000009 —484.1692942 + 0.000012

4,, 108 2.8127085 £ 0.000013 2.8127085 £ 0.000017

lf 298.256508 + 0.000008 298.256508 + 0.000008

/1. 91434.77 £ 0.4 91434.77 £ 0.6

The variance-covariance matrices of (A,

Ay, )-sets are also taken into account. RMS
differences before and after iterations are equal to
0.05 and 0.6:10% respectively. Simultaneous
adjustment of the eight values of H g) and four
models of the 2™ degree harmonic coefficients,
taken from the Table 1 and transformed to the
principal moments systems ( A,,, 4,,) is given in
the first column of Table 3 as the solution S1. The
second solution S2 represents the adjustment of
only one H;, from the MHB2000 theory and four

sets of the same harmonic coefficients from Table
1.

Thus, two solutions, computed for the epoch
2000, are derived from two combinations of eight

(S1) and one (S2) values of Hg) plus the 2™

degree harmonics of the gravity field models
EGM2008, GGMO03S, ITG-GRACEO03S, and
EIGEN-GL04S1. Apart from the solved
parameters, the other fundamental parameters of the
Earth derived from the three moments of inertia are
given in Table 3 together with their accuracy
estimates from error propagation [Marchenko and
Schwintzer, 2003]. Better accuracy of the S2
solution reflects a level of agreement of geodetic
parameters since only one Hp was adopted in this
case. In general both sets of parameters from Table
3 have small differences on the level of accuracy
estimates. Nevertheless, the second solution S2
corresponds better to the frequently used IERS
Conventions 2003 and latest gravity field models
instead of the conventional EGM96.
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Time-independent constituent adjusted to the
IERS reference pole

Let us now will examine values of 221 and

B,, which must be zero by definition, if the axis Z'

and the figure axis C are coinciding at #. Egs. (36)
give a good opportunity to test whether the adopted
here gravity field models are referred to a common
axis C .

Table 4 lists the obtained differences about zero
for adopted x, =0.054" and y, =0.357" (taken

from IERS Conventions 2003 at epoch 2000) and
leads to the conclusion that the reference systems of
considered models do not exactly match. We get
differences up to one order greater than the standard
deviations given in Table 1 for C,,, S,,. However
these differences are smaller than the same values
in [Marchenko and Schwintzer, 2003] given for old
gravity field models.

To avoid the differences in Table 4 when fixing
a unique figure axis C we determine one set of the
coefficients C,, and S,, at epoch 2000 from a
least squares adjustment of the given six sets,
taking into account their variance-covariance
matrices and the two natural conditions for the left-
hand sides of Eqgs. (36): 4,,=B,,=0.

For [/ adopted gravity models we initially

S, parameters to the IERS reference pole fixed by the mean

Results of a simultaneous adjustment of the C,,,,

compute the harmonic coefficients A\, B/

(7=1,2,...]) treated further as observations.

Table 4.
Harmonic coefficient 4,, and B,, at %=2000
based on Egs. (36) and adopted ¥, =0.054" and
¥, =0.357" (from IERS Conventions 2003)

ITG- EIGEN-
GRACE03 CGGMO3S GLOAS1

Ayr10° 0.160 0429 | 0160 | 0191

Parameter | EGM2008

B,r10° 0632 0278 | 0632 |-0709

Applying Eq. (31) we get the observation
equations in the linear form

Cao 4 &
Can 4 &5
Ry, | Sy |=| BY |+| & |, (61)
Co| (4| |20
1 By 2

with the 5 unknown elements of the vector
oy -
g=[C20,C21,521,C22,Szz]; gi(]) are  error

components.

Table 5.

pole coordinates x, =0.054", y, =0.357" at epoch 2000 (zero-frequency-tide system;
GM=398600.4415 km’/s*; a=6378136.49 m)

Parameter 4 models: EGM2008, ITG-GRACEO03S, 2 models:
GGMO3S, EIGEN-GL04S1 EGM2008, ITG-GRACE03S
C,, - 10° -484.16929419 + 0.000020 -484.169288549 + 0.000023
c,, -10° -0.00022261 +3.1 -10™"! -0.00022261 4.0 -10™"
S, -10° 0.00144761 + 6.6:10™" 0.00144761 +7.7-10™""
C,, 10° 2.43937396 + 0.000016 2.439383442 + 0.000022
S,, -10° -1.40028032 + 0.000017 -1.40027366 + 0.000022

The orthogonal matrix R}, of this system depends

only through Egs. (3-7) on the mean pole
x,=0.054" and y, =0.357" at epoch 2000. The

vector g results from the solution of the normal
system following from Eq. (61) with the two
additional conditions, i.e. zero left hand sides in Egs.
(36).Taking for all (/=4) gravity models the

harmonic coefficients A and B\ in the

X'Y'Z' frame as observations, we get in this way
our basic set of adjusted C,, , S,, - coefficients

to IERS Reference pole (at the epoch 2000), given
in Table 5 in the first column. Second solution from
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Table 5 (/=2, second column) based on the two
EGM2008 and ITG-GRACEO03S gravity field
models was developed in the same manner only for
the comparison of adjusted to the IERS 2003 pole

sets of C,,, S
estimates. Note that initial set of harmonic
coefficients for the construction of the EGM2008
model was taken from the ITG-GRACEO03S

solution and small differences between C,, , S

in Table 1 (excluding C,, and S,, of EGM2008
adopted according to the IERS Conventions 2003)
reflect the influence of ‘the inclusion of the surface
gravity data into the least-squares adjustment’.

»m and corresponding accuracy

2m




Both sets of these coefficients from Table 5
restore exactly the adopted mean pole coordinates

X, = 0.054" and y,= 0.357", if inserted into the

following expressions based on Egs. (5 —7):

_ (3Cy +C3)Ci) + 55,5,

T'eonesis

y o= (\/3C5 = C) S8y + 55, (626)
! 3Co = Co =55
Applying the exact equations to the first set of

adjusted C,, , S, , the orientation of the principal

2m > M2m>

x - . (62a) A,B ,and C
P 2 2 2 axes ,b ,an are computed for each
3C —Cy =55 P
Table 6.
Spherical coordinates of the principal axes and their accuracy (epoch 2000)
Gravity field Lat. A Lon. A Lat. B Lon. B Lat. C Lon. C
model [degree] [degree] [degree] [degree] [degree] [degree]
EGM2008 -0.000038 345.0715 0.000088 75.0715 89.999904 278.3486
+0.0000005 +0.0001 +0.000005 +0.0001 +0.0000005 +0.2885
ITG- -0.000043 345.0715 0.000093 75.0715 89.999897 | 280.053074
GRACEO03S +0.0000004 +0.0001 +0.0000004 +0.0001 +0.0000004 +0.2328
GGMO3S -0.000038 345.0711 0.000088 75.0711 89.999904 278.3476
+0.0000005 +0.0001 +0.0000005 +0.0001 +0.0000005 +0.3180
-0.000040 345.0713 0.000087 75.0713 89.999904 279.8118
EIGEN-GL04S1 +0.000001 +0.0002 +0.000001 +0.0002 +0.000001 +0.6604
Adjusted C,,,, -0.000040 345.0714 0.000092 75.0714 89.999900 278.6014
S,, (4models) | *03:10° | £0.0002 | +0.1-10° | 00002 | *0.610" | 0.2:10°

individual gravity field model and for the adjusted
second-degree coefficients. The results are given in
spherical coordinates in Table 6 and for the axis C
also in polar coordinates (Table 7).

Table 7.
Polar coordinates of the principal axis C'
and their accuracy (epoch 2000)

Gravity field model *c 10001 Ye 10001
EGM2008 50117 3414418
ITG-GRACE03S 645+15 3638416
GGM03S 501419 3414419
EIGEN-GLO4SI 587440 3395440
Adusted C,, , S, 540 3570
(Table’5,4moddls) 40.1-10* 402:10*

It should be pointed out, that such ‘high’
accuracy of C,;, S,, in Table 5 are result from the
application of the mentioned conditions
A, =B,, =0 [Egs. (36)]. Accuracy of x, and y,
in Table 7 for the adjusted harmonic coefficients
C S

om> 2, and accuracy of the corresponding

latitudes of the principal axes 4, B , and C
(Table 6) again reflect the mentioned influence of
conditions A,; =B, =0 which were initially
introduced via adjustment to the adopted IERS

reference pole fixed at epoch 2000 by the mean
pole coordinates in Eq. (36).

After transformation of adjusted C,,, S,,
based on four models to the principal axes system

in view of accuracy estimation we get comparable
numerical values with the coefficients 4,,, 4,,

(S1) of Table 3. Hence, their combination with the
adjusted H, =0.0032737850£0.0000000072

gives similar values for other parameters of the
solution S1 in Table 3. Therefore, the first columns
of Table 3 and Table 5 can be considered as one
consistent set of the Earth’s fundamental parameters
at epoch 2000 given in the principal axes and the
Earth’s-fixed systems, respectively. In comparison
with previous results [Marchenko and Schwintzer,
2003] based on Eq. (1) we get generally slightly
better accordance between the adjustment of
astronomical and geodetic constants and the separate
adjustment of the 2nd harmonic coefficients only to
the IERS reference pole. But differences between

adjusted C,, , S,, based on Egs. (1 - 3) and Eqs.
(61) have values about 107" that corresponds to the
non-zero [, =Trace(H') in the case of the
traditional Lambeck’s approach [Egs. (1 — 3)].

Earth’s time-dependent parameters from GRACE

The time-dependent 2nd-degree harmonic
coefficients C,, (¢), S,, (f) were taken from the
International Center for Global Earth’s Models of
the TAG and extracted for the following GRACE
time series: CNES-GRGS, CSR Release 04, GFZ
Release 04, JPL Release 04.1, and ITG-
GRACEO03S time-dependent solution [Mayer-Girr,

2007]. These C,, , S,, with a step size from 10
days (CNES-GRGS) to one month (other solutions)
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were applied to the direct computation of
temporally evolving components of the Earth’s
inertia tensor and other associated parameters on
the time period from 2002.3 to 2008.5 years.

To be consistent the following transformations

were used to values C,, (¢), S,,,(¢) as in the case

2m

of time-independent constituent: (1) reduction of

C,, to a common zero-frequency tide system (Eq.
(53)), and (2) scaling of these coefficients to
common values of GM=398600.4415 km’/s’ and
a=6378136.49 m. Taking into account the adjusted
dynamical ellipticity H , =0.0032737850, all
parameters listed in Table 3, Table 6, and Table 7
were determined now as time-dependent for each
related moment of time according to these four
solutions on the total period from 2002.3 to 2008.5
years.

Because of a great number of various
parameters computed for each moment of time ¢ we
give only their evolution for the axes A, B, and
C of inertia. For other illustrations it is sufficient
to give only mean values of some time-dependent
quantities obtained by averaging their instant values
on the given time-period from 2002.3 to 2008.5
years. Fig. 1 and Fig.2 show temporal changes from
GRACE of longitudes of the axes 4, B ,and C .

Table 8 demonstrates mean longitudes of these
axes and mean values of the angle 7 (Eq. (47))
between two quadrupole axes, located in the plane
of the axes A and C of inertia. Table 9 lists
obtained average values of polar coordinates of the
figure axis C for the same period related to the
corresponding mean epochs about 2005.

A comparison of each initial C,, (), S,,, (¢)
taken from various centers of analysis leads to the
conclusion about systematic differences existing

180

Fig. 1. Longitude of the axes 4, B, C of
inertia from CNES-GRGS (—), CSR (—), GFZ
(—), JPL (—), and ITG-GRACEO03S (—) time
series for the period from 2002.3
to 2008.5 years
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Fig. 2. Longitude of the axis A of inertia from
CNES-GRGS (-), CSR (=), GFZ (—), JPL (—),
and ITG-GRACEO03S (—) time series for the
period from 2002.3 to 2008.5 years

Table 8.

Mean longitudes of the principal axes 4 , C and

mean values of the angle 7 between two
quadrupole axes (Eq. (47)) (period from 2002.3
to 2008.5 years)

Mean Longitude | Longitude| Angle ¥

values A c [Eq. 47]
CNES- 345.0714 | 281.0880 | 170.61988°
GRGS +0.00005 +0.16 +0.000008
CSR 345.0711 | 279.4887 | 170.61988°
Release 04 | +0.00002 +0.09 +0.000003
GFZ 345.0712 | 280.5852 | 170.61988°
Release 04 | £0.00001 +0.05 +0.000002
JPL 345.0709 | 278.7286 | 170.61985°
Release(04.1 | +0.00001 +0.02 +0.000001
ITG- 345.0715 | 280.0541 | 170.61986°
GRACEO3 | £0.00006 | +0.23 +0.000010

Table 9.

Mean coordinates of the figure axis C'
for the period from 2002.3 to 2008.5 years

Gravity field 1;’;1‘;1 X Ve
model [year] | [0-001"] | [0.001"]
ESI}zase 04 2005.48 igi 3i30656
T L I Iy
{ll)elfease 04.1 2005.44 -i(z); 3i40320
g}SACEm 2004.96 4_6:;:2 1613.68

in these series. Fig. 2, Table 8, and Table 9 reflect
these probable systematic trends in five deter-



minations of the time-dependent coefficients
C,, @), S,, (). Nevertheless some derived
parameters illustrated by Table 8 and Fig. 1 are

generally permanent taking into account accuracy
estimation of their static part. In contrast to the
evident temporal change of the figure axis C (Fig.
1) we get a remarkable stability in time of the

position of the inertia axes A and B derived from
GRACE (Fig. 1). Processing of the CHAMP
quarterly solutions [Reigber et al., 2003] for

C,, (@), S,, () (period from 2000.9 to 2003.4
years) produces the same conclusion about stability
of the axis A (and B ) with the mean longitude

A5 =345°.0706E . In addition, we get a similar

accordance with previous results [Marchenko, 2007]
based on such GRACE time series as CSR Release
01, GFZ Release 03, and JPL Release 02, which
allow the same general conclusion excluding small
differences in relation to values from Table 8. It has
to be pointed out, that the direction of the principal

axis A is considered in the precession-nutation
theory [Bretagnon et al., 1998; Roosbeek and
Dehant, 1998] as the parameter of the Earth’s

triaxiality or the longitude A5 of the major axis of

the equatorial ellipse. Thus, the adjusted to the
IERS reference pole at the epoch 2000 numerical

value A5 =345°.0714E+£0°.0002 (Table 6) in

terms of accuracy estimation agrees perfectly with
those from Table 8 and may be recommended for
the  Earths  rotation theory: A=
=14°.9286W £ 0°.0002 . But a most stable value
represents another parameter of the Earth’s
triaxiality, 7 =170.6199°, the angle between the

quadrupole axes.
If orientation of the Earth’s principal axes of

inertia, the angle ]7, and some other parameters
depend only on the C,, (¢), S,, (t) coefficients,

the determination of temporal changes of the
Earth’s tensor of inertia requires according to Egs.
(48 — 49) the dynamical ellipticity Hp. To compute
the principal moments of inertia 4, B, and C (Egs.

(48 — 49)) from adjusted H, =0.0032737850

(related to J2000) and GRACE C,, (1), S,,,(?) at
each given moment 7, which is different from the
standard epoch 2000, an additional correction oH to
H), should be applied. Special study of the C,,, (7),
S, (1) GRACE series led to a non-stable
determination of the secular variation of 4,, adopted

finally as A,, =0. Therefore, we assume the non-
tidal variation 6C in the moment of inertia C as a
function of 620 only [Yoder et al., 1983] as zonal
forces do not change the revolution shape of the body’
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[Melchior, 1978] and come to 04 =0B =-0C/2
from the condition for the trace Tr(I) = const

[Rochester and Smylie, 1974]. By this we get from
Eqgs. (48) and (49) the secular change of H, :

. A 2
H, ==2H (1-=H,); (63a)
D Azo D( 3 D)
: = Trace(I) C. 2
HD:_\/gAZO?z?zZHD(I—gHD)J(636)

if secular variations in different coordinate system
are equal A,, = C,,. To verify this equality we
will use Eq. (32b) written for the time-dependent
harmonic coefficients C,,,(¢), S,,(¢), and 4.
Differentiation of 4,, C, (¢), S, (f) in Eq.
(32b) with respect to time ¢ gives

jno = i(@m cosmA, +§nm sinm/ic)}N’nm(cosHC)’ (64)

m=0

the equation for the reduction of the given
C,,,»S5, to the unknown A,, through the polar

2m>
coordinates 6. and A of the figure axis C
which are considered in Eq. (64) as time-
independent and known at fixed epoch. With 620 ,

C,, S, taken from Egs. (56 - 57),
C,, =8,, =0, and the position 6, and A of the
axis C supposed to coincide with the mean pole
coordinates at epoch 2000 (IERS Conventions
2003), we get from Eq. (64) the estimation
Ay, =1.162795-10"" 1/yr=C,,  which is
slightly differed from ézo (Eq. (57)) on the smaller

value 6 =—-0.5-10""® than accuracy estimates of

620 and other temporal variations.

That is why we neglect this correction J and get
numerically H , =—7.8453-10""yr™" with C,,
taken from Eq. (57). This amounts to
OH = H (t—t,) for the reduction of H, from the

year #,=2000 to each moment ¢ related to C,,, (),
S, (1) of GRACE time series. (Note that

OH =-7.1-10""° for the reduction of H,, from the
year 2000 to 2009). Then, applying for parameters

connected with  C,; =1.1628-10"" yr™"  the
following linear dependence

OF()=F(t—t,), (65)
where F = di{y) and £, is chosen reference epoch,
we give in Table 10 wusing Eq. (65) the
corresponding estimates of different secular
changes according to (Marchenko, 2007).

It has to be pointed out that similar estimates of

secular changes H ,, =—7.86-10"" yr™" and
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Table 10.

Secular changes in some astronomical and geodetic parameters corresponding to the secular drift in the
coefficient 4,, = C,, (%=2000) [Marchenko, 2007]

Parameter SF(t)=F(t—t,) Ja
Ay = Cyy My = Ay (1—1y) A,y =1.1628-10™" [1/yr]
U | ) 101
H, 6HD=—ﬁAzor;;()(t—t0) H , =7.8453-10""[1/yr]
. /OoH p,=0.0121 ["/cy*]
P 5pA={HD/5 D}(z—m !
P 4
A A=0.8667-10"" [1/
Y 5A:£;20 (t—1y) il
. _ -11
5 aBzﬁAz‘) (1) B=0.8667-10" [1/yr]
3
i C =-1.7334-10"" [1/
c x:—mfﬂ)g-zo) [1/y1]
_ 7 (C— o =—7.8970-10""" [1/yr]
o :C;? So :_ﬁAzo(gAszA)(t_to)
C-4 A,,(C-A4+3B =-7.8968-10™"" [1/yr
B 3R> 0
B4 5, 54 (B~4) 7 =5.7552-10"° [1/yr]
e TE T e
A f=-3.9001-10"" [1/yr
f é)rz_?,\/ngzo(t_to) f [ Y]

Table 11.

Mean values of the principal moments of inertia 4, B, and C from the GRACE series of C,, (1), S,,,(¢),
adjusted H , =0.0032737850,and H,, =—7.8453- 107" yr™" (for the period from 2002.3 to 2008.5 years)

Mean values Mean epoch Principal Principal Principal
[year] moment 4 moment B moment C
CNES-GRGS 2005.46 0.32961228 0.32961954 0.33069855
CSR Release 04 2005.48 0.32961220 0.32961946 0.33069846
GFZ Release 04 2005.72 0.32961215 0.32961941 0.33069841
JPL Release 04.1 2005.44 0.32961220 0.32961947 0.33069847
ITG-GRACEO3 2004.96 0.32961217 0.32961943 0.33069843

H, =-7.4-10"yr"" were found under the same

condition to conserve changes in the trace Trace(I)
of inertial tensor by [Marchenko and Schwintzer,
2003] and [Bourda and Capitaine, 2004]

respectively. Small differences in all H , -values

are explained by the application of various sets of
chosen constants entering in Eq. (63).
Among parameters from Table 10 all secular

changes have the same order as variation A4,

excluding ¥ and p,. According to [Marchenko,

2007] the variation p, was called by the J,

precession rate with the estimated range (—11.6 to —
16.8)x107 ["/centuries’], which is depended on the

38

adopted J, =—/5C,, having the value ‘about
0.7% classical acceleration induced by ecliptic
motion and two orders of magnitude larger than
tidally induced accelerations’. Williams® J,

precession rate p,= —0.014 ["/cy’] was based on

the old determinations of the variation .J,.
Nevertheless his estimation given in 1994 agrees
well with those from Table 10. Because the derived
value p, =-0.012 ["/cy’] was based on Eq. (58)

and the secular variation C,; =1.1628-10""yr™

adopted for recent gravity field models this
parameter also may be recommended for the
Earth’s rotation theory.



Table 11 illustrates mean values of the principal
moments of inertia 4, B, and C derived from the

C,, (@), S,,(t) GRACE series, the adjusted
dynamical ellipticity H, =0.0032737850, and

the secular change H, = —7.8453-10711yr71 by

averaging the instant values A(f), B(¢), and C(f) on
given time-period. Taking into account the previous
results by [22] based on such GRACE time series as
CSR Release 01, GFZ Release 03, and JPL Release
02, the comparison of the GRACE only principal

T'eonesis

moments of inertia from Table 11 with the adjusted
quantities 4, B, and C given in Table 3 leads to a good
agreement in terms of accuracy estimation in all cases

of C,, (¢), S,, (t) GRACE series. Nevertheless,

only secular variations in the 2nd degree time-
dependent GRACE coefficients are not sufficient

for the description of C,, (), S,,(f)-changes.
For example, another representation for the series
of C,, (1), S,, (t) was introduced by adopting

Table 12.

Contribution of nearly annual time variations of time-dependent parameters given in percentages
to common periodic changes

Parameter CNES- CSR- GFZ- JPL- ITG-
GRGS r104 r104 r104.1 GRACEOQ03
Parameters in the principal axes system
A 54% 24% 33% 39% 45%
B 54% 25% 33% 39% 46%
C 54% 22% 33% 39% 48%
Zzo 54% 23% 33% 38% 50%
A, 41% 37% 44% 85% 32%
7 42% 40% 48% 85% 51%
Longitudes of the principal axes A and C
A 51% 59% 45% - 5%
/15 72% 24% 41% 60% 38%

the model of secular, annual, and semi-annual
periodic variations, based on the EIGEN-GL04S
static gravity field model and the GRACE 10-days
solutions [Lemoine et al., 2007]. Taking into
account that time-dependent parameters from Table
8 and Table 11 depend on C,, (1), S,, (?)-

coefficients, these are then analyzed after removing
a linear trend for the detection of basic periods
derived from a spectral analysis using the following
model

F(t)=Fy+F(t—t)+ Y 4, cos(zlf(t—to)—qﬁija(%)

for time-dependent function F(¢) with the
simultaneous determination of all components 4,

@., and P. of an oscillation, including periods P..

As a result, close to annual and semi-annual terms
among estimated periods were observed with
common contributions more than 50% in all
determinations. Table 12 reflects the contribution of
nearly annual variations only into common periodic
changes, which are different for various centers of
analysis. Thus, although exist some basic part of
discussed parameters given in Table 8 and Table 11
we detect their small deviations having annual,
semi-annual, and other terms. On the other hand,
mean values of these parameters agreed well with
their ‘static’ values from Table 3 and can be

considered as some permanent constituents given at
the corresponding mean epochs.

Conclusions
In order to avoid uncertainty in the deviatoric
part H of inertia tensor the transformation of the

2m> S2m was

second-degree harmonic coefficients C

developed especially for the case of a finite
commutative rotation via modified Lambeck’s
formulae applied to polar coordinates considered at
the sphere. The modified Lambeck’s approach
allows simple transformation of the 2nd-degree
harmonic coefficients and zonal coefficients of an
arbitrary degree (including their temporal changes)
via orthogonal matrixes. This transformation was
used in the two individual adjustments of the

geodetic only parameters C,, ,S, ~of four gravity
field models adopted in the Earth’s-fixed system to
the IERS reference pole given by the conventional

mean pole coordinates X, =0.054"  and

y,=0.357" at epoch 2000 (IERS Conventions

2003). The same sets of C

together with eight values of the dynamical
ellipticity Hp all reduced to the common MHB2000

precession constant p, =50.2879225"/yr were

s S, -coefficients

used in the two general adjustments given in the
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principal axes system with respect to the Earth’s
principal moments of inertia 4, B, and C. Results of
the first adjustment of geodetic and astronomical
‘constants’ represent one set (S1) of consistent
parameters given in Table 3, Table 5, and Table 6 at
one chosen epoch J2000 as time-independent
constituent of the orientation of principal axes in
the Earth’s-fixed system, the principal moments (4,
B, C) of inertia, Hp, coefficients in the Eulerian
dynamical equations, and other associated
parameters. The second solution contains the same
parameters based on the same four sets of

C,,»S,, and only one Hp from the MHB2000

model and corresponds better to the frequently used
IERS Conventions 2003 and latest gravity field
determinations.

Time-dependent components of the Earth’s
tensor of inertia were found from the time-dependent

C,, @, S,,(t) GRACE time series of the

following five solutions: CNES-GRGS; CSR Release
04; GFZ Release 04; JPL Release 04.1; ITG-
GRACEO3S. The condition S64=06B=-0C/2 to
conserve Trace(I) of the inertia tensor when

changing the dynamical ellipticity /, from the
reference epoch #=2000 to a current moment of
time ¢ was applied via variation H, for the
estimation of H,, J, precession constant rate,

and other parameters. These estimations are based
on the modified Lambeck’s approach and derived

closed expression for the reduction of the C,,,S,,
secular variations related to the standard Earth-

fixed system to the unknown A,, related to the
figure axis C through the polar coordinates 6,

and A, of the axis C , which were fixed for the

epoch 2000. Estimation of A, =

=1.162795-10""" 1/ yr secular variation leads to a

slightly different from C,, value. It has to be

pointed out that mean values of the principal
moments 4, B, and C of inertia given at the epoch

about 2005 based only on the C,, (¢), S,, (?)
GRACE series, H p > and H p agree well with the
adjusted quantities 4, B, and C at the epoch J2000.

A stability in time of the position of the axes A
and B of inertia and the angle J between two
quadrupole axes, located in the plane of the axes
A and C , was observed from the time-dependent
C,, (), S,,(t) GRACE time series. Since the
longitude A5 of the principal axis A is considered

in the nutation theory as the parameter of the
Earth’s  triaxiality, the  estimated  value

A7 =147.9286W £0°.0002 can be recommended
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for the Earth’s rotation theory together with the J,
precession rate p,=-0.012 ["/cy’] of the

precession constant p,. Nevertheless, periodic

components at seasonal and shorter time scale were
evaluated for the detection of basic periods derived
from a spectral analysis. As a result, nearly annual
and semi-annual terms among estimated periods
were observed with common contributions more
than 50% in all determinations. Hence, although
exist some permanent constituents of discussed
parameters (as mean values at mean epoch) their
small deviations have also stable terms with about
annual and semi-annual periods, which are different
for various centers of analysis.
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BU3HAYEHHSA TEH30PA IHEPHIi?EMJII 3A CYYACHUMH JTAHUMHA
ACTPOHOMII TA TEOJE3II

Mapuenko O.M., SIpema H.II.

[lepeTBOpeHHS TapMOHIYHUX KOCQIIIEHTIB IPYroro MOPSAKY éZm Ta §2m Oyno oOYmcICHO dYepe3

CKiHYCHHUI IMOBOPOT 3aMiCTh TpaAWIiiiHOrO HaOmmkeHHs JlamOeka, OCHOBaHOIO Ha HECKIHYEHHO MalluX
moBopoTax. MomudikoBana ¢opmyna JlamOeka BHKITIOYa€ HEBH3HAYCHICTh B JICBIaTOPHIH YaCTHHI TEH30pa
iHepIii 1 T03BOJIsE HANMPOCTIIIE MEPEeTBOPCHHS TaPMOHIYHMUX KOEQIIiEHTIB APYroro MOPSAKY Ta 30HAIBHIX
KOoeiIieHTiB TOBUIFHUX MOPAIKIB (BKIIOUAIOYHM YacoBi Bapiamii) depe3 opToroHansHi Matpumi. L{i ¢opmymn
pa3oM 3 CTPOTMM pO3B’SI3KOM 33/a4i Ha BJACHI YMCJIa 3aCTOCOBAaHI U BH3HAYCHHS CTATHYHOI CKIIAIOBUX

TeH3opa iHepuii 3emii Ta iX TOYHOCTI 3 BpiBHOBakeHHS TapMoHiuHuX Koediuientie C S,,, Apyroro

2m >
TIOPSIAKY B TOJIOBHUX OCSAX 1HEpLil Al YOTHPHOX Mojenel rpasitamiinoro nomst (EGM2008, GGMO3S, ITG-
GRACEO3S ta EIGEN-GLO04S1) Ta BOCEMH BEIWYUH AMHAMIYHOTO CTHCKY Hp, TPUBENECHUX [0 €IWHOL
npeneciitaoi korcTantt MHB2000 Ha emoxy J2000. [Jpyruit po3B’s30K CKIANAETHCSA 3 KITBKOX ITapaMeTpiB,

OCHOBaHMX Ha LUX 4oTHpboX Habopax C,,,S,, 1 Tinbkn ogHoMy 3HaueHHi Hp 3 MHB2000 mozeni. 3 mBox

m?>
PO3B’SI3KIB JUIsi CTATUYHOI KOMIIOHEHTH OTPHMAHO I’STh BPIBHOB2)XEHHX I'aPMOHIYHUX KOE(ILI€HTIB IPyroro
TIOPSIIKY, HANpPsIM TOJIOBHHUX OCel, ToJI0BHI MOMeHTH iHeplii (4, B, C) Ta iHII mapaMeTpu. 3MiHYy 3 4acoM IIHX

CTaTMYHMX NapaMETPiB OLIHEHO B TONOBHMX ocsx cucTemu 3 vacosux pamis C,, (7), S,,(f) cymytauka
GRACE, ski orpuMaHi 3 I’ATH pi3HUX LEHTPiB aHamizy Ha iHTepBanmi 3 2002 mo 2008p. OcobnmBa yBara
HA/IA€ThCS BU3HAYCHHIO YaCOBUX Bapiallifl roIOBHUX oceif Ta MOMEHTIB iHepii, o6umcnenux na ocuosi C,, (1),
S,,,(t) Ta ouiHui ix cepepHiX 3HAYEHb PazoM 3 MEPIOAMYHUMH CKIAJOBUMH Ha NaHuii nepion. CTaGitbHiCTh
H0JIOKEeHHs eKpaTopianbHoi oceil imepuii (A, B) Ta KyT Mik ABOMa KBaAPYINONBHUMH OCSAMM, SKHUi
po3mimennii B mwiommni oceif inepuii 4 ta C . Ockinbku goBrora A ronoBHoi oci inepuii A posrisgaeTbes
B Teopii HyTalii K mapaMeTp TPbOXOCHOCTI 3eMili, TO OTPUMaHe 3HA4E€HHS MO)KHA PEKOMEHAYBATH Ul Teopil
oOepranHs 3emli pa3oM 3 TUHAMIYHUM apaMEeTPOM JIPYroro MmopsaKy J , mperecii p .

KirouoBi ciaoBa: Tensop iHepiii 3emiti; rojioBHI OCi iHepIii, TOJOBHI MOMEHTH IHEpIll, HAOIMKEHHS
JlamOexa.

OINNPEJEJIEHUE TEH30PA NHEPLIUU 3EMJIN 110 COBPEMEHHbBIM JTAHHBIM
ACTPOHOMMMU N TEOJE3NHU

O.M. Mapuenko, H.II. SIpema

I[Ipeo6pasoBanue rapMoHudeckux koddduuuentos Broporo mopsaka C,, Tta §,,

B Cllydae KOHEYHOTO
KOMMYTaTHBHOTO TIOBOPOTa OBIJIO BBIYHMCICHO BMECTO TPATUIIMOHHOTO MpuoOmmkeHus Jlambeka, OCHOBaHHOIO
Ha OECKOHEYHO MajbIX NmoBopoTax. MoaudunupoBanHas ¢opmyna JlamOeka MCKIIOUaeT HEONPEEICHHOCTh B
JIEBUATOPHOW YacTW TEH30pa WHEPUMU M JejaeT BO3MOXKHBIM IIPOCTOE IpeoOpa3oBaHHE T'apMOHUYECKHX
K03(h(PUIIMEHTOB BTOPOTO MOPSIKA U 30HAIBHBIX KOA(PQUIIMEHTOB pa3HbIX cTerneHel (B TOM 4HCie BpeMEHHbIE

Bapnaupm) 4epe3 OpTOroHaJIbHbBIC MaTpHULbI. Chv' (l)OpMyJ'II)I BMECTC C TOYHBIM PpCUICHUEM 3aJjladyu Ha
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T'eonesis

COOCTBEHHEIE MaTpulbl-BEKTOPLI MPUMCHAIOT JIA ONMPEACIICHUA MOCTOAHHBIX KOMIIOHCHT TCH30pa HWHCPUUU

3eMiiH, a TaKXkKe HX TOYHOCTH C YPAaBHEHHsI rapMOHHYeCKUX Koddduuuentos Broporo mopsaka C,,.,S,, .

MONMYYEHHBIX M0 dYeThlpeM MopesiM rpaButammonHoro momst (EGM2008, GGMO3S, ITG-GRACEO3S Tta
EIGEN-GL04S1) u BocbMU 3HaY€HUSAM JUHAMAYECKOTO CKaTusl Hp, MPUBEACHHBIX K MPEIECCHITHON KOHCTAHTE
MHB2000 na smoxy J2000.

Bropoe pemieHue cocTOMT M3 TeX >K€ MapaMeTpoOB, MONYYEHHBIX C YpaBHUBaHMSA UYETHIpEX HaOOpOB

S, W OJJHOTO 3HAYECHWS JUHAMHYECKOro cxxartus Hp
no wmozenn MHB2000. [IBa pemeHuss [uid TNOCTOSHHOM COCTaBHOM COCTOAT H3 IISITH ypaBHEHHBIX

TapMOHNYECKUX KO3()(UINEHTOB BTOPOTO MOPS/KA, HAIPABICHUH TIaBHBIX OCEH, TTTABHBIX MOMEHTOB MHEPLIUH
(4, B, C) m npyrux mnapamerpoB. V3MeHEeHHEe BO BPEMEHHU IOCTOSHHBIX IIAPAMETPOB OLICHEHO B TNIABHBIX OCAX

rapMoHnYeckux Kod¢duuueHtos Broporo mopsiika C

2m>~2m

cuctemb! 1o yacosbiM psiiam C,, (), S,, (1) GRACE, nonydyeHHbIX B NSTH PasHbIX LEHTPax aHaiu3a Ha
unrepsaie ¢ 2002 no 2008r. OcobeHHOe BHUMaHUE MPUACIAETCS ONPEEICHUI0 BPEMEHHBIX BapHallli TJIaBHBIX
oceii 1 MOMeHTOB nHepiuy, Borauciennsx mo C,, (1), S,, (f) ¥ OlleHKe TOYHOCTH CPEIHUX 3HAYCHUI BMECTe
C MePHOMYECKMMH COCTaBHBIMU. Haii/ieHa cTabHIBbHOCT MOJIOKEHHUS SKBATOPHAIbHBIX oceii unepiu (A, B)
¥ YIOJl MEXKLy JIByMsl KBaJIPOTIOJIbHBIMH OCSIMH, PAcTIONOKeH bl B miockocTy oceii nnepimn 4 u C . Tak kak
IOJTOTa A4 TIIABHOM OCH MHEPLHH PAacCMATPHBACTCA B TCOPHH HYTALNH KaK [apaMeTp TPEXOCHOCTH 3eMJIH, TO
NOJly4eHHOE 3Ha4YeHHe MOXKHO PEKOMEHIOBATh [UI TEOPUHM BpAICHUS 3eMIIM BMeCTe C JIHMHAMHYSCKUM
TMapaMeTpoM BTOPOTO TOPS/IKA J, TIPETecCHH P, .

KnroueBble cjoBa: TeH30p HMHEpUMM 3eMJIM; TJIaBHBIC OCH HWHEPLMH; IJIaBHBIE MOMEHTHI WHEPLWH,
npubmmxenne Jlambexka.

Hauionanvnuii ynieepcumem “Jlvgiecoka nonimexnixka”, m. J/Ivsie Hagiiinura 25.05.2009

43



