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ESTIMATION OF THE EARTH’S TENSOR OF INERTIA FROM RECENT 
GEODETIC AND ASTRONOMICAL DATA 

The transformation of the second-degree harmonic coefficients mC2  and mS2  in the case of a finite 
commutative rotation was derived instead of the traditional Lambeck’s approach based on an infinitesimal 
rotation. The modified Lambeck’s formulae avoid uncertainty in the deviatoric part of inertia tensor and allow 
simple transformation of the 2nd-degree harmonic coefficients and zonal coefficients of an arbitrary degree 
(including their temporal changes) via orthogonal matrixes. These formulae together with exact solution of the 
eigenvalue-eigenvector problem are applied to determine static components and accuracy of the Earth’s tensor of 
inertia from the adjustment in the principal axes system of mC2 , mS2  from recent four gravity field models 
(EGM2008, GGM03S, ITG-GRACE03S, and EIGEN-GL04S1) and eight values HD of the dynamical ellipticity 
all reduced to the common MHB2000 precession constant at the epoch J2000. The second solution contains the 
same parameters based on these four sets of mm SC 22 ,  and only one HD from the MHB2000 model and 
corresponds better to the IERS Conventions 2003 and latest gravity field determinations. Two solutions for static 
components consist of the adjusted five 2nd-degree harmonic coefficients related to the IERS reference pole 
given by the conventional mean pole coordinates at the epoch 2000 (IERS Conventions 2003), the orientation of 
principal axes in this system, the principal moments (A, B, C) of inertia, and other associated parameters. The 
evolution with time of the above-mentioned static parameters was estimated in the principal axes system from 
the GRACE time series of )(2 tC m , )(2 tS m  derived in five different centers of analysis over the time interval 
from 2002 to 2008. Special attention is given to the direct computation of temporally varying principal axes and 
moments of inertia based on )(2 tC m , )(2 tS m  and the estimation of their mean values together with periodic 
constituents on given time-period. Stability of the positions of the equatorial inertia axes ( A , B ) and the angle 
between two quadrupole axes located in the plane of the axes A  and C  of inertia is found. The estimated 
longitude A  of the principal axis A  as the parameter of the Earth’s triaxiality in the precession-nutation theory 
and 2J  precession rate Ap  of the precession constant are recommended for the Earth’s rotation theory. 
Additionally to some permanent constituents periodic components at seasonal and shorter time scale were 
evaluated.

Key words: the earth’s inertia tensor; principal axes and moments of inertia; Lambeck’s approach. 

Introduction
Estimation of the Earth’s fundamental 

parameters including elements of the tensor of 
inertia is the traditional area of interest of the IAG 
[Bursa, 1995; Groten, 2000; Groten 2004]. Suitable 
solutions for the Earth’s principal moments of 
inertia (A, B, C), principal axes ( A , B , C ), and 
other fundamental constants were obtained in 
[Marchenko, Schwintzer, 2003; Marchenko, 2007] 
from the adjustment (in the principal axes system) 
at one chosen epoch of several sets of the second 
degree harmonic coefficients mC2 , mS2  of the 
Earth’s gravity models all referred to different 
epochs with a spacing of 18 years in between and 
values of the dynamical ellipticity DH . Derived 
from GRACE observations recent gravity field 
models give more accurate solutions for the time-
dependent coefficients )(2 tC m , )(2 tS m . In 
addition, latest determinations of the dynamical 
ellipticity DH  are based on the non-rigid Earth’s 
rotation theory including the MHB2000 precession-
nutation model [Mathews et al., 2002] estimated 
from VLBI observations during the time-period of 
20 years, adopted by the IAU, and recommended by 

the IERS Conventions 2003 [McCarthy and Petit, 
2004]. After the launch of CHAMP and GRACE 
satellites the combination of new gravity field 
models, Earth’s orientation series, and geophysical 
fluids data have led to a number of important 
contributions with the treatment of )(tHH DD

and )(2 tC m , )(2 tS m  as the sum of constant and 
variable (secular or/and periodic) parts caused by 
mass redistribution within the Earth’s system 
[Marchenko and Schwintzer, 2001; Bourda and 
Capitaine, 2004; Chen et al., 2005; Fernández, 
2007; Gross et al., 2007]. The consistency of such 
investigations and the modeling of the time 
evolution require additionally to the consistent set 
of fundamental constants more precise theories to 
determine the dynamic figure of the Earth, the 
orientation of the principal axes in the Earth’s-fixed 
system and its evolution with time from geodetic 

)(2 tC m , )(2 tS m  and astronomical )(tH D
parameters.

This study aims to derive more accurate 
expressions for the transformation of the second-
degree coefficients and zonal coefficients of an 
arbitrary degree through a finite commutative 
rotation instead of the most widely used 
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approximate Lambeck’s approach based on an 
infinitesimal rotation [Lambeck, 1971; Reigber, 
1981]. The modified Lambeck’s formulae for polar 
coordinates considered at the sphere avoid 
uncertainty in the deviatoric part of inertia tensor in 
comparison with the usual planar approximation 
and allow simple reduction of the 2nd-degree 
harmonic coefficients and zonal coefficients of an 
arbitrary degree together with their temporal 
changes to the figure axis C . On the other hand, 
various solutions of the coefficients mC2 , mS2

transformed in the ( A , B , C ) system and DH -
estimates (expressed through (A, B, C)-values) 
represent initial information for the determination 
of the principal moments (A, B, C) via simultaneous 
adjustment by iterations providing in this way their 
agreement with different sets of geodetic and 
astronomical constants [Marchenko and Schwin-
tzer, 2003]. The last approach is analyzed 
additionally to select initial values for iterations, 
which can be slightly differed from the mean 
moment of inertia of a homogeneous planet.

In contrast to the previous papers [Marchenko 
and Schwintzer, 2003; Marchenko, 2007] the fully 
normalized coefficients mC2 , mS2  are selected 
from the recent four gravity field models 
EGM2008, GGM03S, ITG-GRACE03S, and 
EIGEN-GL04S1 constructed in different centers of 
analysis, based on different data sets, and referred 
to various epochs with a spacing of 5 years in 
between. The secular change in the 2nd-degree 
zonal coefficient 1-11

20 yr101.1628C  is 
adopted for these gravity fields together with the 
simple linear model for 21C , 21S  represented by 
the mean pole’s drift with the reference mean pole 
coordinates 405.0)( 0txp , 735.0)( 0ty p  at 
the epoch t0=2000 according to the IERS 
Conventions 2003 [McCarthy and Petit, 2004]. It 
has to be pointed out that mC2 , mS2  of the 
conventional solution EGM96 given at epoch 1986 
(IERS Conventions 2003) were replaced by mC2 ,

mS2  of the new gravity field model EGM2008 
based on surface gravity data only [Pavlis et al., 
2008] and referred to epoch J2000 with 21C , 21S
selected in agreement with this epoch [Pavlis, 
2008]. The Earth’s fundamental parameters were 
estimated from the weighted least squares 
adjustment of the new set of mC2 , mS2  of four 
gravity field models and eight values HD of the 
dynamical ellipticity [Williams, 1994; Souchay and 
Kinoshita, 1996; Hartmann et al., 1997; Bretagnon 
et al., 1998; Roosbeek and Dehant, 1998; Mathews 
et al., 2002; Fukushima, 2003; Capitaine et al., 
2003] all reduced to the common value 

yr/550.287922Ap  of the MHB2000 
precession constant at epoch J2000.

Because the modified Lambeck’s approach 
allows simple transformation of mm SC 22 ,  via 
orthogonal matrixes based on a finite commutative 
rotation the corresponding formulae were applied in 
the adjustment of the geodetic-only parameters 

mm SC 22 ,  of the four gravity field models to the 
IERS reference pole. Hence, the solution for static 
components consists of the adjusted mm SC 22 , -
coefficients related to the reference IERS pole at 
the epoch 2000, the orientation of principal axes in 
this system, the principal moments of inertia (A, B,
C) of the Earth, HD, the coefficients in the Eulerian 
dynamical equations, and other associated values. 
Another solution contains the same parameters 
based on these four sets of mm SC 22 ,  and only one 
HD from the MHB2000 theory recommended by the 
IERS Conventions 2003. In this way the second 
solution for the time-independent principal 
moments of inertia and other associated parameters 
as a by-product of this adjustment at epoch 
corresponds better to the frequently used IERS 
Conventions 2003 and latest gravity field 
determinations instead of the old conventional 
model EGM96. 

Secular changes of dynamical ellipticity DH
and precession constant were estimated via 20C
temporal variation preliminary transformed via 
modified Lambeck’s formulae to the figure axis 
C . These estimates were compared with other 
results. Temporally varying components of the 
tensor of inertia were found from adjusted value of 
the dynamical ellipticity HD, the secular variation 

DH , and the GRACE time series of )(2 tC m ,
)(2 tS m  derived in five different centers of analysis 

on the period from 2002 to 2008: 1) CNES-GRGS; 
2) CSR Release 04; 3) GFZ Release 04; 4) JPL 
Release 04.1; 5) ITG-GRACE03S. Special attention 
is given not only to the direct computation of 
temporally varying principal axes and moments of 
inertia based on these time series of )(2 tC m ,

)(2 tS m  but to the estimation of their mean values 
and periodic components on given time-period from 
time-frequency analysis at seasonal and shorter 
time scale. As a result, additionally to some 
permanent constituents of discussed parameters as 
mean values at mean epoch their periodic stable 
changes were also detected.

Transformation of 2nd degree harmonic 
coefficients based on the Lambeck’s approach 
Simultaneous adjustment of appropriate sets of 

the harmonic coefficients ( mm SC 22 , ) to the 
adopted reference pole based on the standard 
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approach [Lambeck, 1971; Reigber, 1981] was 
considered in [Marchenko and Schwintzer, 2003]
by means of the equation: 

Zxy gPg ,                        (1) 

where the matrix xyP  depends only on the 

coordinates pp yx ,  of the mean pole at chosen 
epoch including also order 2 terms; the vector 

T
2222212120 ,,,, SCSCCg ,          (2a)

(hereafter the symbol T denotes transposition) of 
the fully normalized second degree coefficients 

mC2  and mS2 , adopted in the Earth body-fixed 
frame XYZ, shall be denoted by  

T
2222212120 ,,,, BABAAZg ,        (2b) 

if given in the coordinate system ZYX , which 
is close to XYZ but with a difference in the 
orientation of the third axis with Z-Z' being equal to 
the mean pole coordinates.

According to [Lambeck, 1971] the pole 
coordinates pp yx ,  are connected in the planar 

approximation with the so-called amplitude p and 
azimuth p as

ppPx cos , ppPy sin ,       (3) 

that leads to the expressions for pp ,  in the 
following form

22
ppp yx ,

p

p
p x

y
tan .      (4) 

To avoid the planar approximation (3) and the 
corresponding non-orthogonal matrix xyP  we will 

consider the angles p, p and pp yx ,  at the unit 

sphere for further determination pp ,  from the 
solution of associated spherical triangles. It is easy 
to verify that after some simple algebra the 
following relationships are valid

ppp yx 22 tantantan ,            (5 )

p

p
p x

y
tan
tan

tan ,                              (5 )

ppPx costantan ,                       (6 )

ppPy sintantan ,                     (6 )

pp

pp
p

yx

yx
22 sinsin1

coscos
cos ,           (7) 

which give exact expressions for the polar 
coordinates p, p. Eqs. (5 – 7) will get a special 
importance for similar to Eq. (1) transformation, 

where the non-orthogonal matrix xyP  will replace 

by some orthogonal matrix R , which is 
depended on the polar coordinates p, p adopted 
now in spherical approximation. 

Thus, we will consider a transformation of the 
coefficients ( mm SC 22 , ), defined in the coordinate 
system ( ZYX ,, ), into the coordinate system 

ZYX , which is obtained by a certain finite
rotation of the XYZ – system around the origin. 
Hence, the potential V2 of the 2nd degree may be 
written in the following forms 

HrrT
5

2

2 2
1

r
GMaPV XYZ system       (8a) 

rHr T
5

2

2 2
1

r
GMaPV X Y Z  system (8b) 

where

202121

21202222

21222022

521515
1551515
1515515

CSC
SCCS
CSCC

H ,(9a) 

202121

21202222

21222022

521515
1551515
1515515

ABA
BAAB
ABAA

H .(9b) 

The matrices H and H  are defined in the 
geocentric coordinate systems ( ZYX ,, ) and 
( ZYX ), respectively, representing the 
deviatoric part of inertia tensor; the vectors Tr  and 

Tr  contain the Cartesian coordinates of the current 
point P in these systems. GM  is the product of the 
gravitational constant G  and the planet’s mass 
M ; a  is the semimajor axis of the ellipsoid of 
revolution; r  is the distance from the origin of a 
coordinate system to the current point P.

It should be pointed out that the rotation of the 
system XYZ around the origin can be expressed via 
the three matrixes of elementary rotations )( 11R ,

)( 22R , )( 33R . According to [Madelund, 
1957] there are only two kinds of commutative
rotations. First one is an infinitesimal rotation. 
Second one is a finite rotation about the fixed axis. 
An infinitesimal rotation was considered in 
[Marchenko and Schwintzer, 2003] for the 
adjustment of mm SC 22 , -coefficients. To resolve a 
possible ambiguity for various sequences of finite 
rotations we will use this second type of a 
commutative rotation with the following 
transformation of the coordinate vector

PPPPP

PPPPPPPP

PPPPPPP

cossinsinsincos
sinsincos)cos1(cos)1(coscossin
sincos)1(coscossin1)1(coscos

2

2

Q ,                (10)
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rQr ,                            (11) 
is the rotation matrix depended on the polar 
coordinates of the axis Z  in the system XYZ: p is 
the polar distance of the axis Z  and p is the 
longitude of this axis defined by the Eqs. (5–7). 

It is easy to verify that the matrix Q can be 
constructed in the following way 

)()()( 323 PPP RRRQ ,        (12) 
where

)cos(0)sin(
010

)sin(0)cos(
)(

22

22

22R ,  (13a) 

100
0)cos()sin(
0)sin()cos(

)( 33

33

33R ,  (13b) 

by means of the rotation about the angles 
P2  and P3  around the nodes line of 

the XYZ and X Y Z  systems. Clearly, the inverse 
transformation reads 

rRRRrQr )()()( 323
T

PPP , (14) 
due to the orthogonality of the rotation matrix Q.
By inserting (11)and (14) into (8) we get 

rQHQr TT
5

2

2 2
1

r
GMaPV ,       (15a) 

rQHQr TT
5

2

2 2
1

r
GMaPV          (15b) 

Eq. (15a) represents now the potential V2 with 
reference to the X Y Z  system and the harmonic 
coefficients mm SC 22 ,  given in the XYZ system. Eq. 
(15b) describes the potential V2 in the XYZ system 
with the harmonic coefficients mm BA 22 ,  related to 
the X Y Z  system. 

It has to be noted that the tesseral coefficients 
)(21 IERSC  and )(21 IERSS  related to the IERS 

reference pole are based on the [Lambeck, 1971; 
Reigber, 1981] formulae

pp ySxCCIERSC 22222021 )3()( , (16 )

pp xSyCCIERSS 22222021 )3()( , (16 )
used also in the approximate form 

pxCIERSC 2021 3)( ,              (17 )

pyCIERSS 2021 3)( .            (17 )
Thus, Eq. (16) is recommended by IERS 

Conventions 2003 [MacCarthy and Petit, 2004] for 
the computation of )(21 IERSC , )(21 IERSS . But 
Lambeck’s standard approach may be developed to 
the expressions for all 2nd degree coefficients 

2/)(3)( 22
222020 pp yxCCIERSC

pppp yxSyxC 22
22

20 32/)( ,  (18) 

3/)()( 22
202222 pp yxCCIERSC ,   (19 )

3/2)( 202222 pp yxCSIERSS ,         (19 )
and we can verify Eqs. (16 – 17) by considering the 
characteristic equation of the matrices H  (or H)
and deriving the first invariant )(Trace1 HI  for 
new harmonic coefficients )(22 IERSCA mm ,

)(22 IERSSB mm  through Eqs. (16 – 19). Of 
course, the equality 01I  is satisfied by Eqs. (9) 
trivially for arbitrary sets of mm SC 22 ,  or 

mm BA 22 , . Nevertheless, after some easy algebra 
we may get using Eqs. (18 – 19):

2220
2

1 155)( CCxIERSI p

222220
2 152155 SyxCCy ppp , (20) 

as a rule non-zero value in Eq. (20), if the planar 
approximation [Eqs. (16 – 19)] was used. 

For example, the application of Eq. (20) to the 
conventional EGM96 gravity model leads to 

14
1 102.0)(IERSI  instead of the trivial case 

and we note again that 0)(1 IERSI  can be 
obtained only by the direct computation of the first 
invariant based on Eq. (9). Hence, Eq. (20) allows 
us to demonstrate a level of accuracy of the planar 
approximation. Transformation in Eqs. (15) via the 
matrix Q represents here an exception, because all 

mC2 , mS2  or mm BA 22 , are results of the 
commutative orthogonal rotation that always gives 
zero value of QHH Trace()(Trace1I

0)(Trace) HQT .
Thus, in contrast to the Lambeck’s formulae in 

planar approximation, the transformation (15) of V2

from XYZ to X Y Z  system by applying the matrix 
Q makes available to keep the first invariant I1 of 
the deviatoric part H of inertia tensor. In this case 
all elements of the matrix H, expressed through 

mC2 , mS2 , or all elements of the matrix H ,

expressed via mm BA 22 , , are connected by the 
commutative orthogonal rotation that leads to 

01I  in both cases. If the non-orthogonal matrix 

xyP  is used instead of the matrix Q, we get the 

non-zero first invariant 0)(Trace1 HI
1510 .

Basic relationships for the adjustment of 2nd

degree harmonic coefficients to adopted reference 
pole

Let us now consider the vector Zg  consisting 
of the harmonic coefficients mm BA 22 ,  in the 
X Y Z  system and taking into account Eq. (15b) we 
find the following auxiliary matrix 
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)()( 33 PP RHRH .             (21) 
After simple manipulations in Eq. (21), we 

come to the possibility of direct transformation of 
the vector Zg  to some vector g

T
2222212120 ,,,, SCSCC  of harmonic coeffici-

ents
ZP gRg )( ,

PP

PP

PP

PP

P

2cos2sin000
2sin2cos000
00cossin0
00sincos0
00001

)(R
,(22)

where )( PR  is the (5x5)-orthogonal matrix of 
rotation about the angle P. Making our 
manipulations in the same manner we can get some 
new auxiliary matrix

)()( 22 PP RHRH ,           (23) 
or the auxiliary vector

T
2222212120 ,,,, SCSCCg

of harmonic coefficients 
gRg )( P ,                 (24) 

where

PP

PPP

PP

P
P

P

PPP

P

cos0sin00

0
4
3

4
2cos0

2
2sin

4
3

4
2cos3

sin0cos00

0
2
2sin02cos

2
2sin3

0
4
3

4
2cos30

2
2sin3

4
1

4
2cos3

)(R

,
(25)

is the (5x5)-orthogonal matrix of rotation about the 
angle P. Taking into consideration Eq. (14) finally 
we come to the following transformation of the 
vector Zg  given in the X Y Z  system, to the vector 

T
2222212120 ,,,, SCSCCg  adopted in the XYZ

system
gRg )( P              (26 )

ZPPP gRRRg )()()( .  (26 )
Then taking into account some properties of 

these orthogonal matrixes, the inverse 
transformation from the vector g  (XYZ system) to 
the vector Zg  (X Y Z  system) reads 

gRRRg )()()( PPPZ .      (27) 
Eq. (27) can be considered as the observational
equations for further adjustment of different sets of 
the 2nd degree harmonic coefficients Zg  to the 
IERS reference pole fixed by the conventional 
mean pole coordinates. Additional conditions for 
the harmonic coefficients 02121 BA  can be 
obtained from Eq. (27), if the axis Z  will coincide 
with the figure axis C.

The harmonic coefficients of the degree n=2 can 
be derived from Eq. (26) and represented now in 
the matrix form

ZZ

rrrrr
rrrrr
rrrrr
rrrrr
rrrrr

ggRg

5545352515

4544342414

3534332313

2524232212

1514131211

, (28) 

with the elements (29), (30). Then, according to Eq. 
(27) the inverse transformation admits the 
representation with the orthogonal matrix TR
obtained by the transposition of the orthogonal 
matrix R  in Eq. (28) with elements given by 
Eqs. (29 – 30): 

,cossincos2

,sincos

,2/)1cossincos4(

,sincos
),cos2(cossinsin

,sincoscos

),1cos2(sinsin

,sincos
),cos(sincos

,sincoscos

,sinsincos3

,2/)sin3(

,cossinsin3

,cossincos3

,2/)1cos3(

2
3

22
55

1
2
345

22
3

22
44

535

3
2

34

2
22

33

3
2

25

424

223

2
2

2
22

2
15

1
2

14

13

12

2
11

PPP

PP

PPP

PP

PPPP

PPP

PPP

PP

PPP

PPP

PPP

P

PPP

PPP

P

ur

uur

ur

ur
ur

ur

ur

ur
ur

ur

r

ur

r

r

r

(29)

Where

.1sincos2cos2

,sin2cos

,1cos
,1cos2

,1cos2

22
5

2
14

3

2
2

2
1

PPP

PP

P

P

P

u

uu

u
u

u

 (30) 

gRg T
Z .                         (31) 

The last relationship together with Eqs. (29 
30) will be considered as basic equation for the 
adjustment to the adopted IERS reference pole of 
different 2nd degree harmonic coefficients Zg
chosen as observations according to various gravity 
field models. 

In particular, making further manipulations, it is 
easy to verify that the degree n zonal harmonic 
coefficients in these two coordinate systems can be 
formed as



29

n

m
PnmPnmPnm

m
n PmBmAC

0
0 )(cos~sincos)1( , (32a) 

n

m
pnmpnmpnmn PmSmCA

0
0 )(cos~)sincos( , (32b) 

where )(cos~
PnmP  are A. Schmidt’s quasi-

normalized by the factor )!(
)!(

0 )2( mn
mn

m

associated Legendre functions of the first kind 
( 0m  is the Kronecker delta). If m=0 these 
functions coincide with )(cos PnmP . If m>0 we 
have for the fully normalized Legendre functions 

)(cos PnmP  the following relationship: 

)(cos~12)(cos PnmPnm PnP .
Then we will split up the matrix (18) onto two 

parts

RRR constP )( ,               (33) 

00000

0
4
300

4
3

00000
00000

0
4
300

4
1

constR ,               (34) 

PP

PPP

PP

P
P

P

PPP

cos0sin00

0
4
2cos0

2
2sin

4
2cos3

sin0cos00

0
2
2sin02cos

2
2sin3

0
4

2cos30
2

2sin3
4
2cos3

R

,

(35)
that leads to extracting in Eqs. (26  27) some 
constant terms, longitude – only terms, and 
longitude – polar distance terms. The constant 
terms exist in the expressions for 20C , 22C , 22S
coefficients only.

If the coefficients mC2  and mS2  are given, Eq. 
(28) to Eq. (30) can be applied to compute mA2

and mB2  related to the axis Z . 21A  and 21B  then 
read

2225222421232122201221 SrCrSrCrCrA ,(36a)

2235223421332123201321 SrCrSrCrCrB ,(36b)
where the harmonic coefficients 21A  and 21B  must 
be zero by definition, if the axis Z  and the figure 
axis C  are coinciding at t0. By this, Eqs. (36) give 
a tool to test whether gravity field models are 
referred to a common axis C .

Transformation of 2nd degree harmonic 
coefficients from initial to principle axes 

coordinate system 
Assuming our initial information consisting of 

the vector g (Eq. (2a)) of 2nd-degree coefficients 
and their variance-covariance matrix, we will use 
for the transformation of ( mm SC 22 , ) to the 
principal axes system the exact closed solution of 
the eigenvalue problem with accuracy estimation by 
rigorous error propagation. Let us give briefly 
according to [Marchenko and Schwintzer, 2003; 
Marchenko, 2003] the corresponding closed 
expressions for the transformation of ( mm SC 22 , ),
defined in an adopted Earth’s-fixed coordinate 
system (X, Y, Z), to the vector 

T
2220 0,,0,0,~ AAg  of the two nonzero 

harmonic coefficients 20A , 22A  in the coordinate 
system of the Earth’s principal axes of inertia 
( A , B , C ). The potential V2 of the second degree 
may be written in the following way 

rHr ~~~
2
15 T

5

2

2 r
GMaPV           ,(37 )

Hrr T
5

2

2 2
15

r
GMaPV  (37 )

where the deviatoric matrix H is defined by Eq. 
(9a) and 

3
200

0
3

0

00
3

~

20

20
22

20
22

A

AA

AA

H    (38) 

The matrix H~  is adopted in the system of prin-
cipal axes of inertia ( A , B , C ); the vector T~r
contains the Cartesian coordinates of the current 
point P in this system; ( 2220 , AA ) are fully 
normalized harmonic coefficients in the Earth’s 
principal axes of inertia system ( A , B , C ).

The computation of the harmonic coefficients 
20A , 22A  requires a transformation of the matrix H

[Eq. (9a)] into the diagonal form H~  [Eq. (38)]. 
Solving the eigenvalue problem for the 
corresponding deviatoric tensor (Eq. (9a)) in the 
case of the given quadratic form HrrT  we get 
eigenvalues i in the following non-linear form 
[Marchenko and Schwintzer, 2003]: 

33

~
sin

3

~
sin

33

~
sin

3
2 2

3

2

1 k
,           (39) 

where the auxiliary angle ~  is expressed by means 
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of the invariants 22 kI  and 3I :

3
2

31

2
33sin~

k

I
,

2
~

2
,

( 0Trace1 HI ),                (40) 
with

2

0

2
22

2
20

2
2

2
222

m
mm AASCIk ,   (41) 

2
22

2
22

2
21

2
21

20
3
20

3 22
333

2det SCSCCCI H  + 

)~det(2 222121
2
21

2
2122 HSSCSCC . (42) 

Here the 2nd degree variance 2k  and 3I
represent the invariant characteristics of the gravity 
field, which are independent of linear 
transformations of the coordinate system (X, Y, Z).

Thus, Eqs. (39) to (42) provide the computation 
of the harmonic coefficients ( 2220 , AA ) in the 
principle axes coordinate system via the simple 
expressions

2
3 3

20A ,
2

21
22A .       (43) 

The matrix H~  can be used also in the following 
way

CBA
BCA

ACB

200
020
002

3

2

1

00
00
00

15~15H ,  (44) 

where A, B, and C are the Earth‘s principal 
moments of inertia normalized by the factor 

2/1 Ma . As a result, if the eigenvalues i  are 
found, we come after some easy algebra to the 
following relationships for differences between 
these normalized moments of inertia 

223
152 AAB , 20

22 5
3

15 AAAC ,  (45 )

20
22 5

3
15 AABC ,           (45 )

represented by means of the harmonic coefficients 
( 2220 , AA ) in the principal axes system. Similarly, 
these differences can be expressed also through 
parameters of the Earth’s gravitational quadrupole 
[Marchenko, 1979; Marchenko, 1998]: 

20
22

2
2

2 5
3

15~ AA
Ma
MMAC ,   (46) 

2

~
sin

2

~cos1 2

AC
BC

,          (47 )

2022

2022

3
33~cos
AA
AA

,              (47 )

where 2M  is the moment of the quadrupole and ~
is the angle between two quadrupole axes, located 
in the plane of the axes A  and C . The parameter 

~cos  of the Earth’s triaxiality as the cosine of an 
angle has a bounded range of variation, 

1~cos1 , and enables us via Eqs. (46, 47) 
to obtain “limiting” relationships between the 
principal moments of inertia, 2nd degree 
harmonic coefficients in the principal axes 
system 2/0 2022 AA , and the polar pf  and 

equatorial ef  flattenings pe ff0  [Marchen-
ko, 1979].  

The estimation of the normalized principal 
moments of inertia can be obtained now by 
involving the dynamical ellipticity DH :

DH
AC 205

 with 

C
A

C
BACH D

205
2

2
         (48) 

Substitution of Eq. (48) into Eq. (45) gives 

DH
AAAA 2022

20
5

3
155 ,         (49 )

DH
AAAB 2022

20
5

3
155 .        (49 )

Therefore, with DH  known, the computation 
of the polar moment of inertia (normalized by the 
factor 2/1 Ma ), DHAC /5 20 , the trace 

)(Tr I :

m
D

I
H

ACBA 3325)ITr( 20 ,(50) 

of the Earth’s tensor of inertia I considered in the 
principal axes 

C
B

A

00
00
00

I ,                        (51) 

and functions of the principal moments of inertia 
( , ,  - dynamical flattenings) used in the 
integration of the Eulerian dynamical equations 
[Bretagnon et al., 1998; Hartmann et al., 1999]: 

C
AB

B
AC

A
BC ,, ,    (52) 

are straightforward, if the fully normalized 
harmonic coefficients, 20A , 22A  are computed 
through Eqs. (39 – 43). Then the orientation of the 
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principal axes in the XYZ frame is based on the 
exact solution of eigenvector problem, using mC2 ,

mS2  only without the dynamical ellipticity HD

[Marchenko and Schwintzer, 2003]. 

Estimation of the Earth’s fundamental parameters 
in the principal axes coordinate system 

The harmonic coefficients of 2nd degree and their 
temporal variations are selected from the following 
four gravity field models derived in various centers 
of analysis: three solutions resulting from satellite 
tracking data and GRACE observations for 
different time-periods, GGM03S [Tapley et al., 
2007], ITG-GRACE03S [Mayer-Gürr, 2007], and 
EIGEN-GL04S1 [Förste et al., 2008], and one 
gravity field model of high resolution, EGM2008 

(Pavlis et al., 2008), based on surface gravimetry 
only. The time variable coefficients in these models 
are referred to different epochs with a spacing of 5 
years in between. Among these models the 
harmonic coefficients of ITG-GRACE03S have 
non-calibrated errors, which were multiplied on the 
factor 10 according to the recommendation of 
[Mayer-Gürr, 2008]. To be consistent, the 
following transformations were applied to values 
given (after reductions) in Table 1: (a) prediction of 

)(2 tC m , )(2 tS m  for a common epoch 2000, (b) 
reduction of 20C  to a common permanent tide 
system, and (c) scaling of these coefficients to 
common values of GM=398600.4415 km3/s2 and 
a=6378136.49 m.

Table 1. 
Geodetic parameters in the zero-frequency system (GM=398600.4415 km3/s2; a=6378136.49 m;

epoch: t0=2000; 405.0px , 735.0py ).

Model 6
20 10C 6

21 10C 6
21 10S 6

22 10C 6
22 10S

EGM2008 -484.16928852 
0.000007

-0.00020662
0.000007

0.00138441
0.000007

2.43938343
0.000007

-1.40027362
0.000007

ITG-GRACE03 -484.16928857 
0.000006

-0.00026548
0.000006

0.00147539
0.000006

2.43938345
0.000006

-1.40027368
0.000006

GGM03S -484.16929290 
0.000047

-0.00020659
0.000008

0.00138442
0.000008

2.43934997
0.000008

-1.40029646
0.000008

EIGEN-GL04S1 -484.16944263 
0.000025

-0.00024172
0.000016

0.00137671
0.000016

2.43936442
0.000017

-1.40028586
0.000017

For the transformation of 20C  from the tide-free 

system fC20  to the zero-frequency tide system ZC20
the following relation was used :

5/3.0103.1108 -8
2020 -CC fZ .      (53)

The IERS Conventions 2003 recommends the 
simple linear model representing the mean pole’s 
drift as  
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p ,       (54) 

where 405.0)( 0txp , 735.0)( 0ty p  are the 
mean pole coordinate at the reference epoch 
t0=2000; /yr][0.00083)( 0txp ,

/yr][0.00395)( 0ty p  are the secular variations 

in )(),( 00 tytx pp  valid in the vicinity of t0. The 
linear model (54) can be applied only for the 
transformation of the harmonic coefficients 21C
and 21S  caused by a linear drift of the mean pole 
[Eq. (17)], involving into the temporal variations 

21C  and 21S :

21002121 )()()( CtttCtC ,      (55 )

21002121 )()()( StttStS ,       (55 )

1-11
02021 yr100.337)(3 txCC p , (56 )

1-11
02021 yr101.606)(3 tyCS p , (56 )

because for other coefficients we get from Eq. (54) 
0222220 SCC . Additionally to Eqs. (55 – 

56) we will take into account the non-tidal secular 
drift in the zonal coefficient

20002020 )()()( CtttCtC ,        (57 )
1-11

20 yr101.1628C .            (57 )
In order to determine the Earth’s normalized 

principal moments of inertia CBA ,,  we use Eqs. 
(48  49). Table 2 lists eight estimations of DH
and the values of the underlying precession 
constant Ap . The first five DH  were discussed in 
Dehant et al. (1999) as ‘the best values to be used’ 
in the rigid nutation theory in the year 1999. 
Another three solutions for the dynamical flattening 
correspond to the non-rigid Earth’s rotation theory 
including the MHB2000 precession-nutation model 
[Mathews et al., 2002] estimated from VLBI 
observations during the time-period of 20 years, 
adopted by the IAU, and recommended by the 
IERS Conventions 2003 [McCarthy and Petit, 
2004]. The value DH  by [Krasinsky, 2006] has a 
large deviation from other determinations DH  and 
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for this reason was omitted. For only three selected 
DH  accuracy estimates are found in the literature.
From the initial values of the dynamical 

ellipticity DH  given in Table 2 (also assumed to 
refer to J2000) seven values differ in the adopted 
according to IERS Conventions 2003 (IAU2000 
Precession-Nutation model) precession constant 

yr/50.2879225Ap . To transform the 
associated quantities from different Ap  to the 
common value yr/50.2879225Ap  the 

differential relationship of Souchay and Kinoshita 
(1996) was used 

AA
A

D
D dpdp

p
HdH 7104947.6 ,    (58) 

where Adp  is expressed in arcseconds per Julian 
century and we get the values DH  given as 
‘transformed HD to the MHB2000 precession 
constant’ in Table 2. Eqs. (48 – 50) reflect a direct 
dependence of A, B, C, and of the mean moment of 
inertia 3/)(Tr ImI

Table 2. 
Determinations of the dynamical ellipticity HD

Reference
Initial value of the 
precession constant 

pA [ /yr], J2000 

Initial value of the 
dynamical ellipticity HD

Transformed HD to the 
MHB2000 precession 

constant
yr/50.2879225Ap

Williams, 1994  50.287700 0.0032737634 0.003273777851 
Souchay and Kinoshita, 
1996

50.287700 0.0032737548 0.003273769251

Hartmann et al., 1999  50.288200 0.003273792489 0.003273774466 
Bretagnon et al., 1998  50.287700 0.003273766818 

0.000000000023 0.003273781269

Roosbeek and Dehant, 
1998

50.287700 0.0032737674 0.003273781851

Mathews et. Al., 2002, 
(MHB2000) 

50.2879225
±0.000018

0.0032737949
±0.0000000012 0.003273794900

Fukushima, 2003 50.287955
±0.000003

0.0032737804
±0.0000000003 0.003273778289

Capitaine et al., 2003 50.28796195 0.00327379448 0.003273791918 

The parameter 3/152 22AAB  is also slightly 
depending on the adopted permanent tide system 
because 20C  enters into the computation of the 
coefficient 22A  through Eq. (43). The indirect effect 
of the permanent tide may either be included in the 

20C -coefficient (zero-frequency tide system) or 
excluded (tide-free system). It is assumed that the 

DH  values are related to the zero-frequency tide 
system [Bursa, 1995; Groten, 2000].  

With given variance-covariance matrices of 
20A , 22A , the Earth’s principal moments of inertia 

CBA ,,  are determined from a weighted least-
squares adjustment of the astronomical and 
geodetic parameters, all referred to a common 
permanent tide system and one epoch 2000. As 
‘observations’ generally are taken (a) the eight 
values for DH  (Table 2) and (b) the four sets  of 

20A , 22A  in the principal axes system, computed 
from the coefficients given in Table 1 by applying 
Eq. (43). Using Eq. (45) and Eq. (48) we get the 
over-determined system of non-linear observation 
equations
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with respect to the normalized principal moments 
(A, B, C). )(i

DH (i=1,2,..k), )(
20

jA , and )(
22

jA
(j=1,2,..l) are treated as observations with  being 
an error component. For k values of )(i

DH  and for l

sets of degree 2 harmonic coefficients )(
20

jA ,
)(

22
jA of l gravity field models we get according to 

[Marchenko and Schwintzer, 2003] the system of 
(k+2l) observation equations, 
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where 000 ,, CBA  are some approximate values of 

CBA ,, ; 0)()(
D

j
D

j
D HHH ,
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0
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20 AAA jj , 0
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22 AAA jj ; and 

CBA ,,  are the corrections provided by the 
solution of the normal equation system following 
from Eq. (60) through iterations.

A number of iterations depends on the initial 
values A0, B0, C0 in Eq. (60). Traditional 
characteristic for such an adjustment of 
astronomical and geodetic parameters is a high 
close to +1 correlation between the solved 
parameters, the three moments of inertia. 
Nevertheless, the selection of the value Im=0.4 of 
the mean moment of inertia of a homogeneous 

planet as initial values for A0=B0=C0=0.4 leads also 
to the convergence process but requires about 10 
iterations. Finally in zero approximation were 
adopted A0=B0=0.3 and C0=0.35. Usually with the 
last amounts of A0, B0, and C0 it is enough to make 
4 – 5 iterations. For each of the 8 values HD an 
identical standard deviation 8H = 0.799 10-8

derived from the scattering about the mean value 
was assumed for the weighting in the subsequent 
adjustment by applying weights two times greater 
for the last three values HD from Table 2, 
corresponding to the non-rigid rotation theory, than 
for other HD.

Table 3. 
Results of the simultaneous adjustment of the astronomical DH  and geodetic 20A , 22A  parameters (zero-frequency-

tide system; GM=398600.4415 km3/s2; a=6378136.49 m, epoch: 2000) 
Parameter S1: 8 HD + 4 gravity field models  S2: 1 HD + 4 gravity field models  
Solved   
A 0.329612131  0.00000073 0.329611131  0.00000019 
B 0.329619393  0.00000073 0.329618393  0.00000019 
C 0.330698397  0.00000073 0.330697398  0.00000019 
Derived   

mI 0.329976640  0.00000073 0.329975641  0.00000019 

DH 0.0032737850  0.0000000072 0.0032737949  0.0000000019 
610)( AC 1086.266646  0.000049 1086.266646  0.000049 

610)( BC 1079.004263  0.000049 1079.004263  0.000049 

610)( AB 7.262383  0.000043 7.262383  0.000043 

ABC /)( (3273.5575  0.072) 10-6 (3273.5674  0.019) 10-6

BAC /)( (3295.5180  0.073) 10-6 (3295.5280  0.019) 10-6

CAB /)( (21.9607  0.001) 10-6 (21.9608  0.0001) 10-6

6
20 10A 484.1692942  0.000009 484.1692942  0.000012 

6
22 10A 2.8127085  0.000013 2.8127085  0.000017 

1/f 298.256508  0.000008 298.256508  0.000008 
1/fe 91434.77  0.4 91434.77  0.6 

The variance-covariance matrices of ( 20A ,

22A )-sets are also taken into account. RMS 
differences before and after iterations are equal to 
0.05 and 0.6·10-8, respectively. Simultaneous 
adjustment of the eight values of )(i

DH  and four 
models of the 2nd degree harmonic coefficients, 
taken from the Table 1 and transformed to the 
principal moments systems ( 20A , 22A ) is given in 
the first column of Table 3 as the solution S1. The 
second solution S2 represents the adjustment of 
only one DH  from the MHB2000 theory and four 
sets of the same harmonic coefficients from Table 
1.

Thus, two solutions, computed for the epoch 
2000, are derived from two combinations of eight 

(S1) and one (S2) values of )(i
DH  plus the 2nd

degree harmonics of the gravity field models 
EGM2008, GGM03S, ITG-GRACE03S, and 
EIGEN-GL04S1. Apart from the solved 
parameters, the other fundamental parameters of the 
Earth derived from the three moments of inertia are 
given in Table 3 together with their accuracy 
estimates from error propagation [Marchenko and 
Schwintzer, 2003]. Better accuracy of the S2 
solution reflects a level of agreement of geodetic 
parameters since only one HD was adopted in this 
case. In general both sets of parameters from Table 
3 have small differences on the level of accuracy 
estimates. Nevertheless, the second solution S2 
corresponds better to the frequently used IERS 
Conventions 2003 and latest gravity field models 
instead of the conventional EGM96.
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Time-independent constituent adjusted to the 
IERS reference pole 

Let us now will examine values of 21A  and 

21B  which must be zero by definition, if the axis Z

and the figure axis C  are coinciding at t0. Eqs. (36) 
give a good opportunity to test whether the adopted 
here gravity field models are referred to a common 
axis C .

Table 4 lists the obtained differences about zero 
for adopted 405.0px  and 735.0py  (taken 
from IERS Conventions 2003 at epoch 2000) and 
leads to the conclusion that the reference systems of 
considered models do not exactly match. We get 
differences up to one order greater than the standard 
deviations given in Table 1 for 2121, SC . However 
these differences are smaller than the same values 
in [Marchenko and Schwintzer, 2003] given for old 
gravity field models. 

To avoid the differences in Table 4 when fixing 
a unique figure axis C  we determine one set of the 
coefficients mC2  and mS2  at epoch 2000 from a 
least squares adjustment of the given six sets, 
taking into account their variance-covariance 
matrices and the two natural conditions for the left-
hand sides of Eqs. (36): 21A = 21B = 0.

For l adopted gravity models we initially 

compute the harmonic coefficients )(
2

j
mA , )(

2
j

mB
(j=1,2,...l) treated further as observations. 

Table 4. 
Harmonic coefficient 21A  and 21B  at t0=2000

based on Eqs. (36) and adopted 405.0px  and 
735.0py  (from IERS Conventions 2003) 

Parameter EGM2008 ITG-
GRACE03 GGM03S EIGEN-

GL04S1
A21··1010 0.160 -0.429 -0.160 -0.191 

B21··1010 -0.632 0.278 -0.632 -0.709 

Applying Eq. (31) we get the observation 
equations in the linear form 
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with the 5 unknown elements of the vector 
T

2222212120 ,,,, SCSCCg ; )( j
i  are error 

components.

Table 5. 
Results of a simultaneous adjustment of the mC2 , 22S  parameters to the IERS reference pole fixed by the mean 

pole coordinates 405.0px , 735.0py  at epoch 2000 (zero-frequency-tide system;  
GM=398600.4415 km3/s2; a=6378136.49 m) 

Parameter 4 models: EGM2008, ITG-GRACE03S, 
GGM03S, EIGEN-GL04S1 

2 models: 
EGM2008, ITG-GRACE03S 

6
20 10C -484.16929419  0.000020 -484.169288549  0.000023 

6
21 10C -0.00022261  3.1 10-11 -0.00022261  4.0 10-11

6
21 10S 0.00144761  6.6 10-11 0.00144761  7.7 10-11

6
22 10C 2.43937396  0.000016 2.439383442  0.000022 

6
22 10S -1.40028032  0.000017 -1.40027366  0.000022 

The orthogonal matrix TR  of this system depends 
only through Eqs. (3-7) on the mean pole 

405.0px  and 735.0py  at epoch 2000. The 
vector g results from the solution of the normal 
system following from Eq. (61) with the two 
additional conditions, i.e. zero left hand sides in Eqs. 
(36).Taking for all (l=4) gravity models the 
harmonic coefficients )(

2
j

mA  and )(
2

j
mB  in the 

ZYX  frame as observations, we get in this way 
our basic set of adjusted mC2 , mS2  - coefficients 
to IERS Reference pole (at the epoch 2000), given 
in Table 5 in the first column. Second solution from 

Table 5 (l=2, second column) based on the two 
EGM2008 and ITG-GRACE03S gravity field 
models was developed in the same manner only for 
the comparison of adjusted to the IERS 2003 pole 
sets of mC2 , mS2  and corresponding accuracy 
estimates. Note that initial set of harmonic 
coefficients for the construction of the EGM2008 
model was taken from the ITG-GRACE03S 
solution and small differences between mC2 , mS2

in Table 1 (excluding 21C  and 21S  of EGM2008 
adopted according to the IERS Conventions 2003) 
reflect the influence of ‘the inclusion of the surface 
gravity data into the least-squares adjustment’.
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Both sets of these coefficients from Table 5 
restore exactly the adopted mean pole coordinates 

405.0px  and 735.0py , if inserted into the 
following expressions based on Eqs. (5 – 7): 

2
22

2
22

2
20

2122212220
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SSCCCx p ,      (62 )
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2122212220
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CSSCCy p .    (62 )

Applying the exact equations to the first set of 
adjusted mC2 , mS2 , the orientation of the principal 

axes A , B , and C  are computed for each

Table 6. 
Spherical coordinates of the principal axes and their accuracy (epoch 2000) 

Gravity field 
model

Lat. A
[degree]

Lon. A
[degree]

Lat. B
[degree]

Lon. B
[degree]

Lat. C
[degree]

Lon. C
[degree]

EGM2008 -0.000038
0.0000005

345.0715
0.0001

0.000088
0.000005

75.0715
0.0001

89.999904
0.0000005

278.3486
0.2885

ITG-
GRACE03S

-0.000043
0.0000004

345.0715
0.0001

0.000093
0.0000004

75.0715
0.0001

89.999897
0.0000004

280.053074
0.2328

GGM03S -0.000038
0.0000005

345.0711
0.0001

0.000088
0.0000005

75.0711
0.0001

89.999904
0.0000005

278.3476
0.3180

EIGEN-GL04S1 -0.000040
0.000001

345.0713
0.0002

0.000087
0.000001

75.0713
0.0002

89.999904
0.000001

279.8118
0.6604

Adjusted mC2 ,

mS2  (4 models) 
-0.000040

0.3 10-9
345.0714

0.0002
0.000092

0.1 10-9
75.0714

0.0002
89.999900

0.6 10-11
278.6014

0.2 10-5

individual gravity field model and for the adjusted 
second-degree coefficients. The results are given in 
spherical coordinates in Table 6 and for the axis C
also in polar coordinates (Table 7).

Table 7. 
Polar coordinates of the principal axis C

and their accuracy (epoch 2000) 

Gravity field model Cx  [0.001"] Cy  [0.001"] 
EGM2008 50.1 1.7 341.4 1.8
ITG-GRACE03S 64.5 1.5 363.8 1.6
GGM03S 50.1 1.9 341.4 1.9
EIGEN-GL04S1 58.7 4.0 339.5 4.0
Adjusted mC2 , mS2

(Table 5, 4 models) 
54.0
0.110-4

357.0
0.210-4

It should be pointed out, that such ‘high’ 
accuracy of 21C , 21S  in Table 5 are result from the 
application of the mentioned conditions 

02121 BA  [Eqs. (36)].  Accuracy of xc and yc

in Table 7 for the adjusted harmonic coefficients 
mC2 , mS2  and accuracy of the corresponding 

latitudes of the principal axes A , B , and C
(Table 6) again reflect the mentioned influence of 
conditions 02121 BA  which were initially 
introduced via adjustment to the adopted IERS 
reference pole fixed at epoch 2000 by the mean 
pole coordinates in Eq. (36). 

After transformation of adjusted mC2 , mS2
based on four models to the principal axes system 

in view of accuracy estimation we get comparable 
numerical values with the coefficients 20A , 22A
(S1) of Table 3. Hence, their combination with the 
adjusted 0000000072.0500.00327378DH
gives similar values for other parameters of the 
solution S1 in Table 3. Therefore, the first columns 
of Table 3 and Table 5 can be considered as one 
consistent set of the Earth’s fundamental parameters 
at epoch 2000 given in the principal axes and the 
Earth’s-fixed systems, respectively. In comparison 
with previous results [Marchenko and Schwintzer, 
2003] based on Eq. (1) we get generally slightly 
better accordance between the adjustment of 
astronomical and geodetic constants and the separate 
adjustment of the 2nd harmonic coefficients only to 
the IERS reference pole. But differences between 
adjusted mC2 , mS2  based on Eqs. (1 – 3) and Eqs. 
(61) have values about 10-15 that corresponds to the 
non-zero )(Trace1 HI  in the case of the 
traditional Lambeck’s approach [Eqs. (1 – 3)].

Earth’s time-dependent parameters from GRACE 
The time-dependent 2nd-degree harmonic 

coefficients )(2 tC m , )(2 tS m  were taken from the 
International Center for Global Earth’s Models of 
the IAG and extracted for the following GRACE 
time series: CNES-GRGS, CSR Release 04, GFZ 
Release 04, JPL Release 04.1, and ITG-
GRACE03S time-dependent solution [Mayer-Gürr, 
2007]. These mC2 , mS2  with a step size from 10 
days (CNES-GRGS) to one month (other solutions) 
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were applied to the direct computation of 
temporally evolving components of the Earth’s 
inertia tensor and other associated parameters on 
the time period from 2002.3 to 2008.5 years.

To be consistent the following transformations 
were used to values )(2 tC m , )(2 tS m  as in the case 
of time-independent constituent: (1) reduction of 

20C  to a common zero-frequency tide system (Eq. 
(53)), and (2) scaling of these coefficients to 
common values of GM=398600.4415 km3/s2 and 
a=6378136.49 m. Taking into account the adjusted 
dynamical ellipticity 500.00327378DH , all 
parameters listed in Table 3, Table 6, and Table 7 
were determined now as time-dependent for each 
related moment of time according to these four 
solutions on the total period from 2002.3 to 2008.5 
years.

Because of a great number of various 
parameters computed for each moment of time t we 
give only their evolution for the axes A , B , and 
C  of inertia. For other illustrations it is sufficient 
to give only mean values of some time-dependent 
quantities obtained by averaging their instant values 
on the given time-period from 2002.3 to 2008.5 
years. Fig. 1 and Fig.2 show temporal changes from 
GRACE of longitudes of the axes A , B , and C .

Table 8 demonstrates mean longitudes of these 
axes and mean values of the angle ~  (Eq. (47)) 
between two quadrupole axes, located in the plane 
of the axes A  and C of inertia. Table 9 lists 
obtained average values of polar coordinates of the 
figure axis C  for the same period related to the 
corresponding mean epochs about 2005. 

A comparison of each initial )(2 tC m , )(2 tS m
taken from various centers of analysis leads to the 
conclusion about systematic differences existing 

C B

A

Fig. 1. Longitude of the axes A , B , C  of 
inertia from CNES-GRGS ( ), CSR ( ), GFZ 
( ), JPL ( ), and ITG-GRACE03S ( ) time 

series for the period from 2002.3  
to 2008.5 years 

Fig. 2. Longitude of the axis A  of inertia from 
CNES-GRGS ( ), CSR ( ), GFZ ( ), JPL ( ),

and ITG-GRACE03S ( ) time series for the 
period from 2002.3 to 2008.5 years

Table 8. 
Mean longitudes of the principal axes A , C  and 

mean values of the angle 
~

 between two 
quadrupole axes (Eq. (47)) (period from 2002.3

to 2008.5 years) 

Mean
values 

Longitude
A

Longitude
C

Angle ~
[Eq. 47] 

CNES-
GRGS

345.0714
0.00005

281.0880
 0.16 

170.61988
0.000008

CSR
Release 04 

345.0711
0.00002

279.4887
 0.09 

170.61988
0.000003

GFZ
Release 04 

345.0712
0.00001

280.5852
 0.05 

170.61988
0.000002

JPL
Release 04.1 

345.0709
0.00001

278.7286
 0.02 

170.61985
0.000001

ITG-
GRACE03

345.0715
0.00006

280.0541
 0.23 

170.61986
0.000010

Table 9. 
Mean coordinates of the figure axis C

for the period from 2002.3 to 2008.5 years 

Gravity field 
 model 

Mean
 epoch 
[year]

Cx
[0.001"]

Cy
[0.001"]

CNES-
GRGS 2005.46 70.2

1.0
358.5

1.0
CSR
Release 04 2005.48 56.2

0.5
336.6

0.5
GFZ
Release 04 2005.72 61.3

0.3
328.4

0.3
JPL
Release 04.1 2005.44 52.7

0.2
343.0

0.2
ITG-
GRACE03 2004.96 64.5

1.5
363.8

1.6

in these series. Fig. 2, Table 8, and Table 9 reflect 
these probable systematic trends in five deter-
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minations of the time-dependent coefficients 
)(2 tC m , )(2 tS m . Nevertheless some derived 

parameters illustrated by Table 8 and Fig. 1 are 
generally permanent taking into account accuracy 
estimation of their static part. In contrast to the 
evident temporal change of the figure axis C  (Fig. 
1) we get a remarkable stability in time of the 
position of the inertia axes A  and B  derived from 
GRACE (Fig. 1). Processing of the CHAMP 
quarterly solutions [Reigber et al., 2003] for 

)(2 tC m , )(2 tS m  (period from 2000.9 to 2003.4 
years) produces the same conclusion about stability 
of the axis A  (and B ) with the mean longitude 

E0706.345A . In addition, we get a similar 
accordance with previous results [Marchenko, 2007] 
based on such GRACE time series as CSR Release 
01, GFZ Release 03, and JPL Release 02, which 
allow the same general conclusion excluding small 
differences in relation to values from Table 8. It has 
to be pointed out, that the direction of the principal 
axis A  is considered in the precession-nutation 
theory [Bretagnon et al., 1998; Roosbeek and 
Dehant, 1998] as the parameter of the Earth’s 
triaxiality or the longitude A  of the major axis of 
the equatorial ellipse. Thus, the adjusted to the 
IERS reference pole at the epoch 2000 numerical 
value 0002.0E0714.345A  (Table 6) in 
terms of accuracy estimation agrees perfectly with 
those from Table 8 and may be recommended for 
the Earth’s rotation theory: A

0002.0W9286.14 . But a most stable value 
represents another parameter of the Earth’s 
triaxiality, o6199.170~ , the angle between the 
quadrupole axes. 

If orientation of the Earth’s principal axes of 
inertia, the angle ~ , and some other parameters 
depend only on the )(2 tC m , )(2 tS m  coefficients, 
the determination of temporal changes of the 
Earth’s tensor of inertia requires according to Eqs. 
(48 – 49) the dynamical ellipticity HD. To compute 
the principal moments of inertia A, B, and C (Eqs. 
(48 – 49)) from adjusted 500.00327378DH
(related to J2000) and GRACE )(2 tC m , )(2 tS m  at 
each given moment t, which is different from the 
standard epoch 2000, an additional correction H to 
HD should be applied. Special study of the )(2 tC m ,

)(2 tS m  GRACE series led to a non-stable 
determination of the secular variation of 22A  adopted 

finally as 022A . Therefore, we assume the non-
tidal variation C in the moment of inertia C as a 
function of 20C  only [Yoder et al., 1983] as zonal 
forces do not change the revolution shape of the body' 

[Melchior, 1978] and come to 2/CBA
from the condition for the trace const)(Tr I
[Rochester and Smylie, 1974]. By this we get from 
Eqs. (48) and (49) the secular change of HD :

)
3
21(

20

20
DDD HH

A
A

H ,               (63 )

)
3
21(

3
)Trace(5

20

20
220 DDD HH

C
C

C
AH I , (63 )

if secular variations in different coordinate system 
are equal 2020 CA . To verify this equality we 
will use Eq. (32b) written for the time-dependent 
harmonic coefficients )(tCnm , )(tSnm , and 0nA .
Differentiation of 0nA , )(tCnm , )(tSnm  in Eq. 
(32b) with respect to time t gives 

n

m
CnmCnmCnmn PmSmCA

0
0 )(cos~)sincos( , (64) 

the equation for the reduction of the given 

mm SC 22 ,  to the unknown 20A  through the polar 

coordinates C  and C  of the figure axis C
which are considered in Eq. (64) as time-
independent and known at fixed epoch. With 20C ,

21C , 21S  taken from Eqs. (56 – 57), 

02222 SC , and the position C  and C  of the 
axis C  supposed to coincide with the mean pole 
coordinates at epoch 2000 (IERS Conventions 
2003), we get from Eq. (64) the estimation 

20
11

20 yr/110162795.1 CA  which is 

slightly differed from 20C  (Eq. (57)) on the smaller 

value 16105.0  than accuracy estimates of 

20C  and other temporal variations. 
That is why we neglect this correction  and get 

numerically 111 yr108453.7DH  with 20C
taken from Eq. (57). This amounts to 

)( 0ttHH D  for the reduction of HD from the 
year t0=2000 to each moment t related to )(2 tC m ,

)(2 tS m  of GRACE time series. (Note that 
10101.7H  for the reduction of HD from the 

year 2000 to 2009). Then, applying for parameters 
connected with 1-11

20 yr101.1628C  the 
following linear dependence 

)()( 0ttFtF ,                      (65) 

where dt
tdFF )(  and t0 is chosen reference epoch, 

we give in Table 10 using Eq. (65) the 
corresponding estimates of different secular 
changes according to (Marchenko, 2007). 

It has to be pointed out that similar estimates of 
secular changes 111 yr1086.7DH  and
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Table 10. 
Secular changes in some astronomical and geodetic parameters corresponding to the secular drift in the 

coefficient 2020 CA  (t0=2000) [Marchenko, 2007] 

Parameter )()( 0ttFtF F

2020 CA )( 02020 ttAA 20A =1.1628 10-11 [1/yr] 

DH )(
3

)Trace(5 0220 tt
C

AH D
I

DH = 7.8453 10-11[1/yr]

Ap )( 0tt
p
HHp

A

D
DA

Ap = 0.0121 [ /cy2]

A )(
3

5
0

20 ttAA
A =0.8667 10-11 [1/yr] 

B )(
3

5
0

20 ttAB
B =0.8667 10-11 [1/yr] 

C )(
3
52

0
20 ttAC

C = 1.7334 10-11 [1/yr] 

A
BC

)(
3

35
02

20 tt
A

ABCA = 7.8970 10-11 [1/yr] 

B
AC

)(
3

35
02

20 tt
B

BACA = 7.8968 10-11 [1/yr] 

C
AB

)(
3

5
02

20 tt
C

ABA =5.7552 10-16 [1/yr] 

f )(
2
53

0
20 ttAf

f = 3.9001 10-11 [1/yr] 

Table 11. 
Mean values of the principal moments of inertia A, B, and C from the GRACE series of )(2 tC m , )(2 tS m ,

adjusted 500.00327378DH , and 111 yr108453.7DH  (for the period from 2002.3 to 2008.5 years) 

Mean values Mean epoch 
[year]

Principal
moment A

Principal
moment B

Principal
moment C

CNES-GRGS 2005.46 0.32961228 0.32961954 0.33069855 
CSR Release 04 2005.48 0.32961220 0.32961946 0.33069846 
GFZ Release 04 2005.72 0.32961215 0.32961941 0.33069841 
JPL Release 04.1 2005.44 0.32961220 0.32961947 0.33069847 
ITG-GRACE03 2004.96 0.32961217 0.32961943 0.33069843 

111 yr104.7DH  were found under the same 
condition to conserve changes in the trace Trace(I)
of inertial tensor by [Marchenko and Schwintzer, 
2003] and [Bourda and Capitaine, 2004] 
respectively. Small differences in all DH -values
are explained by the application of various sets of 
chosen constants entering in Eq. (63). 

Among parameters from Table 10 all secular 
changes have the same order as variation 20A
excluding  and Ap . According to [Marchenko, 

2007] the variation Ap  was called by the 2J
precession rate with the estimated range (–11.6 to – 
16.8) 10-3 [ /centuries2], which is depended on the 

adopted 202 5CJ  having the value ‘about 
0.7% classical acceleration induced by ecliptic 
motion and two orders of magnitude larger than 
tidally induced accelerations’. Williams’ 2J
precession rate Ap = –0.014 [ /cy2] was based on 
the old determinations of the variation 2J .
Nevertheless his estimation given in 1994 agrees 
well with those from Table 10. Because the derived 
value 012.0Ap  [ /cy2] was based on Eq. (58) 

and the secular variation 1-11
20 yr101.1628C

adopted for recent gravity field models this 
parameter also may be recommended for the 
Earth’s rotation theory.
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Table 11 illustrates mean values of the principal 
moments of inertia A, B, and C derived from the 

)(2 tC m , )(2 tS m  GRACE series, the adjusted 
dynamical ellipticity 500.00327378DH , and 

the secular change 111 yr108453.7DH  by 
averaging the instant values A(t), B(t), and C(t) on 
given time-period. Taking into account the previous 
results by [22] based on such GRACE time series as 
CSR Release 01, GFZ Release 03, and JPL Release 
02, the comparison of the GRACE only principal 

moments of inertia from Table 11 with the adjusted 
quantities A, B, and C given in Table 3 leads to a good 
agreement in terms of accuracy estimation in all cases 
of )(2 tC m , )(2 tS m  GRACE series. Nevertheless, 
only secular variations in the 2nd degree time-
dependent GRACE coefficients are not sufficient 
for the description of )(2 tC m , )(2 tS m -changes.
For example, another representation for the series 
of )(2 tC m , )(2 tS m  was introduced by adopting

Table 12. 
Contribution of nearly annual time variations of time-dependent parameters given in percentages

to common periodic changes 

Parameter CNES-
GRGS

CSR-
r104

GFZ-
r104

JPL-
r104.1

ITG-
GRACE03

Parameters in the principal axes system 
A 54% 24% 33% 39% 45% 
B 54% 25% 33% 39% 46% 
C 54% 22% 33% 39% 48% 

20A 54% 23% 33% 38% 50% 

22A 41% 37% 44% 85% 32% 
~ 42% 40% 48% 85% 51% 

Longitudes of the principal axes A  and C
A 51% 59% 45% 5%

C 72% 24% 41% 60% 38% 

the model of secular, annual, and semi-annual 
periodic variations, based on the EIGEN-GL04S 
static gravity field model and the GRACE 10-days 
solutions [Lemoine et al., 2007]. Taking into 
account that time-dependent parameters from Table 
8 and Table 11 depend on )(2 tC m , )(2 tS m -
coefficients, these are then analyzed after removing 
a linear trend for the detection of basic periods 
derived from a spectral analysis using the following 
model

i
i

i
i tt

P
AttFFtF )(2cos)()( 000

, (66) 

for time-dependent function )(tF  with the 
simultaneous determination of all components iA ,

i , and iP  of an oscillation, including periods iP .
As a result, close to annual and semi-annual terms 
among estimated periods were observed with 
common contributions more than 50% in all 
determinations. Table 12 reflects the contribution of 
nearly annual variations only into common periodic 
changes, which are different for various centers of 
analysis. Thus, although exist some basic part of 
discussed parameters given in Table 8 and Table 11 
we detect their small deviations having annual, 
semi-annual, and other terms. On the other hand, 
mean values of these parameters agreed well with 
their ‘static’ values from Table 3 and can be 

considered as some permanent constituents given at 
the corresponding mean epochs. 

Conclusions
In order to avoid uncertainty in the deviatoric 

part H of inertia tensor the transformation of the 
second-degree harmonic coefficients mm SC 22 ,  was 
developed especially for the case of a finite 
commutative rotation via modified Lambeck’s 
formulae applied to polar coordinates considered at 
the sphere. The modified Lambeck’s approach 
allows simple transformation of the 2nd-degree 
harmonic coefficients and zonal coefficients of an 
arbitrary degree (including their temporal changes) 
via orthogonal matrixes. This transformation was 
used in the two individual adjustments of the 
geodetic only parameters mm SC 22 ,  of four gravity 
field models adopted in the Earth’s-fixed system to 
the IERS reference pole given by the conventional 
mean pole coordinates 405.0px  and 

735.0py  at epoch 2000 (IERS Conventions 

2003). The same sets of mm SC 22 , -coefficients
together with eight values of the dynamical 
ellipticity HD all reduced to the common MHB2000 
precession constant yr/50.2879225Ap  were 
used in the two general adjustments given in the 
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principal axes system with respect to the Earth’s 
principal moments of inertia A, B, and C. Results of 
the first adjustment of geodetic and astronomical 
‘constants’ represent one set (S1) of consistent 
parameters given in Table 3, Table 5, and Table 6 at 
one chosen epoch J2000 as time-independent 
constituent of the orientation of principal axes in 
the Earth’s-fixed system, the principal moments (A,
B, C) of inertia, HD, coefficients in the Eulerian 
dynamical equations, and other associated 
parameters. The second solution contains the same 
parameters based on the same four sets of 

mm SC 22 ,  and only one HD from the MHB2000 
model and corresponds better to the frequently used 
IERS Conventions 2003 and latest gravity field 
determinations.

Time-dependent components of the Earth’s 
tensor of inertia were found from the time-dependent 

)(2 tC m , )(2 tS m  GRACE time series of the 
following five solutions: CNES-GRGS; CSR Release 
04; GFZ Release 04; JPL Release 04.1; ITG-
GRACE03S. The condition A= B= C/2 to 
conserve Trace(I) of the inertia tensor when 
changing the dynamical ellipticity DH  from the 
reference epoch t0=2000 to a current moment of 
time t was applied via variation DH  for the 
estimation of DH , 2J  precession constant rate, 
and other parameters. These estimations are based 
on the modified Lambeck’s approach and derived 
closed expression for the reduction of the mm SC 22 ,
secular variations related to the standard Earth-
fixed system to the unknown 20A  related to the 
figure axis C  through the polar coordinates C

and C  of the axis C , which were fixed for the 

epoch 2000. Estimation of 20A
yr/110162795.1 11  secular variation leads to a 

slightly different from 20C  value. It has to be 
pointed out that mean values of the principal 
moments A, B, and C of inertia given at the epoch 
about 2005 based only on the )(2 tC m , )(2 tS m

GRACE series, DH , and DH  agree well with the 
adjusted quantities A, B, and C at the epoch J2000.

A stability in time of the position of the axes A
and B  of inertia and the angle ~  between two 
quadrupole axes, located in the plane of the axes 
A  and C , was observed from the time-dependent 

)(2 tC m , )(2 tS m  GRACE time series. Since the 
longitude A  of the principal axis A  is considered 
in the nutation theory as the parameter of the 
Earth’s triaxiality, the estimated value 

0002.0W9286.14A  can be recommended 

for the Earth’s rotation theory together with the 2J
precession rate 012.0Ap  [ /cy2] of the 
precession constant Ap . Nevertheless, periodic 
components at seasonal and shorter time scale were 
evaluated for the detection of basic periods derived 
from a spectral analysis. As a result, nearly annual 
and semi-annual terms among estimated periods 
were observed with common contributions more 
than 50% in all determinations. Hence, although 
exist some permanent constituents of discussed 
parameters (as mean values at mean epoch) their 
small deviations have also stable terms with about 
annual and semi-annual periods, which are different 
for various centers of analysis. 
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