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ESTIMATION OF THE POTENTIAL GRAVITATIONAL ENERGY
OF THE EARTH BASED ON REFERENCE DENSITY MODELS

The estimation of the Earth’s gravitational potential energy E based on the given density distribution is
considered. The global density model was selected as combined solution of the 3D continuous distribution and
reference radial piecewise profile with basic density jumps as sampled for the PREM density. This model
preserves the external gravitational potential from zero to second degree/order, the dynamical ellipticity, the
planet’s flattening, and basic radial density-jumps. The rigorous error propagation of adopted density
parameterization was derived to restrict a possible solution domain. Comparison of lateral density anomalies
with estimated accuracy of density leads to values of the same order in uncertainties and density heterogeneities.
As a result, radial-only density models were chosen for the computation of the potential energy E. E-estimates

were based on the expression £ =—(W_ .. + AW) derived from the conventional relationship for £ through the

in
Green’s identity. The first component W, expresses some minimum amount of the work # and the second

component AW represents a deviation from W, treated via Dirichlet’s integral on the internal potential.
Relationships for the internal potential and E, including error propagation were developed for continuous and
piecewise densities. Determination of £ provides the inequality with two limits for E-values corresponding to
different density models. The upper limit £y agrees with the homogeneous distribution. The minimum amount
EGass corresponds to Gauss’ continuous radial density. All E-estimates were obtained for the spherical Earth

since the ellipsoidal reduction gives two orders smaller quantity than the accuracy o, = +0.0025x10% ergs of

the energy E. Thus, we get a perfect agreement between E = -2.5073x10* ergs, E = —2.4910x10* ergs

Gauss

derived from the piecewise Roche’s density, Epppy,= —2.4884x10 ergs based on the PREM model, and E-

values from simplest models separated into core and mantle only. Distributions of the internal potential and its
first and second derivatives were derived for piecewise and continuous density models. Influence of the secular
variation in the zonal coefficient C,, on global density changes is discussed using the adopted 3D continuous
density model as restricted solution of the three-dimensional Cartesian moments problem inside the ellipsoid of
revolution.
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masses, having the total Earth’s mass M, from a
state of infinite diffusion to their actual condition
inside the planet. A remarkable expression for the

work W gives Dirichlet’s integral D(V,V) on the

gravitational potential } being extended throughout
all space ([29], [19], [1]). To make the concept of

Introduction
Determination of the 3D density distribution &
inside the Earth’s interior 2 from given external
potential data requires a solution of the inverse
problem of the gravitational potential. This problem
has no unique solution and treats traditionally as

improperly posed problem due to a violation of
conditions of solvability. One of suitable solutions
follows from Mescheryakov’s [5] theorem: “if the
numerical value of the Earth’s gravitational
potential energy E and the density on the Earth’s
surface o are given prior, this problem transforms
to a properly posed problem in the Tikhonov sense”
[9] with representation of ¢ through the three-
dimensional Cartesian moments of the density of a
gravitating body. The gravitational potential energy
E taken with the sign (—) represents the quadratic

functional W(= =) ) of & [27] and therefore can

be applied for a stable solution of the discussed
inverse problem. This functional W represents the
work of gravitation required to transport the
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potential energy useful, in addition to standard
definition of E we need appropriate explicit
relationships for the energy E and accurate
numerical E-value based on the known Earth’s
reference models of density.

One of possible approaches leads to the search
of the stationary value E or the so-called Gauss’
problem ([14], [1]). Gauss proved in his famous

memoir [14] that W = —FE has some minimal
value W_. . Thomson and Tait [29] wrote, in

particular:  “The manner in which Gauss
independently proved Green’s theorems is more
immediately and easily interpretable in terms of
energy”’. Therefore, Gauss’ results can be treated as
one of deep and central topics of the potential
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theory having the direct connection with Dirichlet’s
problem and Green’s function. The minimum

amount of Wis W_. =M -V,/2, if all masses

are concentrated on the boundary o considered as a
level surface where the gravitational potential

V,=const and M is the Earth’s mass [I].

According to Moritz [27] a remarkable summary of
Gauss’ problem for the homogeneous sphere reads:
“minimum and maximum potential energy
correspond to physically (for the Earth)
meaningless cases: a surface distribution and a
mass point. The ‘true’ Earth lies somewhere in
between”.

It is obvious that the potential energy £ can be
estimated from the known density ¢ and the internal
gravitational potential. However only some F-
estimates are found in the literature usually for the
homogeneous planet and a body differentiated into
several homogeneous shells ([27], [11], [12], [28]
with  references). The simplest continuous
Legendre-Laplace law, Roche’s law (as solutions of
the Clairaut’s equation), Bullard’s model, and
Gaussian (normal) distribution together with the
piecewise Roche’s profile with 7 basic shells as
sampled for the PREM density [13] were applied in
[23] for several estimations of the potential energy
E that lead to the inequality with minimum limit
corresponding to Gauss’ radial profile.

In contrast to the last paper this study aims to
derive according to Maxwell [26] other kind of
expression for the gravitational potential energy

E=—W_, +AW) based on the first Green’s
identity. This representation allows a simple

in

estimation of W, and important treatment of the

deviation AW from this minimal amount W, ~as

Dirichlet’s integral on the internal potential V;

generated by an adopted density distribution.

The Earth’s mass and three principal moments
of inertia represent initial information for unique
and exact solution of the restricted 3D Cartesian
moments problem [5], providing in this way the
global density J inside the ellipsoidal planet and the
gravitational potential energy E. This model
includes the reference piecewise radial profile with
density jumps from discontinuities in seismic
velocities as sampled for PREM. Such combined
model of global piecewise density was adopted to
preserve the external gravitational potential from
zero to second degree/order, the dynamical
ellipticity Hp, the planet’s flattening f, and radial
jumps of density. Components of the Earth’s tensor
of inertia are derived from the consistent set of the
S

five 2nd degree harmonic coefficients Ez om

m?

and Hp ([24], [22]) and used for the computation of
the density 0. It has to be pointed out, that accuracy

of this global density should be derived especially
from error propagation to restrict the possible
solution domain in such a way that a reasonable
solution may be selected either from spatial or
radial density. Accuracy estimation of the
gravitational potential energy is also applied
additionally to restrict the solution either inside the
ellipsoidal Earth or spherical planet.

Therefore, this study focuses on (a) the
determination of the 3D global density distribution
from the Earth’s fundamental parameters including
error propagation; (b) the background of adopted
restrictions of possible solutions domain taking into
account accuracy estimation; (c) the derivation of
formulae for the internal potential and the

gravitational potential energy E =—(W,,, +AW);
(d) the estimation of the potential energy
E = Epppy based on the most widely used PREM

density model. Distributions of the internal
potential and its first and second derivatives are
also given for the Earth’s continuous and piecewise
density models. The influence of the secular non-
tidal drift in the second-degree zonal coefficient

C,, on density changes is discussed based on the

in

adopted 3D global density model.

Basic relationships
for the Earth’s global density distribution
As a preparation, consider according to
Mescheryakov [7] the mathematical model of the
3D global density distribution of the Earth having a
shape of the ellipsoid of revolution with the
flattening f'and the semimajor axis a:

Lk
8§=8-Y>h;-0(p—p,). (1)
j=1

In the expression above O represents the exact
(restricted by the order 2) solution of the three-
dimensional Cartesian moments problem for the
continuous mass density distribution, #; is the j-

density jump at the relative boundary p, =r; /R
(R=6371 km is the mean Earth’ radius),

0 = p—p, <0
0(p—p,~)={ !

is the Heaviside’s function, and p=r/R is the

2
1= p-p,>0 ° @)

relative distance. The relationship for O as the
mentioned solution of the Cartesian moments
problem reads

5(p,9,0) = K + F, + p*(K, sin® 9cos® A +
+K,sin” 9sin’ A + K cos” 3+ F), (3)

5
k= Zsm[SIOOO = T(L0 + Loz + Logn / 7°)],(4)



35
K, =Tsm(3lzoo +dip0 + Lop /Xz —1yy) - (5)

35
K, = Tsm(]zoo 35 +Log /27 = Log) - (6)

35
K, = Tsm(lzoo + Loy + 31, /XZ _Iooo)’ ™

where x =1— f is expressed via the flattening f of
the ellipsoidal Earth assuming a homothetic
stratification f=const; 0, is the mean density; p

(0<p<1) is the relative distance from the origin

of the coordinate system to a current point, ¢ and 4
are the polar distance and longitude of this point.
Another two parameters from Eq. (3) are the
functions of & given density jumps

5< s 21
F =" 2 h[50-p) = (=p)]. @a)
43 5

35¢ 3 2
F, =Tz ,hjpj(l_pj)‘ (8b)
J=1

Eq. (3) is given in the geocentric coordinate system

of the principal axes of inertia (A, B ,C) and
agreed with the Earth’s mass M and all components
of the Earth’s tensor of inertia to preserve in this
way the external gravitational potential from zero to
second degree/order, the dynamical ellipticity Hp,
and the planet’s flattening /- Mechanical parameters
in Egs. (4-7) are expressed through the
dimensionless Cartesian moments of the density of
a gravitating body (see definition in Grafarend et al.
[15]) restricted here by the order n=p+q+r=2:
1

1,,(8)= ijix”y"z’dr, (p+q+r=n) )
which for =2 can be computed by means of the
Earth’s mass and the dimensionless principal
moments of inertia A, B, and C normalized by the
factor 1/Ma*:

B+C-A4
]00021’ ]200: > >
(10)
A-B+C A+B-C
]020: 5 > Aoox = > >

where 4, B, and C can be expressed via the 2nd-
degree harmonic coefficients A,,, A,, given in the

principal axes system and the dynamical ellipticity
HD:

A \/gzzo B \/1_531422 _ \/EIAzo ,

D

HD
V54,
H,

an

C=-—

Ieonesis

Egs. (10) lead to the following relationship for the
Trace(I) of the tensor of inertia I:

Trace(I)=(A+B+C) (12a)
Trace(I) = 2(L,y + 1o +14p0) - (12b)
Thus, in the above formulae x, y, z are the

Cartesian coordinates of an internal point; dz is the
volume element of the ellipsoid of revolution;

Zzoazzz are the fully normalized (non-zero)

harmonic coefficients adopted here as Stokes
constants in the Earth’s principal axes system
OABC .

The corresponding radial density distribution or
the well-known Roche’s model is the average of
Eq. (1) over the surface of ellipsoid p=const (see
Eq. (23b)):

- k
3(p) =d(p)+ F+p’F,— Y h6(p—p),),
i=l
3(p) =K +p’D,

13)

D= f_;sm [5(]200 Loy + Loy /Xz)_3]ooo]’(l4)

which is agreed with the Earth’s mass and the mean
moment of inertia /,, because the parameters D and
K can be expressed via M and I,,.

It has to be noted, that Eq. (1) and Eq. (13) lead
to significant differences about the origin between
such global density distributions and well-known
density models. To avoid these differences we will
use one modification of the considered approach
given by Mescheryakov [6], which is based on the
additional information about piecewise radial
density profile such as PREM [13] including
density jumps.

If some piecewise reference radial density
model 3(p)y is given, it is easy to verify that this

modification for the global density model
o(p, L) (0<p=r/R<I1, R=6371km) can
be written in the following manner
3(p,8.1) = (50, + [3(p.8,2) - 8(p), J150
o(p,9,4) =0(p)x +AS(p,9,1), (I5b)
AS(p,9,1) = AK +p°(AK, sin” Gcos” A +
+AK, sin® 9sin’+ AK, cos® 9), (16)

where
5

AK = Zesm[SAIOOO —T(ALyy + Al o + Alyy, /7217
35

AKI = jsm(j’Mzoo +A1020 +Mooz /X2 _Alooo) ? (18)

35
AK, = Tsm(Mzoo +3AL + ALy, v —Alyy)> (19)

35
AKs = ZSm(Mzoo +M020 +3M002/X2 _Mooo) ’ (20)

were derived by subtracting from Egs. (4 — 7)

: . R R
the corresponding Cartesian moments 1y, /5,
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1%, - and 1, of the reference density S(p)y, :
R R

A]00021000_10007 A[2002[200_]2007
R R

Algyg = Long = Lppgs  Alpgy = Loy — Loy

The reference model d(p); includes individual

(21

information about density jumps, the mean density

R
S,

and the mean moment of inertia [ ,f , which
have been selected preliminary for the construction
of the radial profile O(p)y. In contrast to
Mescheryakov’s  solution [6] the Cartesian
moments [, éf)o, 1 5)0, 1 fzo ,and [, (ﬁ)z were adopted
here for one common set of the conventional

constants O, and [, of the model (15) and density

jumps entering into 8(p), [23]:

I :ﬁj IR =R :—31'582 ,
000 Sm 200 020 28m(X2 +2)

| 2 7RSR
3-x°10
3% =318 dp, I8 =—— & mom (22)
m _([ (PP dp, Ly, 2‘6W1(X2+2)

R _ 200 +2) | 4
=" j 3(p)x p'dp.
This radial density 6(p)y is also treated within

the ellipsoid of revolution if we use according to
Moritz [27] the following formula for the radius
vector 7, by applying the first order theory

(disregarding f % and other higher powers of f):

v, = R[l—%ﬁPZ(cosS)}, (23a)

where P,(cos9) is the 2nd-degree Legendre

polynomial. Eq. (23a) results from the average of r,
over the unite sphere that gives the mean Earth’s
radius R=6371 km. It has to be pointed out, that all
basic formulas [Eq. (1) to Eq. (22)] are valid for a
homothetic stratification (geometrically similar)
when f=const inside the ellipsoidal Earth ([7], [6]).
Hence, if the set of the internal ellipsoidal surfaces

7, is labeled by the associated mean radius r of a
sphere we get

7, =r[l—§f~l’2(c059)} =

~

—p=L="_ (0<p<l) @3b)
R r

By averaging O(p,3,A) over the ellipsoid
surface we define the piecewise O(p) function
inside the ellipsoid of revolution as

8(p) = 8(p), +[AK +p*AD] (24)
AD = %Bm[S(Mzoo + Al + Al /XZ)_ 3A[0001}

with the treatment of the reference density O(p)g
also within the ellipsoidal Earth. Since the
dimensionless radius p is constant for each 7, the

radial densities S(p)R and &(p) are also constant
by Eq. (24) at the ellipsoidal surface (23b).

Error propagation
and lateral density heterogeneities
To prepare error propagation from starting
values to the Earth 3D global density distribution
we should keep in mind that information about

accuracy of the adopted mean density 551, the
mean moment of inertia [/ ,f , and density jumps in

various piecewise radial profiles d(p); (such as

PREM) are not found in literature or were not
easily accessible to the authors. For this reason we

will treat the reference density model d(p); as
exact constituent or “normal density” and come
therefore only to the accuracy estimation of the
density distribution O(p,3,A) [Eq. (3)] since

d(p,9,A) is involved in Eq. (16) by Eq. (15) in
the implicit form. Thus, the variance-covariance
matrix of the principal moments of inertia, accuracy

of the mean density Oy and accuracy of the

flattening G ; were chosen as initial data.

Given as initial information is the vector a
containing the degree 2 harmonic coefficients

A,y,A,, in the principal axes system and the

dynamical flattening Hp,

a=[A20,A22,HD]T, (25)
(the symbol T denotes transposition) and the (3x3)
variance-covariance matrix C,, of the parameters
(25). Starting from the formulae of Egs. (3) to (14)
the necessary matrices of partial derivatives and
variance-covariance matrices of the corresponding
parameters are obtained by applying the error

propagation rule.
Thus, defining the vector

J=[4,B.CT, (26)
by differentiating Eq. (26) in view of Egs. (11) we
get the (3x3) matrix of partial derivatives of the
vector J with respect to the vector a:

V5(-1/H,) -\15/3 -C/H,
%z J5(-1/m,) 1513 —cr/H, |- @D
~J5/H, 0 -C/H,
Hence Eq. (27) allows to apply the error
propagation rule for the computations of the
variance-covariance matrix C,;; of the principal

moments of inertia 4, B, and C from the variance-



covariance matrix C,, :

oy ar\'
c =Sl |22 . 28
v (621] “(aa) (28)

Then the accuracy G, of the mean moment of

inertia reads
ol ar '
o, :\/( afj :”[ afj ’
(29)

W_m_[lll}
oJ |3 3 37

In order to create the covariance matrix C LI of

the normalized Cartesian moments /,,,, /,, , and

1, [Eq. (10)] we define the new vector
T

I, :[]200 Lo 1002] ) (30)
and, taking into account Eq. (10), we find the
(3x3)-matrix of partial derivatives

-1 1 1
L
ol 2
1 1 -1

so that the variance-covariance matrix CIZI2

ol on,
C1212 :(G_JZJCH(G_JZJ . (32)

Then, the determination of the variance-

becomes

covariance matrix C1212 provides a simple
possibility to estimate accuracy of 1D and 3D

density distributions. For the radial density g(p)
[Eq. (13)] initially we determine the matrix of

. o T
partial derivatives of the vector K, = [K ,D]
with respect to the vector

p= []200a102031002a6maf]T :

1 - 1 4K 21,
oK,, 353, x' 3582yt [.(33)

ap 4|5 5 5 4D 10l

3003 37 358 3y

the variance-covariance matrix C,

1oKip *

T
CKIDKID = (aKlD jcpp(aKlD J ’ (34)
op op

by involving additionally to Clzl2 accuracy

estimates of the mean density G; and the

flattening © y in the variance-covariance matrix

C

pp °

T'eonesia

CIZIZ 0
C,=| 0 o5 0] (35)
0 0 Gf,-

As a result, by differentiating Eq. (13) for g(p)

with respect to the elements of K, = [K ,D]T
we get accuracy of the radial density profile

~ ~ T
0% 00
GS(P) - [al;p)JCKIDKID[ (p)J >
1D

~ K, . (36)
Be) [ ]
K, -

Accuracy G5 (0.9 of the 3D density
distribution [Eq. (3)] can be derived in a similar
manner after determination of the matrix 5 3D of

(Y
partial derivatives of the vector

K,, = [K,Kl,Kz,K3]T with respect to the
T
vector P = []zooalozoalooza8n1af] :

T ~ T
GS(P&J) - \/(al(u)JcKsnKsn (a( ’( )

3D

where
35(p,9,1) _
K,,
= [1, (psin 9cos)r)’, (psin 9sinL)’, (pcos 8)2],(38)

T
K, K;,
CK%DKm = CPP ’ (39)
w op op
-1 - —x CK)/BSS)  2Uu | (40)
Ky 355, |30 %1 1 (CKDABSE) 2Dy,
4|0 W 1 KBS 2y,
N 3 @’KL)/B58,) 61y,
Table 1 illustrates adopted initial parameters

and their accuracy. Accuracy estimation o5 of the

mean density O, requires additional remarks
because o, represents a scale factor of the
considered theory [Eq. (3) to Eq. (40)]. If
GM = (398600.4418+0.0008)x10° m’s™? and the
gravitational ~constant G = (6.673£0.010)x10™""!
m’kg's” suggested by the IERS Conventions 2003

[25] are selected, we get o5 =0.08 g/em’.

According to the IAG recommendations for G and
GM in Table 1 another values of the mean density

5, =(5.51483£0.0026) g/cm’ and o =0.0026

g/em’ were estimated.

Thus, the global density distribution and
accuracy at different depths were based on the
flattening f, the principal moments of inertia 4, B,
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and C from Table 1, and the value
5m:(5.51483i0.0026) g/em®’.  The principal

moments of inertia (given here in the zero
frequency tide system) are results from the
adjustment [22] of the 2nd-degree harmonic
coefficients of 6 gravity field models (EGM96,
GGMO1S, GGMO02C, EIGEN-CHAMPO3S,
EIGEN-GRACEO02S, EIGEN-GL04S1) and 7
values Hp of the dynamical ellipticity all
transformed to the common value of precession
constant at epoch J2000.

Table 1.
Initial parameters and their accuracy
Reference Adopted parameters
Groten [16] G=(6.67259+0.0003)-10™"'
m3k g—l s—2
Groten [16] GM=(398600.4418+0.0008)-
10°m’s™

Marchenko [22] (4=0.32961274+0.0000005

Marchenko [22] (B=0.32962001+0.0000005

Marchenko [22] |C=0.33069901+0.0000005

Marchenko and
Schwintzer [24] 1//=298.25650 + 0.00001

Table 2 lists necessary parameters for the
determination of the 3D and 1D density
distributions and their accuracy based on these
principal moments of inertia and variance-
covariance matrix taken from [22].

Finally, the density distribution [Egs. (15 — 16)]
and accuracy [Eq. (37)] at different depths were
found from the consistent set of the Earth’s
fundamental parameters under the conditions to

conserve the Earth’s mass (9,,), /; and all principal
moments (4, B, C) of inertia. The reference radial
density profile 0(p) in Eq. (15) was selected in

glem3

Fig. 1. Density anomalies [g/cm’]
AS(p,9,1) = &(p,9,A) = (P [Eq. (16)]
at the mantle/crust boundary
(r=6346.6 km)

10

the form of the simple piecewise Roche’s law
separated into seven basic shells [21], which is
slightly different from the PREM-density.

Table 2.
Cartesian moments and other parameters of 3D and
1D density distributions

Para- Value Para- Value
meter meter
;. [0.16535314 K |105298
20°140.00000025 +0.0005 g/cm’
;- [0-16534588 K [8:3587
020 140.00000025 ' |+0.0004 g/cm®
;o ]0- 16426687 K, | 83594
002 140.00000025 2 £0.0004 g/cm’
o |83583 K. [8:3567
+0.0004 g/cm’ > 140.0007 g/em®

Therefore, with O(p); known as exact

constituent, the accuracy estimation O5 (0.9.0) [Eq.

(37)] of the 3D continuous global density
distribution 0(p,I,A) [Eq. (3)] (based only on
the Earth’s mechanical parameters) and the lateral
density heterogeneities AS(p,3,A) [Eq. (15)] are

straightforward.
Comparison of these lateral density anomalies

Ad(p,3,1) (Fig. 1) with the accuracy C5p.0.0)

at the same depths (Fig. 2) of the continuous
constituent leads generally to values of the same
order in uncertainties and density heterogeneities
taken for wvarious depths. Since discussed
uncertainties are increasing when radius p is
decreasing to zero (origin) [3] we will use below
only radial density models for the determination of
the gravitational potential energy E.

180° 240 200° o & 1200 1607

-

Fig. 2. Accuracy [g/cm’] O5(po) [EQ- 37)]
of the continuous constituent of 3D density

distribution at the mantle/crust boundary
(r=6346.6 km)



Basic relationships
for the gravitational potential energy
The computation of the Earth’s gravitational
potential energy is based on the following
conventional expression ([14], [29], [19], [1], [30],

J. ’ ' ( 1)
2 T ! ’

where d=0(r,9,A) is the planet’s volume
density, V, is the Earth’s internal gravitational

potential, 7 is the planet’s volume enclosed by the
surface o, and W is the work of gravitation required
to transport the masses M from a state of infinite
diffusion to their actual condition inside the Earth.
However we prefer to use another treatment of
Eq. (41) in terms of the internal potential only that
leads to the equivalent and useful relationship for
the energy E. Since our basic model of density [Eq.
(15)] includes density jumps and represents some
piecewise bounded function, let us suppose that

d € L,(2) is defined on the Hilbert space L, (X)
of square-integrable functions inside the Earth’s
interior 2. In this case the internal potential V; has

generalized second derivatives and satisfies

Poisson’s equation in almost all points of 2 [8],
[18]:

VY,
VWV, =-4nGS, |8=—=L|. (42
4nG
Substitution of Eq. (42) into Eq. (41) by means
of the first Green’s identity applied with Maxwell
[26] to Eq. (41) gives
1
W= [V, VVdr=
8nG

1 or
Y v i [ D v)de | @3
8nGL'8n ° J v ’)T}()

ID(K,K)th{(%V[j +£68V’) +[%ij ]dr:
. . X Y Z

- I lgradV| dr . (44)

Green’s transformation [Eq. (43)] is valid if we

suppose that the function V; and its first derivatives

are continuous or even piecewise [2]. Eq. (44)
denotes always-nonnegative Dirichlet’s integral.
Note that initial Eq. (41) may also be transformed
via Green’s identity as [19]:

4nJ'V,. ~8-dr=J'D(V V)de, — (45)

[ SN

where Dirichlet’s integral is extended throughout
all space @ . The interpretation of Dirichlet’s

Ieonesis

integral in terms of the gravitational potential
energy follows from Eq. (45).

Let us now assume that the boundary o
represents a level surface where the gravitational

potential ¥, =V, = const. By this Eq. (43) gives

1 v,
W=——01I|V J.Edc—!D(Vi,Vi)dr (46a)

8nG OG

V.M 1
W=""x+_—|DWV,V)dt 46b
2 SnG-[ V.7 (46b)

as a consequence of Gauss’ theorem [19], [17]
applied to the first integral in the brackets of Eq.
(46):

oV,
—4nGM = .[—ldc. 47)

Y on
According to Dirichlet’s principle [19], [27] the
work W =—FE has some minimal value W _.  if

all masses are concentrated on the level surface o
when the gravitational potential V, = const and
the interior is empty. In this case the internal
V.=V, = const

potential represents  the

harmonic function inside the surface o and leads to
zero Dirichlet’s integral in Eq. (46). Thus, the
minimum amount of ' becomes

W.=M-V,/2, (48)
and represents the solution of the variational Gauss’

problem [14], [1]. Substitution of Eq. (48) into Eq.
(46) leads to the following basic formulae

E=—W_ +AW),

1
AW =—— [ DV )dr. 49
8nG'[ Vi V)de )

Thus, other kind of expression for E, given
under the assumption that the boundary ois a level
surface, provides a simple estimation of W . ~and
remarkable treatment of the deviation AW from
this minimal amount Wmm as non-zero Dirichlet’s

integral when all masses are distributed inside T
according to an adopted density law.

Now we consider the application of Eq. (49) to
the spherically symmetric density distribution

0 =0(r) within the spherical Earth. In this case

the gravitational potential ¥, =const will
coincide with the potential of a point mass and the
potential ¥, = GM /R of the surface distribution

0 = 0(R) = const . By this Eq. (48) becomes

w. =GM?/2R, (50)
usually related to a homogeneous planet [1]. The
second term AW in Eq. (49) transforms to

11
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R ! 2
A =2 [Mj gy =
8nG o\ dr

1 I(GM(r)j .
- 2G P’

where according to Moritz [27] the gravity

1 R
—|U%ar', 51
!

(gravitational attraction) g(7) inside a stratified
spherical Earth is expressed through the part of the
Earth’s mass M (r):

dv GM
g(r)= - _GME) sy,
dr
M(@r)= 4nj 8(r')-rdr". (53)

Therefore, the gravitational potential energy of
the spherically symmetric density distribution

0 =0(r) becomes

2 R
Eo_ GM IJ-(GM(V)] i | (s
0

2G

GM*? 1 2
E = _[—2R +E”U LZ[O’R]) (54b)

The first term within brackets of Eq. (54)
represents the minimal work of gravitation required
to transport masses, having the total Earth’s mass
M, from a state of infinite diffusion onto the
spherical planet with the radius R. Obviously, the

mass M (7) given by Eq. (53) represents the part

of mass of the spherical Earth restricted by the
radius 7.

2 —

| U(r)=GM(r)/r
r [km]

T T T 1 T T T T T T T
0 1000 2000 3000 4000 5000 6000

Fig. 3. Normalized values of the point
potential GM /r , the internal potential V;, and
the function V' (r)=GM (r)/r given for the
homogeneous spherical Earth

12

In view of Eq. (49) or Eq. (51) the integral in
the second term is bounded and can be treated

through the norm ”U ” of the simple function

L,[0.R]
U(r)=GM(r)/r in the Hilbert space L, of
square-integrable functions on the segment [0, R].
Fig. 3 shows normalized values of different
functions computed for the homogeneous spherical
Earth having the same value on the Earth’s sphere.
Fig.3  illustrates also  zero  value of

U(r)=GM(r)/r when r=0 and singularity
of the point potential GM / r at the origin.
If the function O =03(7) corresponds to the

piecewise density of the layered Earth, Eq. (54) can
be transformed by the partial integration to the
following relationship

k
E=YE,, (=1.2,..b, (5
Jj=1

where £ ; expresses the contribution of the energy

of the j-shell in the total value E.

E-estimates for simplest radial density models

As a preparation, consider additionally to the
homogeneous Earth the determination of £ for the
following radial-only continuous density profiles:
the law of Legendre-Laplace, the law of Roche (as
solutions of the Clairaut’s equation), the Bullard’s
model, and the Gaussian (normal) distribution (Fig.
4). Therefore, in order to determine the
gravitational potential energy £ we use density laws
from Table 3 initially for the spherical Earth. The
parameters of the simplest density models (Fig. 4)
listed in Table 3 were derived from the solution of
the inverse problem based on the well-known

conditions to keep the Earth’s mean density O

m?
the mean moment of inertia /, , and the density 85

on the Earth’ surface [27]. Only first two conditions
are applied to the determination of the continuous
Roche’s model. Thus, we get the following
expressions for the parameters of the law of
Legendre-Laplace [20]:

248 2
Y _4Lsm IM’m 3} (56)

'S,
8 = N s
3. [smy —ycosy]

the law of Roche

8, =a =Z J0-211,]

5
b 25[8771 _80]’

5
==35,[71,-2
8, =8,71,-2}

(57)

the Bullard’s model
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8, =a= %[1285 -78,(271, -10)]
b= % [5 (451 —14)-45.] (8)
63
=—146,-55 (71, -2
¢ 32 [ s m( m )]’
and the Gauss’ model [21]:
1 )
P
Im 8m (59)
__ 4-B%, -exp(B’)
3-(Vr-exp(B’) -erf(B) - 2B)

where 50 is the density at the origin; erf(x) is the

integral of the Gaussian distribution from 0 to x.

Fig. 4 illustrates the radial continuous density
profiles (Legendre-Laplace law, Roche’s law,
Bullard’s model, and Gauss’ model) now obtained
by means of Egs. (56-59) through adopted in Table
3 set of parameters based on the mean moment of

inertia [ = 0.3299773+0.0000005 taken from
Table 1, the mean density &, = 5.51483+0.0026

g/em’, and the density on the Earth surface O, =
2.67 g/em’.

Table 3.
Expressions for different radial density models (p =7/R)
Model Expression Values of parameters
Homogeneous planet o(r)= 5m = const 5m =15.51483 g/cm3
Legendre-Laplace law o(r) =36, sin(yp)/ yp & =10.993 g/cm3, =2.4929
Roche’s law 5(r) = a + bp> a=10.583, b=—8.447 [g/em’]
Bullard’s model S(ry=a+ bpz + cp4 a=11.585, b=—13.121, ¢=4.206 [g/cm’]
Gauss’ model S() =S exp(—B2p) | %=13.097 glem’, f=1.26126
(Marchenko, 2000) (r)=0pexp(=/"p")
Table 4.
Internal potential V; (spherical Earth) for different radial density models
Model Expression for the internal gravitational potential
Homogeneous _ 27[G5m 22
et Vir) = 0GR =)
2 .
Legendre- V.(r)= 47G 6 R [ Rsin(yr/R) —cosy
Laplace law ! 7,2 w
Roche’s law Vi(r)=- 1??2 [IOaRz(r2 —3R*)+3b(r* - 5R4)]
4G 4,2 2 2,4 4 6 6
Bullard model | V(1) =~ 7 [(70aR* (2 =3R?) + 216R* (+* — 5R*) +10c(+° = 7R%)]
7GR [ R werf(Br/ R
Gauss’ model Vi(r)= ﬂg ( ﬁe;(ﬂr ) —2exp(—pf 2 )J
r

Taking into account the expressions above, the
relationships  for the internal potential V;
corresponding to the mentioned set of density laws
were derived (Table 4). In contrast to the previous
paper [23] we prefer Eq. (54) for the computation
of the potential energy E of the spherical Earth for
different radial density models.

Thus, explicit relationships (Table 5) for the
estimation of the gravitational potential energy £ of
the spherical Earth were obtained via two

components W, . —and AW
minimal work and Dirichlet’s integral, respectively.
With the above-mentioned §,,, /

m?

treated as some

d, , and values

of parameters from Table 3 given for the law of
Legendre-Laplace, the law of Roche, the Bullard’s

model, and the Gaussian distribution numerically
we get estimations of the energy E given in Table 6,
which includes E-values given by Mescheryakov
[4] and Rubincam [28] for further comparisons.

Thus, there are the following limits for all
computed E:

E <E .4 S

Gauss Earth — (60)
The amount — W, corresponds to the surface
distribution of the total Earth’s mass M. The upper

limit E}; agrees with the homogeneous Earth. The
=—GM?*/2 and

E,<-W

min *

difference between —W_.

13
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ar)

_—
— | Bullard’s model

/| PREM model

| Legendre-Laplace

4 — model
T r [km]
0 — 1 T T T T T T T T 1
0 1000 2000 3000 4000 5000 6000

Fig. 4. Legendre-Laplace, Roche, Bullard, and
Gauss continuous densities compared with the
PREM-density model &p) [g/cm’]

Table 6.
Estimations of the gravitational potential energy £
(spherical Earth)
W oin » AW, E,

Model ergsx10™ fergs1 0¥lergsx 10
Mescheryakov [4] - — -2.34
Rubincam [28] - — -2.45
Homogeneous 1.8687 | 0.3737 | —2.2425
Earth
Legendre-Laplace|  ¢co7 | (5065 | —2.4652
model
Roche’s model 1.8687 | 0.6101 | —2.4788
Bullard’s model 1.8687 | 0.6132 | —2.4820
Gauss’ model 1.8687 | 0.6386 | —2.5073

E, =-3GM 2/5R has the well-known value
GM?/10R. The minimum amount £

Gauss
corresponds to the Gauss’ model. The inequality
(60) has the following explanation. The first term of
the Taylor series expansion of the potential energy

Table 5.
Two components W, and AW from Eq. (54) for the estimation of the potential energy E =—(W,_, +AW)
(spherical Earth)
Model W =GM?*/2R AW = HVHiz(O,R) /2G
Homogeneous (8/9)112(;8,2"1?5 (8/45)712(;53”135
planet
87r2G502 R , 5 2, ~e2 5
Legendre- _— [(7/ —1)cos” y — 4n°GS,R . Chei2 5
Laplace law 6 . — [y sinycosy—2sin”y + vy ]
—2ysinycosy + 1]
2 ~ps 2ps
Roche’s law M[5a+3b]2 m[ﬁaz +3Oab+7b2]
1575
87°GR’ 2 87°GR’ 2
Bullard model | 11025 [35a +21b+ 150] 1729725 [105 105a° +90090ab + 50050ac

+210215* +24570bc + 7425c2)]

7*GSLR® exp(-2%)

[ 5 s2p5
20— NGO R _ 2
Gauss’ model 23¢ [ P 28 [\/E,Berf(x/aﬂ) x/;erf(ﬂ) ]
— [z exp(p)ert (5)]
EGauss» cotresponding to the Gauss’ model from theorem after preliminary computation of the mean

Table 5, represents the gravitational potential
energy of the homogeneous Earth E);. Generally
speaking every expression from Table 5 includes
the main term, which is equal to £, . But the sum
of other terms with E}; leads on the whole to a

smaller E than the value £} (Table 6). It has to be
pointed out, that the energy E derived by
Mescheryakov [4] as 2E =—V M was based on

m

the known Earth’s mass M and the mean-value
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value V,, of the internal potential V; inserted as
V=V, in Eq. (41). The estimation of £ given by
Rubincam [28] was found for the spherical Earth
differentiated into homogeneous core and
homogeneous mantle with one jump at the core-
mantle boundary. To verify the inequality (60) we
will apply a similar approach to the above-
discussed profiles using the direct approximation of
the PREM density by these four simplest piecewise
two shells with the same basic jump at the models
separated into core/mantle boundary. Fig. 5
illustrates results of such approximations, which are
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characterized by r.m.s. deviations from the PREM
density based in each case on the additional

conditions to keep O, , [, , and J,. Despite the

best value of r.m.s. for the Bullard’s model we

1 &)
Gauss’
model

r.m.s.=0.437g/cm’

Bullard’s
model

r.m.s.=0.322g/cm’

r [km]
° ' | ' | ' |
1] 2000 4000 6000

prefer to use below also a simplest law of Roche
because of a smaller number of the parameters a;

and b ; =1,2,...k) introduced for each shell.

1 )

Legendre-
Laplace
model

r.m.s.=0.430g/cm’

Roche’s
model

r.m.s.=0.409g/cm’

° ' | ' T ' T
[1] 2000 4000 6000

Fig. 5. Results of the direct approximation of the PREM density by some piecewise models with
two shells taking into account one basic jump at the core/mantle boundary

Table 7.
Estimations of E for the spherically symmetric
Earth with basic jump at the core/mantle boundary

Model Value F
Homogeneous Earth (2 shells) | —2.4401x10™ ergs
Rubincam [28] (2 shells) —2.45 x10% ergs
(Lzefﬁgﬁg Laplace model 2.4944x10% ergs
Roche’s model (2 shells) —2.4938x10° ergs
Bullard’s model (2 shells) —2.4907x10* ergs
Gauss’ model (2 shells) —2.4940x10* ergs

The comparison of E-estimates from Table 6
(continuous radial density) and Table 7 (spherical
Earth with one jump, £=2) gives better-quality

agreement between the values E when the basic
jump of density at the core/mantle boundary is
taking into consideration. E-estimates given in
Table 7 fulfill again to the inequality (60) with two

limits £ and EH from Table 6. In the case of

Gauss
these piecewise radial models with one jump of
density at the core/mantle boundary (Table 7) all
values of E are very close to the minimum amount

of E

Gauss - Ihat is why the accuracy estimation

_<E ~
Op =OGuss for E was derived by error

Gauss
propagation under the assumption that G, depends
only on accuracy of the mean density O, and the
given above.

mean moment of inertia Im

15
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Numerically we get Eg, = (-2.5073+0.0025)x

x10%* ergs. Therefore, if a spherical Earth
differentiates into present-day core and mantle we

get in view of the estimated accuracy O, =

+0.0025)x10*° ergs a perfect accordance between
E-values corresponded to the layered Legendre-
Laplace, Roche, Bullard, and Gauss models with 2
shells. This quantity o is certainly larger than E-

estimate contained in the 2nd-degree harmonics
[28] and for this reason we will use again radial-
only piecewise density models for the
determination of the Earth’s potential energy E.

Gravitational potential energy
based on piecewise density models

The internal potential V; inside the ellipsoid of

revolution with the radial density O(r =p-R)
was adopted according to Moritz [27] p.41:
V= @ j 8(r )y dr' + 4nG j 8(r'yr'dr’ —

8nG , (61)

T Iz(costS(r')d(fr'S) -

87tG172

P,(co s9)j5(r) 4 g

where the radius vector 7, of the elhps01d and the
radius r of the associated mean sphere are
connected by Eq. (23b). Then in Eq. (61) we
express 7, by Eq. (23b) and get
I 1 2
::—{1+§f-f’2(c058)}. (62)

r r

e

Substitution of Eq. (62) into Eq. (61) gives for
the homothetic stratification f~const:

V — Vsphere +AVell —

_4nG | j S )2 dr + 4nGj6(r Ydr' + AV (63)

8nG - f

AV = ———>P,(cos9) x

x [ j 8(r)rdr’ — j 8(r')r'4dr'j , (64)
0 0

the internal potential of the heterogeneous
ellipsoidal Earth [Eq. (63)] in the form of the
internal potential of the heterogencous spherical

planet V¥ " reduced to V. by the ellipsoidal
reduction AV, [Eq. (64)]. Egs. (63-64) allow the

direct computation of the gravitational potential
energy E in the obvious form

E=E_, +AE,, (65)

sphere
if inserted into Eq. (41) or Eq. (54). Nevertheless,
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taking into consideration the flattening f we will
estimate the corresponding ellipsoidal reduction
AE,, beforehand. Since all E-values of the
piecewise radial models with one density-jump

(Table 7) are very close to the lower limit £, in

Eq. (60) it is enough to estimate AE,, by applying
again the Gauss’ continuous model
8(p) =8, exp(—B’°p’) inside the ellipsoid with
the homothetic stratification ( f = const). With
adopted  parameters  numerically we  get

AE,, = AES;“SS ~ 0.000045x10* ergs two orders

smaller value than accuracy O = +0.0025)x10%
ergs. Hence, it is sufficient to accept the reduction
AVZ.EH =0 in Eq. (63) for the internal potential V.

Now we can consider a general polynomial
representation of piecewise density within the
spherical planet

§,(n=>Y.ap =>4rp
=0 =0

where 7 ; is the maximal degree of polynomial (66)

=r/R, (66)

in the j shell; 7 is the current radius within the j
shell; the initial coefficients a ; [g/cm’] are given

for each j shell separately with the artificial zero
shell a,=0, 7,=0, which is involved for the

generalization of basic formulae; A; = a; ‘R’ are
the coefficients of the polynomial approximation in
relation to r; R is the Earth’s mean radius.

For further computation of W, and AW
through Eq. (54) we need a similar to Eq. (66)
representation of the function M (7) [Eq. (53)] via
polynomials. When the radius 7 is considered
within the j shell (7,_; <7 <7;) substitution of Eq.

(66) into Eq. (53) for M (7), representing the part
of the Earth’s mass bounded by the radius 7, after
simple algebraic manipulations gives

Jj-1 n;+3

M@ry=> AM, - M (r.)+ M (r)=Y BI'r" (67)
i=0 m=0

where

M () = 4x[8,(")r"dr' = F, (68)
0

AM ; = 47;.[ 3, (r"r'*dr' —4n J.Sj (rrdr' =
0 0

=M ()= M (r,.). (©9)

with the coefficients B}n :



Br =" Gem<n, +3),
m

J-i
=D AM, - M (r,_), (70)
i=0

B’ =B, =B:=0,

and the squared mass M ’(r) according to Eq.
(67):
n;+3n;+3
M*(r)= z ZB BIF (1)
i=0 m=0
All this is substituted into Eq. (54) with the final

result for W_. and AW :

min

2 k
:%R(R),AW:ZWJ, (72)

min

j=1
n;+3 n;+3
,:_j(QEZZBHWWﬂW—
i=0 m=0
n;+3 n;+3 m
_Ez Zi(r‘;—#m—l r1+m l) (73)

25 SGi+m-1)
keeping in mind that the radius of the artificial zero
shell is #,= 0 and if the denominator (i + m —1) is
equal to zero we ignore such term in Eq. (73)

because the corresponding coefficients B j = B;" =
=0 by Eq. (70).

Gravitational potential energy

based on the piecewise Roche’s density model

Taking into account a good agreement of the
piecewise Roche-density model with the PREM
density (Fig. 6), we will apply this radial density
profile consisting from 7 shells and representing by
polynomials of identical even powers within every
shell [21] as initial information in the following
form

2
r 2

d,(r)=a, +bj(Ej =a;+c;r,

(7=0,1,2,...k), a,=b,=c, =0, (74)

_ 2

a;,and ¢, —bj/R are
the known coefficients of the model (74) given for
each shell (Table 7) with the artificial zero shell

=b, =c, =0, r,=0. Note also that r.m.s.

dev1at10n between these models (Fig. 6) has the
value 0.06 g/cm® for the core-mantle area and
increases only to 0.24 g/cm® for the core-mantle-
crust.

With AViell: 0, =0, and a current point lied

within the j-shell at the distance 7, the substitution
of Eq. (74) into Eq. (53) provides the following

where adopted i=7; a T

T'eonesis

ar)

Piecewise PREM model

Piecewise Roche’s model‘

r [km]
° ' | ' | ' T
) 2000 4000 6000

Fig. 6. Piecewise Roche-density model with 7
shells compared with the PREM-density model

&p) [gem’]

expression for the mass

- 4n 4
M(F)ZZAMi _Mj(rj—l)_"?ajr} +?cjr5 =

i=0

=B +B)r’ +Br’, (15)

abbreviating
47t 4n
3 5 0
B = 3 a,., sz?cj, Bi:

_ [i B —r )+ B -7, )) ~B)r), ~ B}, (70)
=0

Thus, according to Egs. (75-76) in the case of
the piecewise Roche’s density (74) the function
M (r) can be represented by polynomials of
identical odd powers within every shell. By this,
after some algebraic manipulations with Eq. (75)
inserted into Eq. (54) we get a simple possibility of
the determination of the energy E. The result is

GM?(R) :
L =———2 AW = ,
Wmm 2R B W ;W] 5 (77)
G 1
" =2{<Bf ot eaml -t e
2
N
2 ) )

where w, expresses the contribution of the j-shell

in the total value AW . With adopted piecewise
Roche’s density model we get the estimation of
E=-(W,, +AW) [W,, =18681x10”  ergs,

min

AW =0.6269x10* ergs] given in Table 8 also via
the contributions £ ; [Eq. (55)] of each shell. The

17
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Table 8.

Estimation of the gravitational potential energy E derived from the piecewise Roche’s density model
separated into 7 basic shells [21]

3 3 Contribution £;  of E;, %
Shell a;, g/em b;, g/lem 7y, km cach shell, ergs
1 (Inner core) 13.061 -8.891 12215 -0.0541x10% 2.17
2 (Outer core) 12.483 -8.343 ' -0.9159x10*’ 36.77
3 (Lower mantlc) 6370 2574 | 34800 Z1.1625%10% 46.67
4 (Upper mantle 1) 6.058 2.577 5701.0 ~0.1527 x10% 6.13
5 (Upper mantle 2) 5.784 -2.524 5971.0 —0.0954x10%° 3.83
6 (Upper mantle 3) 6.057 -2.903 6151.0 -0.0998x10*’ 4.01
7 (Crust) 6.622 -3.952 6346.6 —0.0104x10%° 0.42
Total gravitational potential energy: —2.4910x10** ergs

quantity £ =-2.4910x10" ergs agrees with E-
estimates from Table 7 based on the radial models
with one jump of density at the core/mantle
boundary and fulfills to the inequality (60) at the
vicinity of the minimum FEg = (-2.5073+

+0.0025)x10*° ergs. Taking into account the
estimated above accuracy o, = +0.0025x10* ergs

we get a remarkable accordance between F =
=-2.4910x10% ergs derived from the piecewise
Roche’s density with 7 basic shells as sampled for
PREM and the values E given by the simplest
piecewise Legendre-Laplace, Roche, Bullard, and
Gauss models with 2 shells. Note that all E-
estimates from Table 8 coincide exactly with the
results based on the direct application of Eq. (41)
and Eq. (55) [23].

Gravitational potential energy
based on the PREM density model

Starting from 1981 PREM piecewise radial
profile [13] represents the most widely used Earth’s
density model and, therefore, one of suitable
densities for the estimation of the gravitational
potential energy E. In this case we must consider a
piecewise polynomial representation of the general
kind [Eq. (66)] and final Egs. (72-73) for the
computation of the gravitational potential energy E.

Table 9 contains estimations of the total
potential energy E=—-(W_ +AW) [W . =

=1.8685x10™ ergs, AW =-0.6199x10* ergs] and
the contributions E i [Eq. (55)] of each shell. The

gravitational potential energy Epppy = —2.4884x

x10*? ergs agrees well with E-estimates from Table
7 and Table 8 based on different piecewise radial
models and fulfills to the inequality (60). In view of

the estimated above accuracy O E:ﬂ:0.0025><1039
ergs we get again remarkable agreement between
Epppn = —2-4884x10% ergs derived from the

piecewise PREM density and all E-values given by
the piecewise Roche’s density with 7 shells and all
simplest piecewise models with 2 shells which are
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corresponded to the spherically symmetric Earth
differentiated into core and mantle only. Gauss’
continuous model gives the lower limit

E,, .. = (-2.5073£0.0025)x10* ergs of E for all

considered density distributions including PREM
model.

It has to be pointed out that we get different
values of minimal work W_. =1.8687x10" ergs
based on all continuous profiles given in Table 6,
W . =18681x10" ergs derived from the

piecewise Roche’s density, and W_. =1.8687x

x10*® ergs corresponded to the piecewise PREM
density. Since every considered density profile
includes individual information about the Earth’s
mass and the value G Eq. (50) leads to the
conclusion that this fact simply reflects different
values GM adopted for the construction of these
models.

Internal potential and other related parameters
of the Earth’s reference models
Since the transformation of Eq. (41) into Eq.
(43) was made under the assumption that the

internal potential ¥, has continuous or piecewise
first derivatives we will analyze additionally the
function V,(7) and its derivatives for piecewise
(PREM) and continuous (Gauss) radial models of
the Earth’s density O(7). According to Moritz
(1990) the internal potential V; of the stratified

spherical planet represents the function of the
current radius 7:

47G | g
V=== j S(r)yr*dr' + 4nG j S(ryrdr' =
0 r

=V(r)+Vy(r) (79)
where the first term on the right-hand side in view
of Eq. (53) corresponds to the external potential of
the sphere bounded by the radius 7:



T'eonesis

Table 9.

Estimation of the gravitational potential energy E derived from the PREM density models according to [13]

i | i | b
1 (Inner core) 12215 -0.0542x10* 2.18
2 (Outer core) -0.9128x10* 36.68
3480.0
3 (Lower mantle 1) -0.0598x10* 2.40
3630.0
4 (Lower mantle 2) -1.0390x10*° 41.75
5600.0
5 (Lower mantle 3) -0.0623x10% 2.50
5701.0
6 (Upper mantle 1, Transition zone) -0.0397x10% 1.60
5771.0
7 (Upper mantle 2, Transition zone) -0.1126x10*° 4.52
5971.0
8 (Upper mantle 3, Transition zone) -0.0951x10% 3.82
6151.0
9 (Upper mantle 4, LVZ) -0.0734x10% 2.95
6291.0
10 (Upper mantle 5, LID) -0.0297x10% 1.20
6346.6
11 (Crust 1) -0.0043x10%° 0.17
6356.0
12 (Crust 2) -0.0050x10*’ 0.20
6368.0
13 (Ocean) -0.0005x10* 0.02
Total potential energy: —2.4884x10% 100.00
Vi)=Y [8(yrdr = GM(1) - g0)
r 0 r

In the second term on the right-hand side we
have

R
V,(r) = [4nGd(ryrdr. (81)

Let us now consider the element dm of mass of
the ring (with infinitesimal thickness) oriented
according to Fig. 7 along any chosen parallel with
polar distance 9. It is evident that 7 -sin(9) is the

radius of this ring, dh =r-d9 is the meridian

height, and dr is radial thickness. Thus, the
element dm becomes

dm=2m-8(r)-r-sin(3)-r-d3dr (82a)

=2n-8(r)-r-sin(8)-dhdr, (82b)

where » is the radius of the considered sphere.

Note also that the integration over longitude was

already carried out in Egs. (82a—82b).
Then if the element of mass is given by Eq.

Fig. 7. To the interpretation of Eq. (79)

(82a) after computation of the mass by Eq. (53) we
come to Eq. (80) for the external potential V(7).

Let us now the element of mass is written for the
equatorial plane (Sin(:4) = 1) by Eq. (82b):
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dm =2nd(r)r-dh-dr. (83)
By introducing the surface density
w(r) =38(r)-dh, (84)
we get
dm=2nu(r)-r-dr. (85)
This relationship can be interpreted as an
element of the mass of equatorial ring with the

surface density W(7) when the volume density
O(7) is condensed or compressed into a surface

density [L(7). In terms of Eqs. (84-85) we get
m= Idm 27‘CI S(r"r'dhdr' = 27:_[ w(r")r'dr' ,(86)

the mass of the equatorial ring bounded by the
radiuses » and R. Therefore, the comparison of Eq.
(86) and Eq. (81) allows the following suggestion:

by assuming the volume density O(#) numerically
equal to the surface density (7)) when dh=1 we

come to a treatment of the potential ¥, using the
mass of this equatorial ring (Fig. 7):

V,(r) = 4nG[8(r")r'dr =2Gm.  (87)

Eq. (80) and Eq. (87) can serve as a basis for
computing the internal potential V; of the stratified
spherical Earth. Supposing now the planet
separated into & shells and making some elementary
transformation with Eq. (79), Eq. (80), and Eq. (87)
we get

Vl.(r)zéG(Mj(r)—Mj(rj1)+§AMJ+

k
+ 2G(mj (r)—m,;(r)+ z Aml) . (88)
i=j+1
The parameters above admit the following
interpretation: M ;(r) is the part of mass of the
spherical Earth which is bounded by the radius »
and possessed by the density distribution according

to the j shell; AM ; is the mass of the j spherical

shell restricted by the radiuses 7; and r, 5 m (r)

is the part of mass of the equatorial disk of
infinitesimal thickness (Fig. 7) which is bounded by
the radius » and corresponded to the density

distribution of j shell; Am ; 1s the mass of the j

equatorial ring of infinitesimal thickness restricted
by the radiuses 7; and iy

Now  with the piecewise polynomial
representation of general kind [Eq. (66)] after
substitution of Eq. (66) into Eq. (79) and associated
algebraic manipulations the expression for the
internal potential corresponding to the density (66)
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reduces to Eq. (88); M ,(r) and AM ; are given

by Eq. (68) and Eq. (69), respectively; the

relationships for m,(r) and Am, are

m (r) = 27ch‘ 8(r')r'dr' = 2niiri+2 (89)
/ : “(i+2)

Am; =m;(r,)—m;(r,,). (90)

As a result, with the density distribution and
internal potential given by Eq. (66) and Eq. (88),
respectively, the computation of the gravity g and

a8 are straightforward
r

dv.(r)y GM(r)
==, )

gr)=——/
dg(r) _ dV(r) _
dr dr

= —(szi(r) + zg(”)j = 4nGd(r)r _280) (92
r r

Because the density O(7) is bounded and

piecewise function the gravity g(7) [Eq. (91)]
represents continuous function (Fig. 9) overall on
the segment [0, R] by Eq. (53) for M (7). Eq. (92)
is valid in almost all points of [0, R] excluding a

finite number of points of discontinuity. These
points have the same position as density jumps

d,
where the functions O(7) and d_g have two
r

limits: limit from the left and limit from the right at
the vicinity of each point of discontinuity.
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Fig. 8. Distribution of the internal potential V,

[m/s] in accordance with PREM and Gauss’
radial models. Differences between PREM and
Gauss’ internal potentials are shown in
percents [%] in relation to V;(r)
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Both functions g(#) and d_ have exact limits
r

from the right at the point »=0.
Thus, Fig. 8, Fig. 9 and Fig. 10 illustrate

distribution of the internal potential V,(r) [Eq.
(88)], the first derivative of V; taken with sign (-)
as gravity g(7) (gravitational attraction) [Eq. (91)]

and the second derivative of V; taken with sign (-)

d
as d_g [Eq. (92)], respectively, in accordance with
r

the PREM and Gauss’ radial density models.

i dg Gauss’ model
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Fig. 10. Distribution of the function 98 10

dr
[1/s7] according to PREM and Gauss’ radial

models.
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Note that all these three functions are
continuous only in the case of the Gauss’
continuous density distribution.

d,
The function d_g given for the PREM model
r

has evident discontinuities at the depths of density
jumps (Fig. 10), which are corresponded to
discontinuities in seismic velocities. The function

g(7) has no discontinuities in view of Eq. (91).
Distribution of the gravity g(7), having as stated

by Saigey’s theorem [10] some maximum inside
the Earth, in the case of the PREM piecewise
profile shows greatest value at the core/mantle
boundary, local maximum in the upper mantle and
minimum in the lower mantle. Note that this
minimum of the PREM gravity coincides exactly
with the position of global maximum according to
Gauss’ gravity distribution. The internal potential

V.(r) represents for both models continuous

function (Fig. 9) with maximum at the origin and
minimum on the Earth’s surface. Maximal
deviation between these two internal potentials (in

relation to V(7)) generated by piecewise and

continuous densities consists value smaller than 1
%, which is shown in Fig. 9 in percents.

Conclusions
The global density 0(p,3,A) inside the Earth

having a shape of the ellipsoid of revolution was
selected as combined model of the 3D continuous

density g(p, 3,), given by the restricted solution

of the three-dimensional Cartesian moments
problem, and the reference radial piecewise density

O(p)y with basic density jumps as sampled for the

PREM density. This model conserves the Earth’s
mass, the flattening f, all principal moments (4, B,
C) of inertia, and density jumps from
discontinuities in  seismic  velocities.  The
corresponding 1D Roche’s radial density is also
treated within the ellipsoid using the conditions to
preserve the Earth’s mass, the mean moment of
inertia, the flattening f, and density jumps. With

O(p)r chosen as exact constituent, the accuracy

S of the 3D continuous global density was

derived at different depths from error propagation
based on the consistent set of the Earth’s
mechanical parameters. Comparison of the lateral

density anomalies with the accuracy Oy (0.50) at

the same depths leads generally to values of the
same order in uncertainties and density
heterogeneities.

That is why only radial density models were
adopted for the determination of the Earth’s
gravitational potential energy. All E-estimates were
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based on the following relationship
E=—-W_. +AW) [Eq. (49)] derived from the

transformation of the conventional expression for £
through the first Green’s identity. The first

component of Eq. (49) W

min

in

expresses some
minimum amount of the work W and the second
component AW represents a certain deviation

from W

internal potential V, [Eq. (43), Eq. (49) and Eq.
(54)]. Relationships for both components of
E=—-W_ +AW) were derived in the

following cases: 1) the continuous radial density
laws of Legendre-Laplace, Roche, Bullard, and
Gauss; 2) the same radial models with one jump of
density at the core/mantle boundary; 3) the
piecewise Roche’s profile; 4) the piecewise PREM
model. The estimation of E according to different
continuous density radial laws leads to the
following result [Eq. (60)]: there are two limits for
all computed E. First one agrees with the
homogeneous distribution. Second one corresponds
to the Gauss’ radial density model.

All determinations of the potential energy E
were made for the spherical Earth since the

treated via Dirichlet’s integral on the

in

computation of the ellipsoidal reduction AE,,
gives two orders smaller quantity than the estimated
accuracy O = +0.0025x10%° ergs of E. Taking into
account this accuracy estimation we get a perfect
Gauss = (-2.5073+0.0025)x

x10* ergs, E =-2.4910x10* ergs derived from the
piecewise Roche’s density, the gravitational

agreement between FE

potential energy FE =-2.4884x10* ergs based on
the PREM density model, and the values E given by
the simplest piecewise Legendre-Laplace, Roche,
Bullard, and Gauss models all corresponded to the
spherically symmetric Earth differentiated into core
and mantle only. Thus, accuracy of the 3D Earth’s
global density distribution and accuracy of the
gravitational potential energy restrict the possible
solution domain in such a way that a sufficient
solution was derived from the piecewise radial
density model taken only for the spherical Earth.
Distributions of the internal potential, the gravity g,

dg . .
and d_ were found for piecewise and continuous
r

radial densities inside the spherical Earth’s.
Finally we should note that the secular variation

Zzo = 520: 1.1628x10™"" 1! in the degree 2
zonal  coefficient  produces the  change
dC = —@X X (t—t,) in the polar moment

C of inertia [31], [24]. By this Egs. (4-7) give
changes in the following parameters
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_35dC3,, (1-%%)
4y
2
ap = -1754C8, (=)
12y
2¢* -1
dK, = i, = 354C0u 21" =1)
4L
35dC5, 3—1°)
4y ’
of the density distribution inside the ellipsoidal
Earth [Eqs. (1-3)]. But spherically symmetric
distribution is not sufficient: usual Roche’s law
given by Eq. (13) is not responsible for this

variation because f =0 and y =1 in Egs. (93a).

Therefore, within the chosen model approach the
ellipsoidal 1D [Eq. (13), Eq. (24)] and 3D [Eq.
(15)] models provide the time-dependence in the
global density distribution and can be used for the
estimation of corresponding changes in the Earth’s
interior.

dK

9

(93a)

(93b)
dK, =—
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OLIHKA MMOTEHIIAJIBHOI I'PABITAIIIMHOI EHEPI'Ii 3EMJII
HA OCHOBI PE@EPEHIIHUX MOJIEJIE PO3IOALIIB I'YCTUHH

0.M. Mapuenko, O.C. 3asub

VY craTTi po3rIAAA0THCS MUTAHHS, MPUCBSYCHI OILIHII TPaBITAIIHOT MOTEHIiaIbHOI eHeprii £ 3emini Ha
OCHOBI 3aJlaHMX TIOOATBHUX PO3MOMLTIB IYCTHHHU. [ J100aibHa MOJIENb TYCTUHU OOYHCIIIOBANIACH SIK KOMOiHAIis
TPUBUMIPHOTO HENEPEPBHOTO PO3MOALTY Ta pedepeHIHOro pajiajbHOTO PO3MOJUTy 3 OCHOBHUMH CTPUOKaMHU
ryctuHd, sk 1y moneni PREM. Jlanuii rio0anbHui po3MOAiil OJHO3HAYHO BiATBOPIOE 30BHIIIHE rpaBiTalliiiHe
moje 3emili J0 JPYroro MOPSAAKY 1 CTemeHs BKIIOYHO, € Y3TO/DKCHHM 31 3HAaYCHHSIMU TEOMETPHYHOIO Ta
JUHAMIYHOTO CTHUCKY IUIAHETH, a TaKoXX 3 OCHOBHHMH paJiajlbHAIMH CTpHOKaMu TyCTHHH. YwucenbHi
JIOCIHI/PKEHHS! TTOKa3aJd, 110 3HAUCHHS JIATepAIbHIX aHOMAJI T'YCTHHH Ta iX TOYHICTh € BEJIMYMHAMH OJTHOTO i
TOTO X MOPSAKY, BHACIIIOK YOTO JUIS OLIHKH TPpaBiTalliiiHOT MOTEHIIaNbHOT eHeprii £ BUKOPHUCTOBYBAIIMCH JIHIIIC
pamiadbHI MOJEINi PpO3MOAITy TYCTHHH. Bci OIIHKM €Heprii BHKOHYBAJWCh 3 BUKOPHUCTAHHAM (HOpMYIH

min

+ AW), orpumaHoi 3 3aralbHONPUHUHATOrO CHIBBiAHONIEHHS Mg E uepe3 ToTokHicTh ['pina.
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Mepruwmit goxanok wiel popmymn W . Bupakae MiHimanbHy poboty W, a npyruit AW — inxunenns sig W, ,
sAKe TpaKTyeTbcsi dvepe3 iHrerpan Jlipixje aiust BHYTPIIIHBOTO TNOTeHIiaxy. B poboti 3ampomnoHoBaHO
CHIBBIIHOIICHHS U1 OOYMCICHHA BHYTPIOIHHOTO IMOTEHIamy Ta E, a TakoX BUpPa3HW ISl OUIHKA TOYHOCTI
HENEPEePBHUX Ta pPaIiallbHO-KyCKOBHX PO3MOALTIB TycTHHH. OOUYMCIIEHO TpaHWI, B MEXaX SIKHX MOXKE
npuiiMati 3HadeHHs E. BepxHs Mexa Ey BiamoBimae omHopimHiit 3emmi. HmkHA Mexa Egu.s BIOTOBiae
pazianbHOMY PO3IOIUTY TYCTHHH 3a 3aKkoHOM ["aycca. Bei omiHrOBanbHI 3Ha4E€HHS TPaBITaLifHOI MOTEHIIATBHOL

eHeprii Oy oTpuMai 1yisi cheprudHoi 3emiti, OCKUIBKH eJirncoigaabHa MopaBKa Jjae 3HAYSHHS Ha JBa HOPSIKH

MEHIIE, Hi’K TOYHICTh BU3HAYEHHA camoi eneprii O p = £0,0025x 10%° ergs. TakuM 4mHOM OY710 OTPEMAHO 100pe

3TOKEHHS MK TPHOMA OINIHIOBANLHUMH 3HAYCHHSMH eHeprii F = -2,5073x10° ergs (emepris mMomeni
Gauss >

laycca), £ = —2,4910x10* ergs (enepris KyckoBo-HemepepsHOi Moei Poma) ta Eorin= —2,4884x10% ergs
(enepris moneni PREM). IloniOHa y3romkeHIicTh criocrepiranach i JUisi OLHIOBAIBHHX 3HAYEHb EHEpTil
HAWMPOCTIIIMX MOJETCH T'yCTHHH, SIKi CKIIQJaJKCh 3 IBOX MIapiB — Kopa i MaHTis. B cTaTTi HaBeIeHO po3moaim

BHYTPINIHBOTO MOTEHLIANy Ta HOro Ieprioi Ta Jpyroi MOXiTHMX JUIA HENEepepBHHX Ta KyCKOBO-HENEPEBHHX
MoJenel TYCTHHH. 3 BHKOPHCTaHHSM TPHUBHMIPHHAX MOZEJCH TYCTHHH aHANI3YEThCS BIUIMB BiKOBOI Bapiamii

3oHanbHOro Koedinienta C,, Ha NI0GANbHI 3MiHH T'YCTHHA.

KarouoBi cioBa: rpasitamiiiHa NOTEHIiadbHA EHEPrisi, BHYTPIIIHIA IOTEHIa], pO3MOJIUI TyCTHHH,
OIL[IHKa TOYHOCTI.

OLIEHKA IMOTEHIAAJIBHOM I'PABUTAIIMOHHOM SHEPTUU 3EMJIN
HA OCHOBE PE®PEHIIHBIX MOJIEJIEN PACIPEJAEJEHUAN IIJIOTHOCTHU

A.H. Mapuenko, A.C. 3asn

B cratpe paccMaTpuBarOTCsl BOMPOCHI, MOCBAIICHHBIE OIEHKE I'PAaBUTAIMOHHOW SHeprud £ 3eMin Ha
OCHOBE 3aJlaHHBIX TJIO0AJBHBIX paclpesieNieHHi IIOTHOCTH. ['J00anbHas MOJEIb IUIOTHOCTH MPEJICTaBiIsa
co00i KOMOWMHAITMIO TPEXMEPHOI'O HEMPEPHIBHOTO pacmpefieficHus ©  peepeHTHOr0  PaauaibHOro
pacrmpeeNieHus ¢ TIIaBHBIMH CKauyKaMH IUIOTHOCTH, Kak y mojaeiau PREM. JlanHoe riio0anbHOE pachpeseicHue
COrJIaCOBAHO 3 BHEIIHWUM TIPaBUTALMOHHBIM IMOJIEM 3€MJIM 10 BTOPOTO MOPSJKAa U CTENEHH, CO 3HAUYEHUSMU
TEOMETPUYECKOTO0 W JWHAMUYECKOTO CXKATHM IJIaHEeThl, a TaKXe C TIJIABHBIMU paJUalbHBIMH CKauKaMH
MJI0THOCTU. YHCIEHHBIE UCCIIEOBAHMS TTOKA3bIBAIOT, YTO 3HAUEHUS JIATEPATbHBIX aHOMAHUI TUIOTHOCTU OJHOTO
W TOTO >K€ TOPS/KA, YTO U UX TOYHOCTH, BCICACTBHE YETO IS OLEHOK HCIIOB30BAINCH TOJNBKO paauaibHBIE

+AW),

MOJy4YCHHas H3 O6HI€HpI/IH$ITOFO COOTHOIICHUA AJIA E qyepe3 TOKACCTBO FpI/IHa. HepBoe cJlaracMoc (bOpMyJ'H)I

MOJCJIN paCIpCACICHNA IIOTHOCTH. ,Z[J'ISI BCEX OIICHOK 9HEPIuu HCIO0JIb30BaIaCh (1)0pMyna E= _(Wm

in

a Bropoe AW — orkionenue or W,

HpejCTaBisieT o000 MHUHMMalbHy0 pabory W in >

min > KOTOpO€E
WHTEPNPETUPYETCS Kak wuHTerpan Jlupuxie A BHYTPEHHErO TMOTEeHIMala. B cTaThe NpeiokKeHbI
COOTHOILEHUSI JJisl pacyeTa BHYTPEHHEro MOTEeHUManda U E, a TakkKe BBIPAXKEHHUS Uil OLEHKH TOYHOCTHU
HENPEPBIBHBIX U PaJIMAIbHO-KYCOUHBIX paclpelieleHuid IuoTHocTU. OmnpeseneHbl TpaHulbl, B Ipeaenax
KOTOPBIX MOXET MpUHUMATh 3HaueHus E. Bepxusis rpanuna Ey cOOTBETCTBYET ogHOpojHON 3emie. HuxHss
rpaHuna EG,ss COOTBETCTBYET PaIHalbHOMY pacIpelesieHHI0 IoTHOCTH ['aycca. Bee omeHouHbIE 3HaueHHS
TPaBUTAIIMOHHON TIMOTEHIMAFHONW OSHEPruM OBUIM TONYYeHB Ui c(hepudecKod 3eMild, ITOCKOIBKY
SJUIMIICON/IaNIbHAsA  MIONpaBKa Ha [BAa MOPsJIKa MEHbIIE, 4eM TOYHOCTh ONpENECNEHUs DSHEPIUM O p =
+0,0025x10°° ergs. Takum 0Gpa3OM MOMYHEHO COTTACOBAHUE MEXTY TPEMsI OLCHOUHBIMH 3HAUYCHUAMH SHEPIHHU:

E = -2,5073x10% ergs (smeprms Mmomemu Iaycca), E = -2,4910x10°° ergs (sHeprus KycouHo-

Gauss
HenpepbIBHON Moaenu Powra) u Epppy, = —2,4884x% 10%° ergs (aneprus mogemn PREM). IToo6HOE cornacoaue

Ha6n1011an001> n AJ1s1 OHCHOYHBIX 3HAYCHUI OHEprun HaMHpOCTeﬁmHX MOZ[CJ'ICIZ IJIOTHOCTH, KOTOPBIE COCTOAIN
U3 IBOX CJIOEB — KOPbI 1 MAHTUH. B craTpe MPUBEACHBI PACIPCACIICHNA BHYTPEHHEI'O IOTCHIMAJIa U €ro HepBOﬁ
u BTOpOﬁ MPOU3BOAHBIX HJISI HEIIPCPBIBHBIX U KYCOUYHO-HECIIPEPBIBHBIX MOI[GHeﬁ mIOTHOCTH. C HCIOJIb30BaHHEM

TPEXMEPHBIX MOJIENEH UIOTHOCTH aHATM3UPYETCs BIMSHUS BEKOBOI Bapuaimy 30HanbHoro koaddummenta Cy,
Ha r7100aJIbHbIe U3MEHEHUS IUIOTHOCTH.

KaioueBble ciioBa: rpaBUTALIMOHHAS TOTEHIMANIbHAS €HEPTUsl, BHYyTPEHHHUI MMOTEHIIUAN, pacipeeieHue
TUIOTHOCTH, OLICHKA TOYHOCTH.

Hauyionansuuit ynieepcumem “JIveiecoka nonimexuixa”, m. Jlveie Hapniitnuia 9.10.2008
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