T'EOJIE3IS
GEODESY

UDC 528.2

B. DZHUMAN

Department of Higher Geodesy and Astronomy, Lviv Polytechnic National University, 6, Karpinsky str., Lviv, 79013, Ukraine,
e-mail: teojuman@gmail.com

MODELING OF THE EARTH GRAVITATIONAL FIELD USING SPHERICAL FUNCTIONS

https://doi.org/10.23939/istcgcap2017.02.005

Aim. There are many methods for modeling a regional gravitational field in which the Legendre spherical
functions of integer degree of the real order are used. They relate, however, mainly to the region which form
represents a segment of the sphere. In addition, for their use, the input data must be transformed into a sphere segment
with its center at the north pole. The aim of this work is to find a system of functions that would have orthogonal
properties on an arbitrary spherical trapezium, as well as researching the properties of such a system. Method. Based
on the Legendre spherical functions on the spherical segment, an orthogonal system of functions to an arbitrary
spherical trapezoid was developed. Such functions can not be explicitly stated, nor do they have recurring
relationships. Results. This article examines the associated Legandre spherical functions on the spherical trapezium
where the functions are orthogonal and provide the formulas for defining the norms of these functions. The obtained
functions can be used to build regional models of the gravitational fields on the arbitrary spherical trapezium. The
orthogonality of the functions ensures a sustainable solution when determining the unknown model coefficients. To
model the regional gravitational field with high accuracy, it is necessary to grid the input data (define the
transformants of the geopotential), and then use the partial discrete orthogonality of these functions in longitudial
direction or full discrete orthogonality similar to the second Neumann’s method. This allows significant reduction of
computing time without any loss of accuracy, as the functions under study do not have any recursive relations and it
is required to use the decomposition into the hypergeometric series to define these functions. The scientific novelty
and practical significance. In this paper we first obtained a system of functions that were orthogonally consistent to
an arbitrary spherical trapezium. It can be used to construct a regional gravitational field, a regional magnetic field,
and also for high-precision interpolation or approximation tasks, for example the construction of a regional
ionosphere model.
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system but of the real degree [Haines 1985]. Such
functions obey the Laplace’s equation and form two
orthogonal systems of functions on the spherical
cap. However, in general these functions are not
orthogonal. They do not have recurrent relations
and they can be calculated by their decomposition
into the infinite hypergeometric series [Haines
1988]. In addition, it was suggested to use the
adjusted spherical harmonic analysis [De Santis
1992] that presupposes the transformation of the
coordinate system from the spherical cap into the
half sphere. In this case, it was proposed to use the
adjusted  spherical harmonic  analysis that
presupposes the transformation of the coordinate

Introduction

It is common to use the associated Legendre
spherical harmonics for building the gravitational
field of the Earth, as the harmonics are orthogonal
overall the sphere and obey the Laplace’s equation
similar to the potential function [Hobson 1931]. In
addition, the associated Legendre spherical
harmonics can be decomposed into the finite
hypergeometric series that allow using simple
recursive relations for their calculation. However, if
the measurements are conducted not on the whole
surface of the Earth but rather on a certain part of it
such as in a regional model, then it is impractical to
use the associated Legendre spherical harmonics

which lose their orthogonality and the solution
becomes unstable.

To solve this problem, in 1985, it was sugges-
ted to use the spherical cap harmonic analysis that
presupposes transformation of the input data into
the spherical cap and usage of the integer-order
Legendre spherical harmonics as the basic function

system from the spherical cap into the hemisphere.
In this case, the eigenvalues of spherical functions
become integers. However, in spite of this, such
functions are not orthogonal but they form two
orthogonal systems of functions similar to the
functions on the spherical cap. Additionally, such
methods as translated origin spherical harmonic
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analysis [De Santis 1991], revised spherical cap
harmonic analysis [Thebault et al. 2006], and other
methods were suggested.

Aim

Computation of high-accuracy gravitational
fields require models of high order. For example,
the global models EGM 2008 and EIGEN-6C4 are
built to 2190 order [Pavlis et al. 2012]. Despite the
fact that the models of the regional fields of the
same accuracy will have a much lower maximum
order, it is recommended to use the orthogonal
system of functions as the basic system to obtain a
stable solution [De Santis & Torta 1997]. This

article aims at finding and investigating such
systems of functions on the spherical trapezium.

Method

Generally for modeling the gravitational fields
in the spherical coordinate system (r, 0, A),
functions each of which depends only on one
coordinate

V=f(r) g6 h(d) (1
and which obey the Laplace’s equation are used.
Laplace’s equation in the latitudial direction is

represented as a differential equation of the second
order.

sin@-g"(0)+cosb-g'(0)+

2

m j—
n e]g(@) =0. @

The Legendre spherical functions of the first
and second kind provide a solution for it. Since the
Legendre spherical functions of the second kind
diverge at the poles, the Legendre spherical
functions of the first kind are used and can be
represented with the hypergeometrical series as
follows [Hobson 1931; Hwang & Chen 1997]:

+ {n(n +1)sinf —

P, =sin"(0-6

min

P, =(-1)""sin"(6,.  —0) 'F(m—nk,nk +m+1L1+m,

where k and m are integer values, and 6, is the ave-

6. +6.)/2. Inits turn,
the values of #, will depend on k and m. They can be

calculated [Haines 1985; Hwang & Chen 1997] using
the following equation if k—m is an odd value:

Iy 56)=0, (7

or using the equation:

rage value, namely 6

mean ~ (
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, 3)

where n and m depend on the imposed boundary
conditions and g(@)=P, (cosb).

If to find such values of # on some segment of
the sphere 6 <6, for which the following equation
will be true:

l—cosﬁj

dP, (cosb,)

nm — 0 , 4
d(cosB) @
as well as
P, (cos@,)=0, &)

then the corresponding functions will form two
orthogonal systems of functions on the segment of
the sphere under study [Haines 1985; Haines 1988].

Fig. 1. Spherical trapezium

The following functions are examined on the
spherical trapezium (fig.1) limited by the
coordinates 6,0, A . A

min > “'max > “ “min > ¥ “max

%j’ l..f. Hmln S 0 S 6”16(1"
1—cos(@ . —6) ’ ©
$j’ lfv emean S 6 S amax
> :
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if k—m is an even value, where 6,=(0,,. —6...)/2

and I represents conditional hypergeometric
series [Hwang & Chen 1997]:

Iy, =F(m—n,m+n+1,m+1,l_T'u). 9



eodesisi, kapmoepadpisi i aepogpomosHimaHHs. Bun. 86, 2017 7

From the equations (7) and (8), it becomes
obvious that the functions (6) are continuous as
they have the same value in the point =46

mean *

When k-m is even, then (—1)*"" =1, and when k-m
is odd, then B,,(0,...)=0.

mean

Results

Functions (6) form two orthogonal systems of
functions  with  respect to the weight

function [sin(@-6,,) over the segment|[d,.:6,.. ]
[Haines 1985; Smythe 1950]:

Hm ean
[P (0)P,,(0)sin(0-6,,)d0 =0,  (10)
Ormin

where & # s and k-m and s-m are both either even
or odd. A similar equation can be used for

[ emean ’ amax ]
Ormax
[ P (0)P,,(0)sin(0,,, —0)d6=0. (1)
Hm ean

According to the functions (6), if k-m is even,
then the functions B, will be even on the segment

[Hmin ’ Hmax

| relatively to 6,,,, and if s-m is odd, then

mean

the functions P, will be odd on this segment

relatively to 6

mean

. Integral of the product of an
even function and an odd one is equal to zero. In
conclusion, functions (6) are orthogonal on the
segment [6,.:6,..]:

)d0=0. (12)

Let us build the graph of the functions (6), for
example, on the segment [2\0° \7\0°]. For this, the

sm

Ormax
.[ Pkm (H)P (9) Sin(eo - |0 - amean
Ornin

value of 7, when 6,=25° was calculated using

the formulas (7)—(9). These values are provided in
the Table 1.

Table 1
Values of n,(m) when 6, =25°
k/m 0 1 2 3
0 0.000
1 5.004 3.806
2 8.296 8.296 6.632
3 12.148 11.743 11.324 9.318

Fig. 2 shows the graph of the functions (6)
when m=0and £ =0,3.

Let us examine the following functions on the

segment [4;4,]:

(13)

where m is integer value. It is easy to illustrate that
such functions build an orthogonal system of
functions on the segment [4;4,]:

P _ _

| sin 27rm/1 -sin 27zlM diA=0

2 Z A=A

A _ _

| sin 27zm;t A -CoS 27[1/1 A dl=0; (14)
; PRy} Ry}

;‘1 —_— p—

| cos 27rm/qL A -COS 27[1/1 A dA=0

g =4 PRy}

where m # 1.

Fig. 3 shows a graph of functions (13) when
m = 0,3 on the segment [3\0% \5\0°].

To summarize the above-mentioned, the
following functions are obtained on the spherical
trapezium that is limited by the coordinates
6,050 A > Ao -

min > “'max *>“ “min > ¥ “max

R, (0,1)=F, (cosb) cos(an A __2’ ],
j: /:1 (15)

S,,(0,2) =P, (cosf)sin| 2 2

0,1) (cos )sm[ ”mﬂz—ﬂJ

Equations (12) and (14) show that functions (15)
are orthogonal on the spherical trapezium, namely:
IR, (B,)R, (0,1)do=0

if s#n or r+m,

[18,,(0,2)S,(6,A)do =0 (16)

IR, (0,0)S,,(0,A)dc =0 in any case,

while an element of a sphere and integration is
carried out over the spherical trapezium.

Fig. 4 shows a graph of a function R(0,1).

Functions (6) change their sign for k-m times in
the interval 6 . <@ <6__ whereas functions (13)
Apin SASA .
Therefore, functions (15) divide the spherical
trapezium into parts where they are alternately
positive and negative similar to a chessboard. Fig. 5
shows the geometrical representation of the
function R,(6,1).

have 2m zeroes in the interval
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Fig. 2. Legendre spherical functions (6) on the segment [2\0%; \7\0°]
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Fig. 3. Functions that are orthogonal on the segment [3\0°; \5\0°]

Fig. 4. Graph of a function R,(0,1)-10’
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Fig. 5. Zeroes of the function R(0,1)
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Norm of the functions (6) can be calculated using the following formula [Haines 1985; Hwang 1993]:

T 0, - cos 6,
Np, = j m)m(cose)sinedezzwﬁ[ > (m)m(cosﬁ)}M if k—m=odd
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0 m+l on|  d(cos6,)
20, - cos 6,
N, = J. . oy (€08 0)sin Od 6 :2%&[ > o (€080 )]M if k—m=odd
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' (17
—cos’ cosé,
N;m=2j1>,fm)m(cos9)sin9d9=—2m n(m)m(cosﬁ)— o (088) | if k—m=even
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Conclusions

Expressions for calculating

and 2 "y (m)m(cose )
on d(cos8)

& Chen 1997; Macdonald 1900].

88 [ B, (ym(cO86, )]

} are presented in [Hwang

On the other hand, it is easy to represent the
norm of functions (13) as follows:

= jcos [27zm A ]dﬂ—

:?sinz(Zﬂmi__/}q jdz: % ;’11 . 8)

The expression for calculating the normalized
functions (15) is the following:

R, (0.2)= " 02)
Nka
0.1 (19)
km (6 l)_ km( )
N /th
Functions R, (6,1) and S, (6,4) form an
orthonormalized system of functions on the

spherical trapezium. Practically any function V

defined on the spherical trapezium can be

decomposed into series using the functions (19).
The function

V= izakakm(H A)+b,,S,,(0,2), is used (20)

k=0 m=0

where @,, and b,, are unknown coefficients.
The scientific novelty
and practical significance

An orthogonal system of functions on an
arbitrary spherical trapezium is proposed. It can
be used to construct a model of the regional
gravitational field having high resolution.

This article suggests using the orthogonal
functions on the spherical trapezium for modeling
the regional gravitational field. The algorithm for
this method is the following:

1. Calculate coordinates of vertices of the

0..0 A A

min > min » where

spherical trapezium

the input data is known.

2. Define the midpoint of the trapezium and
find the n eigenvalues.

3. Calculate a norm of functions under study.

4. Determine the unknown coefficients of the
model using the method of least squares.

It is worth mentioning that for building the
models of high order, it is recommended to place
the input data on a certain grid [Sneeuw 1994]. This
not only reduces the time required for accurate
calculations, but also uses the discrete orthogonality
of the functions during calculation and rotation of a
matrix of normal equations [Marchenko & Dzhu-
man 2015].
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MOJIEJTFOBAHHS 'PABITALIMHOI'O ITOJIS1 3EMJII 3 BUKOPMCTAHHSM COEPUYHUX OYHKIIIN

Merta. IcHye Garato MeTOJiB MOEIIOBaHHS PETiOHAIBLHOIO TPaBiTAlliiHOTO MOJIS, B SKUX BHKOPHUCTOBYIOTH
chepruni ¢yHkuii JlexaHapa WIJIOTO CTYNEHs, MPOTE MIHCHOTO MOpsAAKY. [IpoTe BOHH CTOCYIOTHCS IEPEBaXKHO
perioHy, sKuii 3a (OpMOIO CTaHOBHTH cerMeHT cdepu. KpiMm Toro, mms ix BUKOpHUCTaHHS NMOTPiOHO BXiAHI MaHi
TpaHCc(OpPMYBaTH Ha CETMEHT C(epH 3 LEHTPOM Ha MiBHIYHOMY momoci. MeTorw 1iei poOOTH € 3HaXOIKEHHS
cUCTeMH (QYHKIIN, Tka O Malla OpTOTOHANBHI BIaCTHBOCTI HA JOBUIBHIN CEpHUUHIN Tparelii, a TAKOX JOCIiIKEHHS
BIIaCTHBOCTEH Takoi cucremu. MeToauka. B3sBmm 3a ocHOBY cdepnuni ¢ynkuii Jlexxannpa Ha chepuaHomy
CErMEHTI, po3pobJIeHO cucteMy (YHKIIH, OpTOrOHANBHY Ha JOBUIBbHIN cepuuHiil Tpamenii. Taki pyHKUIT HE MOXKHa
3aJaTd B SIBHOMY BHIJISI, @ TaKOXX BOHM HE MAalOTh PEKYpEeHTHHUX CIHiBBigHOIIeHb. Pe3yabTraTH. Po3risHyTto
npuenHani chepuyni Gynxuii Jlexanapa Ha chepuyHiii Tpaneuii, ki MalOTh BIACTUBICT OPTOTOHAIBHOCTI Y 1IbOMY
perioni. HaBeneno dopmyinu uist 3HaX0/PKeHHST HOpMU Takux QyHKIiH. OTpumaHi GyHKIIT MOKHa BUKOPHCTOBYBATH
Juist MoOYJJOBM pPErioHajbHUX MOJENeil rpaBiTalliifHUX IOJIIB Ha JOBUIBHIN cdepuuHiii Tpanenii. OpToroHansHa
BJIACTHBICTb JAOCIIKyBaHUX (YHKIiH 3a0e3nedye CTIHKUI pO3B’SI30K i 4ac 3HAXOKEHHs HEBIIOMUX KOe(Illi€HTIB
Mozeni. J[7s BHCOKOTOYHOTO MOJEIIOBAHHS PETIOHAIFHOTO TPaBITAIIIfHOTO TOJIT HEOOXITHO MeperpiayBaT BXIiIHI
JaHi (BEMIpsiHI TpaHC()OPMAHTH TEOMOTEHINially) Ha MEBHHUH TPiJ, 1 MICIA MFOTO MOXHA BHKOPHCTATH YacTKOBY
JICKPETHY OPTOTOHANBHICTE NaHWX (YHKIIA MO OBroTi a00 MOBHY IHUCKPETHY OPTOTOHAIBHICTh IMOMIOHO 1O
apyroro merony Heiimana. lLle nae 3Mory cyTTeBO CKOpPOTHTH dYac OOUYHMCIeHb O€3 BTpaTW TOYHOCTI, ke
JOCIIKYBaHI (DYHKINT HE MarOTh PEKYPCUBHUX CITIBBITHOIICHB i JJIS iX 3HAXOKCHHS HEOOXiTHO BUKOPUCTOBYBATH
po3kiaj y rinepreomerpuunuii psa. HaykoBa HOBH3HA i IpaKTHYHA 3HAYYIIICTh. Y il poOOTi BIiepiie OTpUMaHO
cucteMy (yHKIiH, OpTOroHanbHY Ha JOBiIbHIN chepuuniit Tpanerii. Ii MoxHa BUKOpHCTOBYBaTH ISl MOGYIOBU
perioHaJbHOrO TpaBITAIIMHOIO TIOJIS, PETiOHAILHOTO MArHITHOIO TOJIs, a TaKoX JUis 3aJad BUCOKOTOYHOI
IHTepHOJISIIT a00 anpoKcUMaIlil, HAIPUKITA]] MOOYIOBH PEriOHAIBHOT MOJIEI 10HOC(hEepH.

Kmiouosi crosa: chepuuni GpyHkiii, chepuuHa Tparneiisi, OpTOrOHAIbHICTb.
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