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The numerical-analytical method of solving the problem of determining the stress-optimal
modes of heating by convection and by heat sources due to electromagnetic radiation in
the infrared range for piecewise-homogeneous shells of revolution is presented.
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In the present work, a numerical analytical method is proposed for determining optimal (in terms of
stress) conditions for convective and volume heating (particularly by infrared radiation) of piecewise-
homogeneous shells of revolution under given constraints for temperature and stresses.

The shell consists of the n homogeneous segments of the constant thickness 2h occupying the
domain Ω. It is expedient to introduce mixed orthogonal coordinate system {αj(j = 1, 2), γ}, the
coordinate axes of which αj = const are lines of principal curvature, while γ is the normal to the
median surface. Heating of the shell occurs on account of internal heat sources (volume heating) and
convective heat transfer with the external atmosphere, the temperature of which is the control function.

The constrains on the temperature and temperature stress are specified in the form of domains of
permissible variation
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6 Ṫ±

k
6 T±

∗∗; T ∗±
s 6 T±

s,k
6 T ∗∗±

s0 ; (1)

σ±
0i,k 6 σ±

i,k 6 σ±
∗i,k, (2)

where the plus and minus signs in the superscripts correspond to quantities at the external and internal
surfaces, respectively; a prime denotes the time derivative; T±

k
, T±

s,k
are the temperatures of the k-th

shell, the interval, and external atmosphere at the surfaces γ = ±h, respectively; σ±
0i,k

6 0, σ±
∗i,k > 0;

σi,k is the normal stress (i = 1 and i = 2 correspond to meridional and to annular stresses, respectively);
k = 1, n denotes the domains of homogeneity.

The shell is to be heated from the constant initial temperature Tp to the maximum temperature T0

at the surface γ = h, and then cooled to the temperature T∗ (T∗ 6 T0), with observing the conditions
(1), (2).

Additional conditions of the form

F1(α1∗, α2∗, γ∗, Tk, T0, Ṫk, T∗, t0, t∗) 6 0 (3)
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reflect the technological features of the heat treatment; αj∗, γ∗ are the coordinates of a fixed shell
cross section; t0, t∗ are the minimum times to reach the maximum T0 and final T∗ temperatures of
the external shell surface, respectively. In particular, such conditions include the well-known target
conditions for the shell temperature of a nonferrous TV picture tube in the thermal conditions of
degasification (specification of the required initial, maximum, and final temperature at the external
shell surface) Ref. [1].

The optimal condition is assumed to correspond to minimization of the functional of maximum
normal stress

I = max(σi,k(α1, α2, γ, t)), α1, α2, γ ∈ Ω, 0 6 t 6 t∗ (4)

characterizing the strength of the given glass shell Ref. [2].
The process of solving of defined optimization problem is based on principle of stage-by-stage

parametrical optimization. On solving the direct problem, i.e. on finding temperature and stress in
convective heating, the conditional extremum of functional Eq. (4) is found with the use of the method
of local variations Ref. [3] in stationary space of control function. Note that solution of the direct
problem can be found on the basis of any thermomechanical theory. The theory of thermoelasticity
of shells with temperature-dependent thermal expansion coefficient is chosen here; this theory is often
used to describe the mechanical behavior of glass shells Ref. [4].

The temperature field in the shell is then described by the heat conduction equation

∂2Tk

∂γ2
+ p2kTk = −

Q∗k

λk

, (5)

with the initial conductions

Tk(α1, α2, γ, 0) = T0(α1, α2, γ) ≡ const, (6)

and the conductions of convective heat transfer with the external atmosphere
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where
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,

A1, A2 are the coefficient of the first quadratic form of the median surface; Q∗k (α1, α2, γ, t) is the
density of heat sources; ak, λk are the thermal conductivity and thermal diffusivity; H+

k , H−
k are the

relative heat-transfer coefficients with the lateral surfaces γ = ±h.
In addition to the boundary conditions corresponding to convective heat transfer, a closed shell can

also be in more complex conditions of heat transfer with the internal medium, which can be described
in general form by the following functional relation

F2(Tk, Ts,k,H
−
k , λk, . . .) = 0 (8)

between the temperature of the internal medium and the shell temperature and also the thermophysics
characteristics of the material and the medium.

At the contact surface of different sections of the shell, the conditions of ideal thermal and mechan-
ical contact are assumed Ref. [5]. The mechanical boundary conditions can by formulated in terms of
both stress and displacement Ref. [5].
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For approximate solution of the heat-conduction problem, the temperature distribution over the
thickness coordinate γ is represented as the m-th order polynomial

Tk(α1, α2, γ, t) =

m
∑

i=1

bi−1,k(α1,α2, t)γ
i−1. (9)

The function bi−1,k (α1, α2, t) is expressed in terms of the main characteristics of the temperature
field over the shell thickness Ref. [6]

Tp,k =
2p − 1

2hp

∫ h

−h

Tkγ
p−1dγ (10)

and the specified boundary conditions (7). The equations for determining the p (p = m − 1) mean
that characteristics Tp,k are obtained by multiplication of Eq. (5) by γp−1 and integration with respect
to this coordinate, taking into account Eq. (10). Assuming a cubic temperature distribution over the
shell thickness, the following system of equations is obtained for T1,k and T2,k
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where
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Bi±k ≡ H±
k h are Biot coefficients.

The coefficients bi−1,k in Eq. (9) are determined from the system of equations obtained by substi-
tuting Eq. (9) into Eqs. (7) and (10), and take the form

b0,k =

[

1 +
h2

3
R1,k

]

T1,k +
h2

3
R2,kT2,k −

h2

2
(R4,kT

+

s,k +R5,kT
−
s,k),

b1,k =
3h

5
R2,kT1,k +

[

1

h
−

3h

5
R3,k

]

T2,k −
5

2h
(R7,kT

+

s,k −R6,kT
−
s,k),

b2,k = −R1,kT1,k −R2,kT2,k +
3

2
(R4,kT

+

s,k +R5,kT
−
s,k),

b3,k = −
1

h
R2,kT1,k +

1

h
R3T2,k +

5

2h
(R7,kT

+

s,k
−R6,kT

−
s,k

).

(12)
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Initial and ideal contact heat conditions in terms of T1,k, T2,k are as follows

T1,k = Tp, T2,k = 0,
∂T1,k

∂t
= 0,

∂T2,k

∂t
= 0, for t = 0,

T1,k = T1,k+1, T2,k = T2,k+1,
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(13)

where ξ is the vector normal to contact surface.
Constitutive correlations are formulated both in the coordinates {α1, γ} and in canonical coor-

dinates {s, γ}. Grid method for determination of integral characteristics at unconditionally stable
difference scheme is involved to find the solution of thermal conductivity equation.

Discrete values of integral characteristics are used for determination, according to known correla-
tions, the temperature in grid points.

As an example, consider the optimal (in terms of the stress) conditions of uniform heating of the
external atmosphere with specified heat sources for a piecewise-homogeneous cylindrical shell that
consists of three different parts. The internal shell surface is heat-insulated, and the control function
is the time-varying temperature of the external shell surface T+(t) satisfying conditions of the form

T+(0) = Tp; T+(t∗) = T0;
dT+ (t)

dt
6 10◦C/min,

dT+(t∗)

dt
= 0, (14)

which represent a particular case when the first two conditions of (13) correspond to Eq. (1) and the
second two conditions correspond to Eq. (3). Here t∗ is the time to heat the surface from the initial
temperature to the maximum temperature T0. Heat sources of the constant density (Q∗k = 105 W/m3)
act in the shell.

Numerical investigation are conducted for the shell of the radius R = 0.25m and the thickness
2h = 0.014m made of glass with the following characteristics

E1 = 65.4GPa, E2 = 75.6GPa, E3 = 63.3GPa;

λ1 = 1.63Wt/(mK), λ2 = 0.065Wt/(mK), λ3 = 0.74Wt/(mK);

C1 = 795 J/(kgK), C2 = 239 J/(kgK), C3 = 736 J/(kgK),

ρ1 = 2560 kg/m3, ρ2 = 4080 kg/m3, ρ3 = 2800 kg/m3;

ν1 = ν2 = ν3 = 0.215.

The temperature dependence of the coefficients of linear thermal expansion is shown in Fig. 1.
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Fig. 1. Temperature dependence of linear tempera-
ture expansions coefficients.

Fig. 2. Time dependence of optimum temperature
and stresses.
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The optimal variation in time of the control function — the temperature T+(t)corresponding to the
annular and meridional temperature stress at the external and internal shell surfaces in cross section
x = 0.001 (chosen as a result of analysis of the maximum temperature stress) is shown in Fig. 2.

Then, the discrete values of the key functions, forces, moments, and stresses for each point sn, tm
are determined on the basis of structure of the general solutions of mechanics equations for shells of
the given type Refs. [4, 5, 7] and of piecewise-linear approximation of the temperature dependence of
the thermal-expansion coefficient.

Outlined optimization method consists of two iterative processes: variation process for the control
function Ts,k ≡ {fk(ti)} at discrete time instants with fixed variation step δ and process of dividing
of this step until its given value is attained. In this process, the choice of zero approximation for the
control function, which convergence of the iterative process depends upon, is important. To construct
such an approximation, the iterative algorithm is developed. This algorithm is founded on the usage
as an initial control function, the optimal (in terms of the stress) convective heating of homogeneous
spherical shell, with its following correction.

In many cases, piecewise-homogeneous glass shells are made of materials with similar thermophysi-
cal characteristics. For such shells, with heat sources that do not depend on the coordinate s, effective
target conditions of uniform temperature of the external atmosphere (depending only on the time
t) can be constructed. In this case, the temperature variation along the meridional coordinate sis
slight and can be neglected. Consequently, it is assumed that the temperature in each part of the
shell is a function of the thickness γ and time t, and the displacement is a function of the time and
the coordinates γ, s. Then governing equations system is one of first-order differential equations with
constant coefficients. Note that its solution may be found more effectively (in terms of computer time
and memory requirements) by the least-squares method Ref. [8,9] with a finite-element approximation
of Ts(t), rather than by the difference method outlined above. This significantly simplifies the proce-
dure for numerical determination of the thermos-stressed state parameters of a piecewise-homogeneous
shell (the procedure for solving the direct problem) in the optimization algorithm. In heating from
the initial to the maximum temperature, the greatest tensile temperature stress is the annular stress
that arises at the internal shell surface. The optimal heating conditions are calculated such that the
permissible tensile stress for all stress components is the same. The dashed curve corresponds to the
optimal heating conditions in the absence of heat sources and with the same constraints for the tensile
stress at the internal surface. As it is evident, the use of additional heating in this case permits the
reduction in the heating period to 20min with the same maximum heating temperature.
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Запропоновано числово-аналiтичний метод знаходження оптимальних за напружен-
нями режимiв нагрiву конвективним способом та джерелами тепла, створюваних
електромагнiтним випромiнюванням iнфрачервоного дiпазону частот кусково-одно-
рiдних оболонок обертання.
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