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Abstract: It is established that the digribution of
density of induced current in conducting half-space has
no component perpendicular to the planar interface
between media, regardiess of (1) the properties of the
medium, (2) configuration of a current-carrying contour,
and (3) the current dependence on time. It is shown that
the surface density of eectric charge is determined only
by the normal component of the strength of the induced
electric field of the source-system of currents.

In the case of a strong skin effect in eectric
conductive medium, conclusions have been drawn based
on the correct solution of the task of eectromagnetic
field. Spreading the statement on the general case of
medium with arbitrary electro physical properties is
based on the well-known zero solution of the boundary
problem for a vertical component of eectric field
strength in eectrically conductive medium defined as a
task of homogeneous equation of parabolic type with
zero boundary conditions. Results are illustrated by the
example of calculating the surface density of the electric
charge in the case of the planar current-carrying contour
if the current is supplied using two parale conductors
perpendicular to the central part of the contour.

Key words quas-dationary three-dimensonal eectro-
magnetic fidd, arbitrary loop with current, eddy currents

1. Introduction

In many technical applications, the mathematical
model in which primary current sources are aternating
currents flowing aong the contours of certain
configuration is used for determining the distribution of
electromagnetic field [1, 2, 3]. When the primary
currents flow near conducting bodies, eddy currents are
induced in them, and these currents aso participate in
the formation of the field. The eddy currents can perform
useful work in technological processes, for example, in
induction heating devices [4, 5] or in devices for
magnetic-pulse sheet pressing. In some other cases, the
external fields can cause harm to control and monitoring
units, as well as the service staff, for example, in
electrohydraulic pulse installations [6].

In [7, 8], the problem for the case of planar interface
between conducting and didlectric media is consdered for

quas-gationary eectromagnetic field in generd formulation.
However, the andytica solution has been obtained for vector
potential and induction of the magnetic fidd only in a
didectric domain, where the current-carrying contour was
located. Besides, the neglect of displacement current did not
allow usto determinethe dectric field srength in the case of
spatid loops. The result has been found only for planar
contours, which were paralle to theinterface between media.

In genera, the three-dimensiona analytical solution
of quasi-gtationary problem in the system “arbitrary
contour with alternating current — conducting hal f-space”
in the whole space does exist. The aim of this work
consists in ascertaining the general peculiarities of
distribution of electric field strength and that of current
density in conducting medium and, as a consequence,
determining the vertical component of eectric field
strength at the interface between media and determining
the field sources at this planar surface.

2. Mathematical model
Let us consider an arbitrary contour in an electricaly
non-conductive non-magnetic medium with the relative

dielectric permittivity €,and let the current Io(t) flow

aong the contour. The contour is located near the
conducting body whose rel ative magnetic permesbility is
m(in Fig. 1, original current-carrying contour is shown
by a solid linein the upper half-space z>0).
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Fig. 1. Computational mode!.



70 Yuriy Vasetsky, Iryna Mazurenko, Konstantin Dziuba

It is assumed that the dimensions of the contour are
considerably less than the size of the planar patch of the
body surface; this enables us to use the modd of a
current-carrying contour located above the conducting
half-space. We consider the linear problem of calculation
of quasi-stationary electromagnetic field concerning the
case when the current density satisfies the condition of

continuity (divj =0) and, therefore, the current-

carrying contour is closed.

Defining the problem as quas-dationary assumes the
satisfaction of two redtrictions firdly, the wavelength | of
the dectromagndtic fidld mugt be consderably longer than
any characteridic Sze L of the dectromagnetic system, i.e

| =2p/w,/rmyee, >>L; secondly, in the equation of
total current the dendty of displacement current jD istobe
neglected in comparison with the densty of the conduction
current i [9, 1Q].

The problem is described by Maxwell’'s equations
for such vectors of fleld as dectric field strength E
magnetic field strength H , magnetic induction B and
electric displacement D the density of the current from
externa sources io in contour elements [9] being taken
into account:

VLA SR SR |
lrotH=j,+j, divB=0

[ r

i B r «y
jrotE=-—; divD=r

I it

For the linear problem,
piecewise continuous medium can be located only at the
interface between media with the corresponding surface
density s.

The congitutive equations, which complement
equations (1), are:

the free charge r in

z>0: f) =e eOI'Ee I:% =rr1)|-l|e,
r I—rl 2

z<0:

where physical quantities in the domains z>0 and

z<0 ae marked with the subscripts “e” and “i”
respectively.
On the surface of the conductor, the boundary

conditions for the tangentia and norma components of
the vectors of dectromagnetic field are satisfied.
Moreover, the condition of field vanishing at infinity
must be established:

(& (E-E)=0& (Jv Jl) 0. @
(£ =0 &€ =s e & {B'- B )=0. @

Here, the fidd vectars on the interface between the
media located on the positive and negative parts of the axis

2 have subscripts “+” and “—, respedtively (Fig. 1), leZ is
the unit vector in the direction of theaxis z .

1
Let us introduce a vector potentiad A and a scalar
potential | :

é=—gradf A (5)

r r
B =rot A
It

and let us use the Coulomb gauge:

divA=0. ©)

If in quas-stationary approximation the
displacement current are neglected, Maxwell’ s equations
for the potentials take on aform as follows

é. ® A&
DA=-mm &j, +g9 % gradf - 2N DF =- 1 (7)
mn,g ™ fit a.lu €S
Here, in the right side of the equation for the vector
potential, the density of conduction current is put in
parentheses. In the upper half-space only the source
current flows

! rryl
Jozlod(rm - rQ)tM! (8)
rory. _ N
whered(r,\,I - rQ) isthe Dirac delta function, t,, isthe

unit vector of tangent to the contour line. In the
conducting half-space z < 0 the eddy current flows. The
charge is distributed along the interface between the
media

r=s(x y)d(2). (9)

The equation (7) describes the known fact that in
application of Coulomb gauge, under the conditions of
considering the field in all the space and its absence at
infinity, the vector potential is determined by the
conduction current, and the scalar potentia is determined
by the electric charges[11, 12].

Note that when we use only vector potential, the
electric field strength in (5) can be determined with the
accuracy to within a potential summand. However, the
equation of scalar potential also contains the unknown
value of the surface density of charges , that does not
allow us to formulate the boundary-value problem for
scalar potential and to determine the potential
component of dectric field strength. The authors of the
work [13] pay attention to this property showing that
first of all the difficulty arises for three-dimensional
problems, and the solution becomes unambiguous if
additional conditions ae set. The ambiguity in
determining the strength of the eectric field is not
essential, for example, in the determination of the
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induction of the magnetic field or em.f. induced in a
closed contour. However, the calculation of dectric fidd
strength  becomes necessary, for example, if local
characteristics of action of dectric fielq or Ienerlgy flux

density of eectromagnetic fidld P=E" H ae
determined and in some other cases.

The main task of this article is to show that the
features of field distribution and current dendty in
conducting media in the case of planar interface between
dielectric and conducting media enable us to solve the
aforesaid problem, i.e, to find the boundary conditions
for dectric field strength and determine the surface
charge dengity.

3. Peculiarities of current distribution and
conditions on the inter face between media.

Let us, first, condder the problem for strong skin
effect and then generdize the results for the genera case
of arbitrary electrophysical properties of conducting
medium.

3.1. Strong skin effect.

In the case of strong skin effect, for the calculation
of the field outside the conducting body, it is necessary
to solve the corresponding stationary problem for
perfectly conducting body of the same shape [7, §].
Under a given digtribution of current density io of the

sources, the statement of the boundary value problem is
reduced to defining Maxwell’ s equation for the magnetic
]

field strength H and to the condition of the absence of
the norma component of the field on the surface:

1 1
divd =0, H xh=0,

rotl—ll = j , (20)

where N isthe unit vector outer normal to the surface of
the conducting body.

The boundary value problem (10) completely
determines the existence of a unigue solution.

For the andlysis of the electromagnetic fidd in
superficial layer of conducting body, the known model
[9] of the diffusion of the planar field into conductive
half-space usually holds true. In such amodel, the initia

1

physical quantity is the tangential component H, of the

field, whose local value for an arbitrarily shaped body is

determined from the solution of outer problem (1). The

surface density is of current in a conducting body is
1

determined by the value of tangential component H,
and must satisfy the condition of continuity:

I ]

Jo=n"H, divj;=0. (12)
The solution to the problem (10) for the planar

interface between media is the magnetic fidd above the

surface of the conducting body for z >0, which is caused

by the current |, of the origina contour and by the

fictitious current |, of themirror contour (Fig. 1) [16, 17].
In Fig. 1 the directions of elements td o the

original contour and ﬂdl of the mirror contour are

characterized by unit tangent vectors{ and {1 d isthe

length of elements of the contour. Projections of tangent
vectors onto the vertical axis are equa in absolute values

and opposite in their directions (ilz =-t'Z), and the
projections {” and {1” onto the plane of the interface

between media are equal in their lengths and directions
1 1

— ) 1 _ 1 1 1 _I I
L=t ie t=te+4, 4= -6,

]
The magnetic field strength H created by two
current-carrying contours in an arbitrary point (z>0) is
the following

(12)

Taking into consideration the fact that in the case
when the vectors connecting the point of observation Q

located on the planar interface between media with the
1 1
elements tdl and t,dl are f=C+ h'ez, the magnetic

field strength can be presented in terms of coordinates of
the original contour only in the following form

r br & ()
H(z=0)=—;ez'(‘)z—3dl. (13)
| r

From (13), it immediately follows that the normal
: : r .
component of the field strength is absent, H>e, =0. This

indicates that (13) is the solution of the stated problem
(10) for the planar interface between media

Subsequently, the surface density of current is found
from (11):

rr,é | t'><rr U 2r r

r - I P u ,

=6 & 2o—dy=—g roth, (14
ST Epirt i om

where ,I% is the vector potential of the field created by
the original current.

According to knowledge of secondary sources, there
is a surface eectric current flowing on the interface
between media, and the eectric charge with definite
surface density s can be digtributed there. All the

sources, namely, the original current |, surface current

density is and distributed surface charge S together
make up the eectric field in the whole space including
the domain z<0, wherethetotal field is equal to zero.
A simple analytical solution to the considered problem
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enables us to obtain a clear idea about the formation of
both secondary sources creating the field.

So far we have considered the magnetic field above
the surface of the conducting body for z>0, to
determine which it was sufficient to introduce a fictitious
current of the image contour. In this case, the vector
potential isrepresented by the formula

I I
rr r ml,a t60
A=A +A=-00"_ 17
A e %

In fact, besides the original contour, the current
flows only on the surface of the conducting body.

The density of the surface current does not contain
the component perpendicular to the interface between
media. As a result, the magnetic vector potentia of the
whole system of currents in the whole space including
thedomain z<0 is

d.  @s
o

1 !
AC= A+ A = ":r')o I()tr—d| +%g’r_5ds. (16)
As ,ID‘S(Z:O) 6, =0, a the interface between
media the normal component of the vector potentia
Ag= ,IA(I( z=0) ®, = ,I%Z isnot equal to zero. Note that
because of the vector
i.e,div Aﬂ‘:o, the norma component A, does not

continuity  of potential,

change crossing the interface between media, i.e,
Ar = A,
The scalar potentid j  and the related potential

1
component E; =- gradf of the electric field strength

are caused by éectric charges which (in the considered
problem) are located on the interface between media
with the surface density s :

. 1 S
= — dS.
I's 4pe e, 8?

(17)

The norma components of the eectric field
strength, which is caused by the surface charges on
opposite sides of the interface, are equal in absolute
value and have opposite signs.

B =R . (18)

Besides, on the interface the vertical component of
the field created by the electric charges is compensated
by the strength of the induced dectric field, i.e.,

-%wgzzo. (19)
The surface density s of eectric charge is
determined from the  boundary condition

ei = E!, - E_,. Taking into account (18) and (19), we
fir?ally have:
S _pr=.pW (20)
€.8 It
Here E; = E_, - ﬂ?fz is the total strength of the

eectric field on the interface of media

3.2. General case: arbitrary properties of
conducting medium.

Now, let us consider the general case of the
conducting medium. Let us show that adso in this case
for a circuit with a contour of arbitrary spatial
configuration the vertical components of eectrica field
strength and induced current density are egqual to zero.
From Maxwell’ s equations (1), it follows that the electric
field srength in conducting medium satisfies the
parabolic homogeneous equation:

1
r TE
DE- mmg it 0.

The vertical component of eectric field strength at
the interface between the conducting and dielectric
media, according to the first boundary condition (4) is
equal to zero. At infinitely distant points, this component
of electric field is dso equal to zero. As a result, for the
vertical component of eectric field in the domain z< 0,
we obtain the task for the parabolic homogeneous
equation with zero boundary conditions:

(21)

| fE, _
DR - Mg =0 @2)
fE,(z=0-0)=0, E,(¥)=0.

The solution of this problem for a steady-state
process “without initial conditions’ for a haf-infinite
domain has a unique zero solution [18]. Thefield will be
also absent at any ingtant of time under zero initial
conditions.

Thus, in a conducting medium not only in the case
of strong skin effect, but also in the case of any
properties of the conducting medium and under any
dependence on time of the original current flowing along
the spatial contour, the components of eectric fied
strength and current dendty perpendicular to the planar
interface between media are equal to zero.

Without repeating the consideration which enabled
us to obtain the relationship (20), let us note that the
absence of vertica components of density of the induced
current (now in the whole haf-space) has the corollary
of the relations perfectly analogica to those of (20) for
eectric field strength and for surface density of dectric
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charge a the planar inteface. To determine the
corresponding values at the interface between the media,
it is sufficient to know only vertical component of the

induced electrical field of the original current % .

Besides, on the basis of superposition principle, the
result holdstrue for any system of closed currents.

Note that the surface density of electric charge and,
consequently, the vertical component of dectric field
strength are conditioned by the presence of segments of
the contour perpendicular to the planar surface of the
conducting body. Therefore, when they are absent,
namely, when the original currents flow along planar
contours situated in paralle to the interface between
media, the electric field strength has only a vertica
component, and for the calculation of this component, it
is sufficient to know only the distribution of the vector
potential of the electromagnetic field.

Finally, we present an example of the calculation of
surface density of eectric charge in a system where
central part of current-carrying contour is located in
paralle to the planar surface of the conducting body. The
current is supplied by two parale conductors oriented
perpendicularly to the central part of the contour (Fig. 2).
As the distribution of eectric charge is determined only
by segments of the contour perpendicular to the interface
between the media, in this example the distribution of
charge will be the same for any configuration of the
central part of the circuit.

For the chosen geometry of the contour, the vertical
component of the vector potential and, correspondingly,
the surface charge density can be presented by means of
simple algebraic expressions.

:_zeeeo% &T;ngn +r22)-1/2_ (Z\Z,I +r12)-1/23d2M _

4 Tt
2 23
:eeeon&&lr\h'i'(hz'i'rzz) ( )

P ft h+(h2+r12)]/2
Here h is the distance from the central part of the
contour to the plane inteface of medig;

12, =(xg - %22 +(Vo - vio)?, Where (x,y;) and
(x,,y,) are coordinates on the planar surface of the

location of two vertical conductors along which the
current is directed to the central part of the contour and
from it, respectively.

The results of the calculation according to (23) are
shown in Fig. 2 in the form of lines s/s, =const,

where s, isthe maximal value of surface density of the
distributed electric charge.

1..1 7
s/sm=0.25 0.5

Fig. 2. Distribution of surface density of eectric charge.

4. Conclusions

In quad-gationary formulaion of the problem for the
sydems with planar interface between didectric and
conducting media, there is no component of dectric fied
drength perpendicular to the interface and no such a
component of current dendty in the conducting half-space.
The result holds true for any spatid digtribution of the initial
system of non-gationary currents. On the mediaiinterface, the
surface dengity of dectric charge and the vertica component
of eectric fidd grength in didectric medium are determined
only by the normal component of theinduced dectric field of
theinitial system of currents
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OCOBJUBOCTI PO3NOALTY
TPUBUMIPHOT'O KBA3ICTAIIIOHAP-
HOTI'O EJTEKTPOMATHITHOI'O MOJISA

B CUCTEMI 3 [IJTIOCKOIO T'PAHULIEIO
PO3IO/ILITY CEPEJOBHIIL

IOpiit Baceupkuii, Ipuna Masypenko, Kocrsurun /I3t06a

BcraHoB11€HO, 1110 PO3MOALT I'YCTHHH iHYKOBAaHOT'O CTPYMY
B €JICKTPOINPOBIIHOMY IIBIPOCTOPI HE MAa€ KOMIIOHEHTH, L0
HNEpHEHIMKYISIPHa  IUIOCKIH TpaHMIl  IMOAULY  CepellOBHII
HE3aJIKHO BiJl BIACTUBOCTEH cepeloBHINA, KOH(Irypamii
KOHTYpPY BHXIJJHOTO CTPYMY B Ii€JIEKTPUYHOMY MiBIPOCTOpi i

3aIeKHOCTI CTpyMy Bijg wacy. IlokasaHo, 1o moBepxHeBa
T'YCTHHA EJNEKTPUYHOrO 3apsily BU3HAYAETHCS TUIBKH HOPMAJIb-
HOIO KOMITOHEHTOIO HAIPYKEHOCTI 1HIyKOBAaHOIO €JIEKTPUIHOrO
OIS BUX1THOTO CTPYMY KOHTYpa.

VY BUNAAKYy CHJIBHOIO CKiH-€()EKTY B EIEKTPOIPOBIIHOMY
IBIIPOCTOPI BHUCHOBOK 3POOJICHO Ha OCHOBI TOYHOIO pillICHHS
3a[a4i PO eJIEKTPOMArHiTHe rose. [lommpeHHs CTBEep/PKeHHS Ha
3araJIbHUH BUIIAIOK CEPEIOBHIIA 3 IOBUIBHUMH €1EKTPODI3HIHUMU
BJIACTUBOCTSIMA 3aCHOBAHO HA BIJIOMOMY HYJIbOBOMY pIlLICHHI
KpaiioBol 3aja4i JUIs BEPTHKAIBHOI KOMIIOHEHTH HaIpyKEHOCTI
€JIEKTPUYHOr0 TOJ B EJICKTPONPOBIAHOMY CEPEIOBHIL, SKa
chopMynboBaHa SIK 3aja4a Ul OJHOPIJHOrO PIBHSAHHS Mapabo-
JIYHOrO THILy 3 HYJIHOBMMH KpaHOBHMH yMOBaMu. Pesynbraru
MPOLTIOCTPOBAHO HA MPHUKIAJl PO3PAXYHKY ITOBEPXHEBOI I'YCTHHU
CJIEKTPUYHOr0 3apsily y pasi IUIOCKOTO KOHTYpY, KOJNH IIJBiX
CTpyMy 3[iHCHIOETBCA 10 JIBOM INApaIEIbHAM IPOBITHUKAM, IO
HepIeHAUKYIIIPHI HEeHTPaTbHI YaCTHHU KOHTYPY.
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