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Abstract: It is established that the distribution of 
density of induced current in conducting half-space has 
no component perpendicular to the planar interface 
between media, regardless of (1) the properties of the 
medium, (2) configuration of a current-carrying contour, 
and (3) the current dependence on time. It is shown that 
the surface density of electric charge is determined only 
by the normal component of the strength of the induced 
electric field of the source-system of currents.  

In the case of a strong skin effect in electric 
conductive medium, conclusions have been drawn based 
on the correct solution of the task of electromagnetic 
field. Spreading the statement on the general case of 
medium with arbitrary electro physical properties is 
based on the well-known zero solution of the boundary 
problem for a vertical component of electric field 
strength in electrically conductive medium defined as a 
task of homogeneous equation of parabolic type with 
zero boundary conditions. Results are illustrated by the 
example of calculating the surface density of the electric 
charge in the case of the planar current-carrying contour 
if the current is supplied using two parallel conductors 
perpendicular to the central part of the contour. 

Key words: quasi-stationary three-dimensional electro-
magnetic field, arbitrary loop with current, eddy currents.  

1. Introduction 
In many technical applications, the mathematical 

model in which primary current sources are alternating 
currents flowing along the contours of certain 
configuration is used for determining the distribution of 
electromagnetic field [1, 2, 3]. When the primary 
currents flow near conducting bodies, eddy currents are 
induced in them, and these currents also participate in 
the formation of the field. The eddy currents can perform 
useful work in technological processes, for example, in 
induction heating devices [4, 5] or in devices for 
magnetic-pulse sheet pressing. In some other cases, the 
external fields can cause harm to control and monitoring 
units, as well as the service staff, for example, in 
electrohydraulic pulse installations [6].  

In [7, 8], the problem for the case of planar interface 
between conducting and dielectric media is considered for 

quasi-stationary electromagnetic field in general formulation. 
However, the analytical solution has been obtained for vector 
potential and induction of the magnetic field only in a 
dielectric domain, where the current-carrying contour was 
located. Besides, the neglect of displacement current did not 
allow us to determine the electric field strength in the case of 
spatial loops. The result has been found only for planar 
contours, which were parallel to the interface between media.  

In general, the three-dimensional analytical solution 
of quasi-stationary problem in the system “arbitrary 
contour with alternating current – conducting half-space“ 
in the whole space does exist. The aim of this work 
consists in ascertaining the general peculiarities of 
distribution of electric field strength and that of current 
density in conducting medium and, as a consequence, 
determining the vertical component of electric field 
strength at the interface between media and determining 
the field sources at this planar surface.  

2. Mathematical model 
Let us consider an arbitrary contour in an electrically 

non-conductive non-magnetic medium with the relative 
dielectric permittivity eε and let the current ( )tI 0  flow 
along the contour. The contour is located near the 
conducting body whose relative magnetic permeability is 
µ (in Fig. 1, original current-carrying contour is shown 
by a solid line in the upper half-space z>0).  
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Fig. 1. Computational model. 
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It is assumed that the dimensions of the contour are 
considerably less than the size of the planar patch of the 
body surface; this enables us to use the model of a 
current-carrying contour located above the conducting 
half-space. We consider the linear problem of calculation 
of quasi-stationary electromagnetic field concerning the 
case when the current density satisfies the condition of 
continuity ( div 0j =

r
) and, therefore, the current-

carrying contour is closed. 
Defining the problem as quasi-stationary assumes the 

satisfaction of two restrictions: firstly, the wavelength λ  of 
the electromagnetic field must be considerably longer than 
any characteristic size L  of the electromagnetic system, i.e. 

L>>εεµµωπ=λ 002 ; secondly, in the equation of 

total current the density of displacement current Dj
r

 is to be 
neglected in comparison with the density of the conduction 
current j

r
 [9, 10]. 

The problem is described by Maxwell’s equations 
for such vectors of field as electric field strength E

r
, 

magnetic field strength H
r

, magnetic induction B
r

 and 
electric displacement D

r
; the density of the current from 

external sources 0j
r

 in contour elements [9] being taken 
into account: 

 
0rot ; div 0;

rot ; div .

H j j B

BE D
t

ρ

 = + =

 ∂

= − =
∂

r rr r
rr r  (1) 

For the linear problem, the free charge ρ  in 
piecewise continuous medium can be located only at the 
interface between media with the corresponding surface 
density σ. 

The constitutive equations, which complement 
equations (1), are: 

 0 0

0

0 : , ,

0 : , ,
e e e e e

i i i i

z D E B H

z j E B H

ε ε µ

γ µµ

> = =

< = =

r r r r

r r rr  (2) 

where physical quantities in the domains 0>z  and  
0<z  are marked with the subscripts “е” and “i” 

respectively. 
On the surface of the conductor, the boundary 

conditions for the tangential and normal components of 
the vectors of electromagnetic field are satisfied. 
Moreover, the condition of field vanishing at infinity 
must be established: 

 ( ) ( ){ 0, 0.z ze E E e H H+ − + −× − = × − =
r r r rr r

 (3) 

( ){ 00, , 0.z z e ze E e E e B Bσ ε ε− + + −⋅ = ⋅ = ⋅ − =
r r r rr r r

 (4) 

Here, the field vectors on the interface between the 
media located on the positive and negative parts of the axis 
z  have subscripts “+” and “–”, respectively (Fig. 1), zer  is 
the unit vector in the direction of the axis z . 

Let us introduce a vector potential A
r

 and a scalar 
potential ϕ : 

 rot ; grad AB A E
t

φ
∂

= = − −
∂

rrr r
 (5) 

and let us use the Coulomb gauge: 

 div 0A =
r

. (6) 

If in quasi-stationary approximation the 
displacement current are neglected, Maxwell’s equations 
for the potentials take on a form as follows 

 0 0
0

grad , .AA j
t

ρ
µµ γ φ φ

εε
 ∂ ∆ = − + − − ∆ = −  ∂  

 (7) 

Here, in the right side of the equation for the vector 
potential, the density of conduction current is put in 
parentheses. In the upper half-space only the source 
current flows  

 ( )0 0 M Q Mj I r r tδ= −
r rr r

, (8) 

where ( )M Qr rδ −
r r

 is the Dirac delta function, Mt
r

 is the 

unit vector of tangent to the contour line. In the 
conducting half-space 0<z  the eddy current flows. The 
charge is distributed along the interface between the 
media  

 ( ) ( )zyx δσ=ρ , . (9) 

The equation (7) describes the known fact that in 
application of Coulomb gauge, under the conditions of 
considering the field in all the space and its absence at 
infinity, the vector potential is determined by the 
conduction current, and the scalar potential is determined 
by the electric charges [11, 12].  

Note that when we use only vector potential, the 
electric field strength in (5) can be determined with the 
accuracy to within a potential summand. However, the 
equation of scalar potential also contains the unknown 
value of the surface density of charge σ , that does not 
allow us to formulate the boundary-value problem for 
scalar potential and to determine the potential 
component of electric field strength. The authors of the 
work [13] pay attention to this property showing that 
first of all the difficulty arises for three-dimensional 
problems, and the solution becomes unambiguous if 
additional conditions are set. The ambiguity in 
determining the strength of the electric field is not 
essential, for example, in the determination of the 
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induction of the magnetic field or e.m.f. induced in a 
closed contour. However, the calculation of electric field 
strength becomes necessary, for example, if local 
characteristics of action of electric field or energy flux 
density of electromagnetic field P E H= ×

r r r
 are 

determined and in some other cases. 
The main task of this article is to show that the 

features of field distribution and current density in 
conducting media in the case of planar interface between 
dielectric and conducting media enable us to solve the 
aforesaid problem, i.e., to find the boundary conditions 
for electric field strength and determine the surface 
charge density. 

3. Peculiarities of current distribution and 
conditions on the interface between media.  

Let us, first, consider the problem for strong skin 
effect and then generalize the results for the general case 
of arbitrary electrophysical properties of conducting 
medium. 

3.1. Strong skin effect. 
In the case of strong skin effect, for the calculation 

of the field outside the conducting body, it is necessary 
to solve the corresponding stationary problem for 
perfectly conducting body of the same shape [7, 8]. 
Under a given distribution of current density 0j

r
 of the 

sources, the statement of the boundary value problem is 
reduced to defining Maxwell’s equation for the magnetic 
field strength H

r
 and to the condition of the absence of 

the normal component of the field on the surface: 

 rot , div 0, 0H j H H n= = ⋅ =
r r rr r

, (10) 

where nr  is the unit vector outer normal to the surface of 
the conducting body. 

The boundary value problem (10) completely 
determines the existence of a unique solution.  

For the analysis of the electromagnetic field in 
superficial layer of conducting body, the known model 
[9] of the diffusion of the planar field into conductive 
half-space usually holds true. In such a model, the initial 

physical quantity is the tangential component Hτ

r
 of the 

field, whose local value for an arbitrarily shaped body is 
determined from the solution of outer problem (1). The 
surface density sj

r
  of current in a conducting body is 

determined by the value of tangential component Hτ

r
 

and must satisfy the condition of continuity: 

 , div 0s sj n H j= × =
rr rr

. (11) 

The solution to the problem (10) for the planar 
interface between media is the magnetic field above the 
surface of the conducting body for 0>z , which is caused 

by the current 0I  of the original contour and by the 

fictitious current 1I  of the mirror contour (Fig. 1) [16, 17].  

In Fig. 1 the directions of elements tdl
r

 of the 
original contour and 1t dl

r
 of the mirror contour are 

characterized by unit tangent vectors t
r

 and 1t
r

, dl  is the 
length of elements of the contour. Projections of tangent 
vectors onto the vertical axis are equal in absolute values 
and opposite in their directions ( 1z zt t= −

r r
), and the 

projections  ||t
r

 and 1 ||t
r

 onto the plane of the interface 

between media are equal in their lengths and directions 

1|| ||t t=
r r

, i.e., ||z zt t e t= +
r rr

, 1 || z zt t t e= −
r r r

. 

The magnetic field strength H
r

 created by two 
current-carrying contours in an arbitrary point ( 0>z ) is 
the following 

 0 1
3 3

0 1

1 rot
4

1

l

I t rt rH A dl
r rµ π

 ××
= =− −  

 
∫

rr rrrr
. (12) 

Taking into consideration the fact that in the case 
when the vectors connecting the point of observation Q  
located on the planar interface between media with the 
elements tdl

r
 and 1t dl

r
 are zr c he= +

r r r
, the magnetic 

field strength can be presented in terms of coordinates of 
the original contour only in the following form 

 ( ) ( )0
30 .

2
z

z
l

e t rI
H z e dl

rπ

× ×
= = × ∫

rr rr r
 (13) 

From (13), it immediately follows that the normal 
component of the field strength is absent, 0zH e⋅ =

r r
. This 

indicates that (13) is the solution of the stated problem 
(10) for the planar interface between media. 

Subsequently, the surface density of current is found 
from (11): 

 0
03

0

2 rot
2s z z

l

I t rj e dl e A
rπ µ

 = × − = ×  
∫
r r rr r r×

, (14) 

where 0A
r

 is the vector potential of the field created by 
the original current. 

According to knowledge of secondary sources, there 
is a surface electric current flowing on the interface 
between media, and the electric charge with definite 
surface density σ  can be distributed there. All the 
sources, namely, the original current 0I , surface current 

density sj
r

 and distributed surface charge σ  together 
make up the electric field in the whole space including 
the domain 0<z , where the total field is equal to zero. 
A simple analytical solution to the considered problem 
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enables us to obtain a clear idea about the formation of 
both secondary sources creating the field. 

So far we have considered the magnetic field above 
the surface of the conducting body for 0>z , to 
determine which it was sufficient to introduce a fictitious 
current of the image contour. In this case, the vector 
potential is represented by the formula 

 0 0
0 1 4

1

l 1

I ttA A A dl
r r

µ
π

 
= + = − 

 
∫

rrr r r
. (15) 

In fact, besides the original contour, the current 
flows only on the surface of the conducting body. 

The density of the surface current does not contain 
the component perpendicular to the interface between 
media. As a result, the magnetic vector potential of the 
whole system of currents in the whole space including 
the domain  0<z  is 

 0 0 0
0 4 4

s
s

l S

I jtA A A dl dS
r r

µ µ
π π

′ = + = +∫ ∫
rrr r r

. (16) 

As ( )0 0s zA z e= ⋅ =
r r

, at the interface between 
media the normal component of the vector potential 

( ) 00z z zA A z e A′ ′= = ⋅ =
r r rr

 is not equal to zero. Note that 
because of continuity of the vector potential, 

i.e., div 0A′ =
r

, the normal component ozA  does not 
change crossing the interface between media, i.e., 

−+ = ozoz AA . 

The scalar potential σϕ  and the related potential 

component gradEσ σφ= −
r

 of the electric field strength  
are caused by electric charges which (in the considered 
problem) are located on the interface between media 
with the surface density σ : 

 ∫
σ

επε
=ϕσ

Se
dS

r04
1

. (17) 

The normal components of the electric field 
strength, which is caused by the surface charges on 
opposite sides of the interface, are equal in absolute 
value and have opposite signs: 

 −
σ

+
σ −= zz EE && . (18) 

Besides, on the interface the vertical component of 
the field created by the electric charges is compensated 
by the strength of the induced electric field, i.e.,   

 00 =+
∂

∂
− −

σz
z E

t
A

. (19) 

The surface density σ  of electric charge is 
determined from the boundary condition 

−
σ

+
σ −=

ε
σ

zz EE
0

. Taking into account (18) and (19), we 

finally have: 

 
t

A
E z

z
e ∂

∂
−==

εε
σ + 0

0

2 . (20) 

Here 
t

A
EE z

zz ∂
∂

−= +
σ

+ 0  is the total strength of the 

electric field on the interface of media. 
3.2. General case: arbitrary properties of 

conducting medium. 
Now, let us consider the general case of the 

conducting medium. Let us show that also in this case 
for a circuit with a contour of arbitrary spatial 
configuration the vertical components of electrical field 
strength and induced current density are equal to zero. 
From Maxwell’s equations (1), it follows that the electric 
field strength in conducting medium satisfies the 
parabolic homogeneous equation:  

 0E 0E
t

µµ γ
∂

∆ − =
∂

rr
. (21) 

The vertical component of electric field strength at 
the interface between the conducting and dielectric 
media, according to the first boundary condition (4) is 
equal to zero. At infinitely distant points, this component 
of electric field is also equal to zero. As a result, for the 
vertical component of electric field in the domain 0<z , 
we obtain the task for the parabolic homogeneous 
equation with zero boundary conditions:  

 
( ) ( )





=∞=−=

=
∂

∂
γµµ−∆

.0,000

,00

zz

z
z

EzE
t

E
E

 (22) 

The solution of this problem for a steady-state 
process “without initial conditions” for a half-infinite 
domain has a unique zero solution [18]. The field will be 
also absent at any instant of time under zero initial 
conditions. 

Thus, in a conducting medium not only in the case 
of strong skin effect, but also in the case of any 
properties of the conducting medium and under any 
dependence on time of the original current flowing along 
the spatial contour, the components of electric field 
strength and current density perpendicular to the planar 
interface between media are equal to zero. 

Without repeating the consideration which enabled 
us to obtain the relationship (20), let us note that the 
absence of vertical components of density of the induced 
current (now in the whole half-space) has the corollary 
of the relations perfectly analogical to those of (20) for 
electric field strength and for surface density of electric 
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charge at the planar interface. To determine the 
corresponding values at the interface between the media, 
it is sufficient to know only vertical component of the 

induced electrical field of the original current 
t

A z

∂
∂ 0 . 

Besides, on the basis of superposition principle, the 
result holds true for any system of closed currents.  

Note that the surface density of electric charge and, 
consequently, the vertical component of electric field 
strength are conditioned by the presence of segments of 
the contour perpendicular to the planar surface of the 
conducting body. Therefore, when they are absent, 
namely, when the original currents flow along planar 
contours situated in parallel to the interface between 
media, the electric field strength has only a vertical 
component, and for the calculation of this component, it 
is sufficient to know only the distribution of the vector 
potential of the electromagnetic field. 

Finally, we present an example of the calculation of 
surface density of electric charge in a system where 
central part of current-carrying contour is located in 
parallel to the planar surface of the conducting body. The 
current is supplied by two parallel conductors oriented 
perpendicularly to the central part of the contour (Fig. 2). 
As the distribution of electric charge is determined only 
by segments of the contour perpendicular to the interface 
between the media, in this example the distribution of 
charge will be the same for any configuration of the 
central part of the circuit.  

For the chosen geometry of the contour, the vertical 
component of the vector potential and, correspondingly, 
the surface charge density can be presented by means of 
simple algebraic expressions.  

( ) ( )

( )
( )

1 2 1 22 2 2 20 0 0
2 1

1 22 2
20 0 0

1 22 2
1

2
4

ln
2

e
M M M

h

e

I
z z dz

t

h hI
t h h

ε ε µ
σ ρ ρ

π

ρε ε µ
π ρ

∞ − −∂  = − + − + =  ∂

+ +∂
=

∂ + +

∫
 (23) 

Here h  is the distance from the central part of the 
contour to the plane interface of media; 

( ) ( )2
2,1

2
2,1

2
2,1 yyxx QQ −+−=ρ , where ( )11 , yx  and 

( )22 , yx  are coordinates on the planar surface of the 
location of two vertical conductors along which the 
current is directed to the central part of the contour and 
from it, respectively. 

The results of the calculation according to (23) are 
shown in Fig. 2 in the form of lines const=σσ m , 

where mσ  is the maximal value of surface density of the 
distributed electric charge. 

 
Fig. 2. Distribution of surface density of electric charge. 

4. Conclusions 
In quasi-stationary formulation of the problem for the 

systems with planar interface between dielectric and 
conducting media, there is no component of electric field 
strength perpendicular to the interface and no such a 
component of current density in the conducting half-space. 
The result holds true for any spatial distribution of the initial 
system of non-stationary currents. On the media interface, the 
surface density of electric charge and the vertical component 
of electric field strength in dielectric medium are determined 
only by the normal component of the induced electric field of 
the initial system of currents.  
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ОСОБЛИВОСТІ РОЗПОДІЛУ 
ТРИВИМІРНОГО КВАЗІСТАЦІОНАР-
НОГО ЕЛЕКТРОМАГНІТНОГО ПОЛЯ 
В СИСТЕМІ З ПЛОСКОЮ ГРАНИЦЕЮ 

РОЗПОДІЛУ СЕРЕДОВИЩ 

Юрій Васецький, Ірина Мазуренко, Костянтин Дзюба 

Встановлено, що розподіл густини індукованого струму 
в електропровідному півпросторі не має компоненти, що 
перпендикулярна плоскій границі поділу середовищ 
незалежно від властивостей середовища, конфігурації 
контуру вихідного струму в діелектричному півпросторі й 

залежності струму від часу. Показано, що поверхнева 
густина електричного заряду визначається тільки нормаль-
ною компонентою напруженості індукованого електричного 
поля вихідного струму контура. 

У випадку сильного скін-ефекту в електропровідному 
півпросторі висновок зроблено на основі точного рішення 
задачі про електромагнітне поле. Поширення ствердження на 
загальний випадок середовища з довільними електрофізичними 
властивостями засновано на відомому нульовому рішенні 
крайової задачі для вертикальної компоненти напруженості 
електричного поля в електропровідному середовищі, яка 
сформульована як задача для однорідного рівняння парабо-
лічного типу з нульовими крайовими умовами. Результати 
проілюстровано на прикладі розрахунку поверхневої густини 
електричного заряду у разі плоского контуру, коли підвід 
струму здійснюється по двом паралельним провідникам, що 
перпендикулярні центральній частини контуру. 
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