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Abstract: Currently, elliptic curves are the mathematical 
basis for digital signature processing. Elliptic curve points 
processing is based on the performance of operations in 
Galois field GF(2m) in normal or polynomial bases. 
Characteristics of multipliers for these bases are different. 
In this paper, the time complexity of software multipliers 
for binary Galois fields GF(2m) and fields GF(dn) was 
investigated. Fields with approximately the same number of 
elements were investigated. Elements of these fields were 
represented in a polynomial basis. It is established that the 
Galois field GF(3т) provides the greatest time complexity of 
software multiplication, and the prime Galois field GF(P) 
has the least time complexity. It is also shown that the use 
of polynomial basis allows, in contrast to the normal basis, 
to realize larger part of multiplier on FPGA chip. 

Index Terms: Structural complexity, time complexity, 
Galois fields,  extended fields, field degree, field order, 
normal basis, polynomial basis, multiplier. 

I. INTRODUCTION  

Currently, elliptic curves are the mathematical basis 
for digital signature processing [1]. In this case, the 
processing of the points of the elliptic curve is based on 
the operations in the fields of Galois GF(2m), m ≤ 1000 
[15], the field elements can be represented in polynomial 
and normal bases.  Hardware implementation of 
multipliers for such tasks and fields requires high costs 
of equipment. In [2] it is shown that the hardware 
multiplication in polynomial and normal bases requires 
roughly identical hardware and time costs, the program 
multiplication in a polynomial basis is executed by 1-2 
orders of magnitude faster. But the disadvantage of a 
polynomial basis is the dependence of Galois fields 
inverse elements computing time on the value of 
operands [2]. Multipliers can be parallel (including, 
based on the Guild cells [3]), sequential and parallel-
sequential – sectional. For a normal basis, the hardware 
complexity of serial multipliers allows to implement 
them on modern FPGAs. But with large values of field 
order and number of sections it is impossible to 
implement sectional and parallel multipliers because of 
their high structural complexity [4], Methods and results 
of evaluating the structural complexity of a successive 
multiplier are given in [5], of multi-sectional multip- 
liers – in [6], An estimation based on the use of hardware 

and software model is presented in papers [7], [8], in [9] 
it is shown that the structural complexity of the main 
element of the multiplier for the normal basis of the 
Galois field GF (2m), the multiplication matrix, lies 
within the range (1/2–3/4)m2.  The development of 
methods for assessing structural complexity allowed to 
develop methods for its reducing [10]. 

One of the possible problem solution is the 
transition to the use of Galois fields with a base n greater 
than 2, first of all, with the base 3 [11]. After changing 
the fields, the time characteristics of the multiplier can 
be changed too. In [12] multipliers for extended Galois 
fields GF(dn) with bases d greater than 2 and with 
approximately the same number of elements dn ≈ 2m are 
estimated from this point of view. The polynomial basis 
for representing the Galois field elements and the 
multiplier with a matrix structure based on modified 
Guild cells is selected for analysis [12]. It is shown that 
the time complexity of the multiplier for the field GF(3n) 
for the FPGA with the 6-input LUTs is approximately 
1.5 times less than the time complexity of the multiplier 
for the Galois field GF(2m). In [13] it is shown that the 
hardware complexity of the triple fields in the 
polynomial basis has an advantage over binary ones.  

Global comparison of the structural complexity of 
multipliers for expanded Galois fields with 
representation of their elements in polynomial and 
normal bases was not performed. The first attempt was 
to compare parallel multipliers that simultaneously form 
all product digits for the Galois binary fields GF(2m) 
[17]. The paper shows the advantages of a polynomial 
basis in front of a normal one. But identified advantages 
were not illustrated by the possibilities of implementing 
in FPGAs of specific multipliers for normal and 
polynomial bases. Also, for the polynomial basis, the 
best field was not defined, in which, unlike the hardware 
implementation of multiplication, its program imple-
mentation has the greatest time complexity. This is 
important for additional protection against cracking 
devices that use multipliers. 

The purpose of the work is to study the time 
complexity of program implementations of multipliers 
for Galois GF(2m) binary fields and GF(dn) fields with 
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approximately equal number of elements in a field and 
with representation of these elements in a polynomial 
basis that is necessary to determine the field in which 
general purpose computers spend the most time for 
calculations. Also, the goal is to evaluate the possibility 
of implementing identical multipliers into identical 
FPGAs for polynomial and normal bases. 

II. SECTIONAL MULTIPLIER  
FOR NORMAL BASIS 

The serial Massey-Omura multiplier for 
multiplication in the normal basis of the elements of the 
field GF(2m) (Fig. 1) consists of two operands shift 
registers RGA and RGB and the multiplication matrix 
М. Sectional multiplier contains several matrices (e.g., 
M0, ..., M15 in Fig. 2) pipeline and output register file 
for results accumulation. 

 

A
0a 1a 1−ma

0b 1b 1−mb B

01m r,r,...,r 1−

 

Fig. 1.  Massey-Omura multiplier 

The bit r0 of the product R is calculated as 
r0=AMBT (for example,  

331210132020 b)aa(b)aa(b)aa(bar ⊕⊕⊕⊕⊕⊕=   
according to the calculation circuit Fig. 3). 

 Each subsequent product bit is calculated after 
operands one bit rotation. 

The structural complexity of the multiplication 
matrix can be estimated by analyzing its implementation 
in an imaginary FPGA, each logical element of which 
(squares in Fig. 4, which corresponds to the scheme of 
calculation on Fig. 3) can realize the arbitrary function of 
two variables. 

It is possible to estimate the structural complexity 
of the multiplier topology by the total length L of the 
joints inside the square domain Sqr in Fig. 4 (in [6] it is 
shown that the Conv convolution unit makes 
insignificant contribution to the structural complexity of 
multiplication matrix): the length of the horizontal 
connection gi in the i-th row is gi = xi+1, where xi is the 
column number of the most valid “1” in the i-th line, the 
vertical length of the connection in the j-th column is 
equal to vj=m+dj+1, where dj is the difference between 
the number of rows with “1” in the j-th column. 

The final expression:  
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 ≈ (1/2…3/4) m2. 

 

Fig. 2. Sectional multiplier 
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Fig. 3. Computation of the product and the calculation scheme 
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Fig. 4. Topology of multiplication matrix  
imaginary FPGA 

Sectional multiplier (Fig. 5) is formed from serial 
multipliers (sections), the number of sections n can be 
from 1 (serial multiplier) to m (parallel multiplier), all 
sections are of the same size and differ in the cyclic 
displacement of adders and multipliers along the vertical 
and horizontal sides in a square region (Fig. 4), which is 
equivalent to the operands rotation in the calculation of 
each next bit of the product. For simplicity, we assume 
that the sections are placed on a crystal in the form of a 
square matrix with a maximum size for the parallel 
multiplier V = q * q elements,  mq = . 
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For large m (m is directed to 1000) structural 
complexity of parallel multiplier is equal to 

3m)1k(C +≈ , k = ½  … ¾. 
The structural complexity of a parallel multiplier 

for the normal basis of the Galois binary fields GF(2m) 
can be estimated as O(m3). 

 

Fig. 5. Imaginary FPGA chip topology  
of a multi-section multiplier 

III. PARALLEL MULTIPLIER  
FOR A POLYNOMIAL BASIS. 

Galois field GF(dm) multiplier (Fig. 6) is used the 
modified Guild cells, the detailed scheme of which is 
shown in Fig. 7. The drawings are marked: pi – elements 
of a polynomial that forms a field,  dlogp 2=  – the 
number of bits in the record of the number d (for the 
binary Galois fields d = 2, p = 1). 

IV. COMPARISON OF HARDWARE AND 
STRUCTURAL COMPLEXITIES OF MULTIPLIERS 

FOR POLYNOMIAL AND NORMAL BASES 

A comparison of the hardware complexity of 
multipliers for polynomial and normal bases is made in 
[2], where it was shown (Table 1) that the hardware 
multiplication in the polynomial and normal bases 
requires roughly identical hardware and time costs. The 
program multiplication in a polynomial basis is executed 
by 1–2 orders of magnitude faster. 
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Fig. 6. Multiplier for field elements GF(dm) using modified 
Guild cells 

 

Fig. 7. Modified Guild's Field for the Galois Field GF(dm) 

Table 1 

Comparison of multipliers for the field GF(2173) 
Basis Number of 

work 
cycles

Hardware 
cost, slices

Hardware 
cost, LUT

Maximum 
clock 
frequency, 
MHz

A comprehensive 
index, LUT / 
MHz

Polynomial m=173 275 526 146 3,6
Normal m=173 383 577 169 3,4

 

 
The structural complexity of a parallel multiplier 

for the normal basis of the Galois binary fields GF(2m) 
can be estimated as O(m3) [17]. 

The structural complexity of a parallel multiplier 
for the polynomial basis of the Galois binary fields GF 
(2m) can be estimated as O(m2) [17]. 

The results of comparing of the structural 
complexity of multipliers for polynomial and normal 
bases are shown in Fig. 8 and Fig. 9. 
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Fig. 8. Structural complexity of multipliers for polynomial  
and normal bases (m < 12) 

For Galois binary fields GF (2m) with orders  
m < 12 the multipliers for normal basis have less 
structural complexity. Multipliers for polynomial basis 
have a smaller structural complexity with larger orders. 
For m >> 12 the use of the polynomial basis reduces the 
structural complexity in comparison with the normal 
basis in about m times. 

 

 

Fig. 9. Structural complexity of multipliers for polynomial  
and normal bases (m < 1000) 

The greater structural complexity of the multipliers 
for normal basis complicates and makes it impossible to 
create multi-sectional and parallel multipliers versions 
[4]. The smaller structural complexity of the multipliers 
for polynomial basis will allow to create multi-sectional 
versions with more sections (with a higher level of 
parallelism and, correspondingly, higher productivity) 
than those of similar multipliers for a normal basis.  

For implementation of hardware multipliers on an 
FPGA, structural complexity plays a major role, since 
the hardware and time complexity of multipliers for 
normal and polynomial bases are approximately the 
same. As can be seen from the Table 2, hardware costs 
for the implementation of multi-sectional multipliers for 
a normal basis may be insignificant. 

 

Table 2 

Results of implementation of multisection  
multipliers in the normal basis 

m=998, n= 2 4 8 16
Number of slices (%) 2,396 

(11 %)
 3,792
(18 %)

6,635 
(33%)

Time of 
implementation, min

3,5 145 102 (not 
implemented)

Structural complexity, 
conditional units of 
communication length

559624 1119248 2238496 4476992

 
The use of the polynomial basis allows us to fully 

utilize all the resources of the FPGA crystal, since in this 
case there is no structural complexity limitation. 

The following Table 3–6 show the possibility of 
implementing multipliers for both bases for different 
types of fields. 

 

Table 3 

Implementation of multipliers  
on the FPGA Virtex 6vlx130t (m = 515) 

Normal 
basis

The polynomial basis, the 
number of slices is limited by the 

number of slices for a normal 
basis

Polynomial 
basis with as 

many slices as 
possible

m 515 515 515
n 16
The implemented part of 
the multiplier, k=n/m

16/515 16/515 0,28

Increase in the number of 
slices in the 
implementation of a 
multiplier for a polynomial 
basis, times

9

Number of slices 2307 2307 20763
Part of the slices (%) 11 11 99
Estimated structural 
complexity, imaginary 
units of length of 
connections

4242224 8237 74136

 

 

Table 4 

Implementation of multipliers  
on the FPGA Virtex 6vlx130t (m=519) 

Normal 
basis

The polynomial basis,  the 
number of slices is limited by 

the number of slices for a 
normal basis

Polynomial basis 
with as many 

slices as 
possible

m 519 519 519
n 16
The implemented part of the  
multiplier , k=n/m

0,03 0,03 0,18

Increase in the number of slices in 
the imple mentation of a multiplier  
for  a polynomial  basis, t imes

6

Num be r of sl ices 3240 3240 19440
Part of the slices (%) 16 16 96
Estimated structural  complexity, 
imaginary units of length of 
connections

4295296 8276 49657
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Table 5 

Implementation of multipliers  
on the FPGA Virtex 6vlx130t (m=998)  

Normal 
basis

The polynomial basis, the 
number of slices is limited 
by the number of slices for 

a normal basis

Polynomial basis 
with as many 

slices as possible

m 998 998 998
n 8
The implemented part of the 
multiplier, k=n/m

0,01 0,01 0,04

Increase in the number of slices in 
the implementation of a multiplier 
for a polynomial basis, times

5

Number of slices 3792 3792 18960
Part of the slices (%) 18 18 90
Estimated structural complexity, 
imaginary units of length of 
connections

2238496 2243 11215

 
As can be seen, the use of a polynomial basis 

allows, in contrast to the normal basis, to completely 
realize on the FPGA a parallel multiplier for the fields 
GF(2515) and GF(2519) and increase the realized part of 
the multiplier for the field GF (2998) by 5–12 times. 

Table 6 

Implementation of multipliers  
on the FPGA Spartan xc6slx150t (m=998)  

Normal 
basis

The polynomial basis, the 
number of slices is limited 

by the number of slices for a 
normal basis

Polynomial 
basis with as 

many slices as 
possible

m 998 998 998
n 4
The implemented part of the 
multiplier, k=n/m

0,004 0,004 0,05

Increase in the number of slices in the 
implementation of a multiplier for a 
polynomial basis, times

12

Number of slices 1896 1896 22752
Part of the slices (%) 8 8 96
Estimated structural complexity, 
imaginary units of length of 
connections

1119248 1121 13458

 

V. TIME COMPLEXITY COMPARISON  
OF MULTIPLIERS FOR POLYNOMIAL BASIS 

PROGRAM REALIZATION 

One of the methods of hacking the cryptographic 
information security system is the brute-force method 
[14], in which the general-purpose computer selects all 
sorts of keys or passwords until one of them fits. The 
same operations on the Galois fields elements are 
performed both during the execution of the hack 
program and in the hardware crypto processors. For 
general-purpose computers, one can estimate the time of 
execution of the main operation, multiplication of the 
elements of the Galois fields, for extended fields with 
different bases, but with approximately the same number 
of elements of the field. The basis for such a check was 
the field GF(2999). This field is recommended by 
standard [15]. The calculations were made using the 
Maple 2017 package [16]. During the time complexity 
check, the execution time of 10.000 multiplication 
operations over the elements of each GF(dm) field 
selected for testing was recorded 5 times. The fields 

were chosen so that a condition 2999 ≈ dm (d is a simple 
integer, m is an integer) was fulfilled for them, that is, 
fields had approximately the same number of elements. 
The average time value was calculated after 5 
experiments. The relative time complexity was also 
determined by the ratio of the multiplication time in the 
field GF(dm) to the multiplication time in the field 
GF(2999). The times of execution of such number of 
multiplications with respect to the time of execution of 
the same number of operations in the binary field 
GF(2999) are shown in the Table 7 and Table 8 and in the 
Fig. 10. The Table 7 shows the multiplication time in the 
field GF (2999) with the field polynomial recommended 
by IEEE 1363 [15] and with the field polynomial that 
was found using the Maple package. 

As can be seen from the Table 7, the timing of 
operations for these two cases varies insignificantly. 
Therefore, all the studies were continued for field 
polynomials that were found using the Maple package. A 
similar study was also conducted for a simple field 
GF(P1), where P is the nearest prime number that is more 
than 2999. As indicated in the Table 8, software multipli-
cation of triple extended field elements has the longest 
execution time. It provides hardware cryptoprocessors 
based on such fields of additional protection against 
hacking. Software-implemented operations on simple 
field elements are executed the fastest, that indicates the 
inappropriateness of cryptographic processors based on 
such fields. 

Table 7 

The time complexity  
of multiplying in a binary field, s 

Field 
Base

1 2 3 4 5 Polynomial

2 5,30 5,42 5,25 5,38 5,27 IEEE
2 5,67 5,77 5,61 5,83 5,55 Maple  

Table 8 

The time complexity of multiplying  
in a binary field, s 

 

Field 
Degree

1 2 3 4 5
average relative

1 0,16 0,16 0,14 0,30 0,16 0,18 0,03
2 5,67 5,77 5,61 5,83 5,55 5,68 1,00
3 8,42 8,17 8,34 8,27 8,22 8,28 1,46
5 6,70 6,67 6,75 6,64 6,72 6,70 1,18
7 4,94 4,77 4,75 4,66 4,75 4,77 0,84

11 3,44 3,36 3,34 3,27 3,23 3,33 0,59
13 3,03 2,97 2,97 3,06 2,97 3,00 0,53
17 2,66 2,42 2,63 2,42 2,63 2,55 0,45
19 2,47 2,25 2,44 2,28 2,50 2,39 0,42
23 2,06 2,14 2,27 2,22 2,05 2,15 0,38
29 2,08 1,78 1,92 1,75 1,97 1,90 0,33

Time, conventional units
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Fig. 10. Relative time complexity of multiplying  
in a binary field 

VI. CONCLUSIONS 

The time complexity of software implementations 
of multipliers for the Galois fields GF (2m) and GF(dn) 
with approximately the same number of elements in the 
field and with representation of these elements in the 
polynomial basis is investigated. 

Software multiplication of triple extended field 
elements has the longest execution time. It provides 
hardware cryptoprocessors based on such fields of 
additional protection against hacking. Software-
implemented operations on simple field elements are 
executed the fastest, that indicates the inappropriateness 
of cryptographic processors based on such fields. 

The use of a polynomial basis allows, in contrast to 
the normal basis, to completely realize on the FPGA a 
parallel multiplier for the fields GF(2515) and GF(2519) 
and increase the realized part of the multiplier for the 
field GF (2998) by 5–12 times. 
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