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Abstract: The paper presents the use of states of explosion-

proof method for analyzing the behavior of systems that 

provide smart contract technology. The selected example 

system is ShadowEth, whose main task is to ensure sufficient 

confidentiality of information stored in the Ethereum 

blockchain currency. The Petri network model for the 

ShadowEth system has been presented. The system properties 

according to the specifications have been defined. Properties 

described in a certain extension of the TCTL logic and 

verification have been carried out. 

Key words:  petri net, time, smart-contract, shadoweth, 

Ethereum. 

I. INTRODUCTION 

The work contains a description of the method 

allowing to analyze the systems that provide smart contract 

technology. This method is resistant to the explosion of the 

modeled system states. The basis of the presented method is 

the Petri net theory. The extension used in comparison to 

classic Petri net has reading places, as in contextual net, and 

the time that has elapsed since the token appeared in the net 

places. This treatment allows reader to model the passage of 

time directly for system objects that are represented by a 

token, place, presence of a token in a place or relations 

between these objects. The authors assume that the reader 

knows at least a base of Petri net model. 

The second chapter describes a system called 

ShadowEth [10], which provides an extension of smart-

contract technology, and approximates selected problems in 

it. The third chapter presents the basics of the modeling 

method used. The formal description of the Petri net 

extension and the ShadowEth system model are described. 

In the paper, the ways to represent the semantics of the 

model and the language of the system model description are 

presented. The fourth chapter presents Petri nets models of 

protocol. The fifth chapter presents the analysis of the 

behavior of the described system, and the results of the 

system simulation. The final chapter presents conclusions 

and directions for further research. 

II. SYSTEM SHADOWETH 

ShadowEth system [10] is an extension technology of 

smart systems providing contract [2], [4] in such a way that 

it provides protection / confidentiality of the data in the 

smart contract in three areas: specification, performance and 

state of the contract. 

Smart contracts are programs whose operating 

principle (data storage method) is based on blockchain 

technology. Smart contract allows for the autonomous 

transactions by two contracting interveners. In other words, 

the smart contract is a protocol allowing digital access to 

verify correctness and support the negotiation process 

within the contract concluded by two parties. The term 

“smart contract” was used for the first time by Szabo [9] in 

1994 in the publication "Smart contract", in which he 

explained the principle of operation of such contracts on the 

example of taking out a loan for the purchase of a car. 

Smart contract operates using blockchain technology, 

which not only implements the account book of the signed 

contacts and transactions, but also is the basis for the 

functioning of the Ethereum currency. 

A. BLOCKCHAIN AND SMART CONTRACT 

TECHNOLOGY 

The blockchain technology allows to perform an 

electronic ledger, also known as a blockchain, which is 

distributed and publicly available [6], [7]. Blockchain 

technology with the help of users called miners/workers 

allows for the authorization of transactions concluded in the 

system between clients/interveners/parts. 

The method of authorizing a new block containing 

transactions and attaching a block to the chain is carried out 

by the so-called consensus mechanism. The literature 

contains a description of various mechanisms / algorithms 

authorizing data such as Proof of Work (PoW), Proof of 

Stake (PoS), Practical byzantine fault tolerance (PBFT) or 

Delegate Proof of Stake (DPoS). 



Michal Horodelski and Piotr Filipkowski 2 

Certainly the most known and fundamental 

mechanism is the PoW mechanism derived from the 

Bitcoint cryptocurrency. PoW solves the problem of so-

called sybil attack of attaching virtual nodes to the peer-to-

peer network in order to obtain a numerical advantage over 

the approval of the next block. PoW's operation is carried 

out with the help of participants (miners/workers) of the 

peer-to-peer network. 

 

Figure 1. The mechanism of consensus PoW. 

Source: [14],  p. 2. 

According to the diagram from Figure 1, miners 

generate and solve a computing problem called nonce. The 

solution of a nonce is a difficult task that requires time and 

computing power. However, the verification of the solution 

is much faster and much less expensive. Then the result is 

included in the set of transactions closed in a block and sent 

to other network participants in order to confirm 

verification. If 51% of the miners approve the solution, the 

block maintains its attachment to the chain and waits for 

perpetual approval/signature by generating next 6 blocks by 

the miners. One block is approximately every 10 minutes. 

Therefore, the perpetual approval of the next chain block 

takes about an hour for the network. It also happens that 

alternative blocks are attached to the chain next to each 

other. In this case, forks are formed. However, only the 

branch that will become the longest is maintained. Blocks 

from other branches are canceled. 

In a peer-to-peer network, different ways of 

broadcasting information about a new block are used. These 

methods, called propagation mechanisms, can be divided 

into groups. The author refers to three groups in which the 

action is based on: 

• Advertisement-based propagation 

• Sendheaders propagation 

• Unsolicited push propagation 

For example, in the first group, when node A receives 

information about the new block, it sends a message called 

inv message to other peer-to-peer nodes connected to the 

network. When node B receives a message from A, it will 

follow the established rules. If B already has information 

about the new block, he will not take any action. Otherwise, 

B will respond to the announcement by sending a reply 

message. When A receives a reply message, it will send B 

full information about the new block. The second group is 

the improvement of the previous one by sending 

information about block headers. 

 

Figure 2. Diagram of adding another block in PoW. 

Source: [15], pp. 3416-3452. 

 

B. SHADOWETH PROTOCOL. 

The main task of the ShadowEth system, described in 

[10, ShadowEth], is to provide a confidential platform for 

private smart-contract, which can be stored in the generally 

available accounting book of the Ethereum currency. The 

system offers confidentiality in three areas: specification, 

performance and smart-contract status. 

One of the components of the system is the trusted 

enclave network, which stores data in the TEE-DS network 

acting as a trusted distributed data store. 

The confidentiality of the code and information is 

maintained through a trusted communication channel 

(prepared before the contract is initiated) between the user 

and the TEE-DS network. Just before the conclusion of the 

contract, i.e. the transfer to the block chain (account book), 

it is encrypted. The contract can only be decrypted in the 

trusted enclave network. 

In order to achieve the confidentiality of smart-

contract performance, the only information that goes to the 

accounting ledger is information that allows him to be 

called (found) and allows its verification. The TEE-DS 

network generates a unique public and private key pair for 

each contract. The private key remains secret and the public 

key is published. When writing a contract to the accounting 

ledgers, the arguments are encrypted with the help of a 

public key. Only the participant in the enclave group who 

owns the private key can decrypt the data. 

In order to ensure the confidentiality of the smart-

contract status in the accounting book (Ethereum platform), 

only the hash / signature of the entire contract is stored, not 

the complete information as in the classic smart-contract. 

Access to information about contract details is possible only 

within the enclave network. In the case of insufficient 

memory, data is sent to external media, but in a securely 

encrypted way. 

The structure of the system is analogous to the usual 

smart-contract system. 
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Figure 3. ShadowEth system architecture 

Source: [10], p. 546. 

In the ShadowEth architecture scheme, there is a chain 

of blocks - Ethereum. Inside the chain, there may be a 

special case of the contract called Bounty-contract. 

Bounty contract is the part of the contract that is 

publicly available and included in the Ethereum accounting 

book. Every Ethereum user can view bounty-contract, 

although there is no access to the details of the contract. 

The User Node consists of the User Client and 

Ethereum Client components. User Client is a set of 

interfaces for the end user, thanks to which Etherum Client 

support is possible. The use of interfaces does not require 

the privileges of the participants of the enclave network. 

The Worker Node, in the same way, consists of the 

Worker Client and Ethereum Client components. The 

Worker Client component is responsible for creating and 

managing confidential contracts. To use the Worker Client 

component, the user must be in the enclave network and 

have the appropriate permissions. 

TEE-DS (being a distributed database) stores detailed 

information on confidential contracts. 

Conclusion of contracts and their recalling works 

according to the defined protocol. The ShadowEth protocol 

can be divided into two scenarios: 

contract deployment - the user defines the business 

logic of the confidential contract, compiles the code and 

places it in the TEE-DS. The information that allows him to 

be identified / searched is sent to the bounty contract. In this 

part, a pair of keys was generated, private (remaining only 

in the enclave) and a public key generally available. 

contract invocation – it involves calling a private 

contract (deployed) in the blockchain, and it is possible for 

the users to do it just like an ordinary contact in the 

Ethereum network. 

The Contract deployment section includes the 

following stages: 

• the user sends the contract source codes to the 

TEE-DS through a secured communication 

channel (thanks to Keysession). 

• TEE-DS generates a pair of keys Keyc_p and 

Keyc_s, unique for each contract (p - public, s – 

private/ secret). 

• TEE-DS sends Keyc_p back to the user. 

• The user sends identification information for a 

confidential contract to Bounty contract - which 

signals a new contract (private) 

• Bounty contract creates a new record with the 

contract in its contract list in which it adds 

identification information, sets the version to 0, 

and the status to "deployed". 

• Once the deployed transaction has been 

recognized, the code of the private contract is sent 

to the remaining TEE-DS employees. 

A private contract deployed in a block chain can be 

called by users just like a normal contact in the Ethereum 

network. The calling of a private contract is carried out 

according to the following steps: 

• the user initiates a contract invocation by the user's 

client. The user must specify a contract Keyc_p, 

remuneration and appropriate parameters including 

the function name and its calling arguments. 

• The user's client forwards the request: 

1)  adds a time stamp (date) to the content of the 

request, 

2)  generates a confidential Keyreq key which is used 

only for the given request, 

3)  when using Keyc_p, encrypts the request with the 

exception of pay and sends data to the Ethereum client. 

• The Ethereum client generates an invoked 

transaction containing the contract Keyc_p, an 

encrypted request, and remuneration sent to the 

Bounty Contract. 

• In the moment when the Bounty Contract receives 

the requested transaction: 

1)  verifies the identification data to make sure that the 

contract exists and that the request comes from one of the 

users included in the list of contract owners. 

2)  adds a new entry (new pass) with information 

attached to the referenced transaction to the list-to-do with 

the TODO designation and in the meantime, sends the 

remuneration to the account. 

• At the moment when the requested transaction was 

recognized, the workers can see the tasks 

completed. They can choose any task and get 

related information, including Keyc_p and an 

encrypted request from Bounty Contract. 

• using Keyc_p worker, one can ask TEE-DS for the 

contract code and load the contract into your 

enclave network together with the encrypted 

request. 

• In the enclave, the contract-gate firstly decrypts the 

request to get a list of arguments of the called 

function and Keyreq and then uses a specific 

function, 

• If the execution of the function ends without error, 

the contract-gate will distribute the modification of 
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the contract status for the remaining employees in 

the TEE-DS and will generate a response 

containing: 

1)  version of the contract before execution, 

2)  contract status hash after execution 

3)  the value returned by the function (when the 

function returns something), which is encrypted by Keyreq 

4)  information about the agreement (when it is) 

5)  IVS. 

• The worker's client sends a response to the Bounty 

Contract, which can verify the correctness of the 

IVS with Keyc_p, to ensure that the worker has 

completed this task correctly. 

• After verification, the Bounty contract updates the 

list entry to be marked as FINISHED, fills in the 

return value (if present) and updates the contract 

information (version number, contract status hash). 

• Then the user can provide the value return and 

decrypt it using Keyreq. 

• If the result is marked as an agreement, the Bounty 

contract will generate an agreement transaction 

with the information about the agreement in a reply 

message. The first Worker who completes this 

process will receive remuneration. 

• When the result is confirmed by BC, other TEE-

DS workbenches will accept modifications. 

III. DESCRIPTION OF MODELING METHODOLOGY 

Construction of the development prefix for c-TdPN 

systems whose behavior is represented by the time-based 

transition system may be similar to the TPN systems in the 

algorithm described in [1] on page 9. The difference in the 

new proposed solution is an application of the algorithm 

skeleton to another Petri net model, another way to 

determine symbolic states ( )Post s  and ( )tPost s  and 

another way to verify the stop condition s Pass . 

In the c-TdPN model, the transition may be time-

barred due to the passage of time in contrast to the TPN 

transitions. 

The urgency of making a transition can be enforced by 

assuming the maximum time of performing the transition 

from the moment it is possible [11] or by adding restrictions 

to the presence of tokens in places. 

For practical purposes, the c-TdPN will be added for 

places restrictions to the length of stay in one token, called 

invariants ( inv ). 

The model of the c-TdPN system with invariants is the 

c-TdPN model extended by an additional inv relation 

allowing to determine the maximum length of the token stay 

in the selected place of the system model. 

C. FORMAL DESCRIPTION OF C-TDPN AND TTS 

MODELS 

Model c-TdPN is represented by structure 

( , , , , , )N P T F C I m= , where: 

• P  is a finite set of element called  places,  

• T is a finite and disjoined with P set of elements 

called transitions, 

• ( ) ( )F P T T P     is a set of pairs 

representing arcs connecting places with 

transitions and transitions with places, 

• C P T   is (disjoined with F) a set of pairs 

representing arcs called reading arcs, connecting 

places with transitions, 

• I is a function that assigns for each arc 

( , )p t F  an interval of [0, ]  and for each arc 

( , )p t C exact interval [0, ] , 

• m  is a function, called initial state, which assigns 

for each place a finite set of undistinguishable 

elements called tokens.  

Functions such as m represent possible states of 

system wherein m  represents initial state.  

Transitions represent actions that the system can 

perform if at any place from where the arc leads to them, we 

can choose at least one token if the time has elapsed since 

the appearance of such a token falls within the arc of 

accessibility assigned to the arc. 

Performing such an action causes the consumption of 

the selected tokens and creation of a token in each place 

where the arc originates from the transition, which 

represents this action. 

Starting from the initial state, the execution of 

sequentially enabled transitions creates a graph of the 

executed transitions and achieved states. 

The time that has elapsed since placing the token in 

the place is called the token's age. 

Limitation of the structure N  to ( ), ,P T F  

(respectively to ( ), , ,P T F C ) with the interpretation 

described is a well-known model of Petri net (resp. 

contextual Petri net) and limitation to ( , , , )P T F m  (resp. 

to ( , , , , )P T F C m ) network system (resp. contextual 

network system) with initial state m . Formally, it is a graph 

with two types of nodes (places and transitions) with arcs 

connecting nodes of different types. 

Timed Transition System (TTS) of the system whose 

model is N (c-TdPN) is the structure 0( , , , )S Q Q=  →  

where: 

• Q  is a set of system states, 

• 0Q Q  is a set of initial system states,  

•    is a finite set of system actions,  
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• a relation ( {0})Q Q+→      is a set 

of edges representing the change in the system 

state. 

Changing the state of the system from q  to 'q  can 

occur due to finalization of the action a  or by the 

passage of {0}d R   moments. The change is 

represented by 
xq q⎯⎯→  which means ( , , )q x q →  

where { , }x a d . For x d=  we can write q q d = +  

which means the state q  after d  of moments without the 

occurrence of any system action. Both the possibility of 

action and the passage of time depend on the type of system 

model. 

Path (or process) in S  we will call the maximum 

sequence of successive states due to the alternating time 

units {0}id R   and the action instances ia  . 

Formally, the path   in S , starting in the state 0iq Q  is 

a sequence: 

1 1 2

1

1 1 2

( )

( )

i i

i i i

d

i i i i

d d

i i

a

a

i

q q d q

q d q



+ + +

+

+ + +

= +

+ 

⎯⎯→ ⎯⎯→

⎯⎯→ ⎯⎯→ ⎯⎯→
 

In a special case, the path can be started in any state 

q Q  by calling it the suffix of the process. The set of all 

paths (runs) beginning in q  is represented by ( )q . 

The model of contract deployed in ShadowEth 

protocol, shown in Figure 4, is represented by structure 

0( , , , , , )N P T F C I m= , where: 

• 1 2 9}{ , ,...,P P P P=  

• T is a set of transition, represented by squares with 

captions, 

• F is represented by arrows, 

• C does not occur, 

• 0m is a function that assigns 1 to places 1P , 2P  

and 0 for others. 

D. THE SEMANTIC OF THE MODEL C-TDPN 

Let 0( , , , , , , )N P T F C I inv m=  mean the c-TdPN 

model with invariants and 0( ,{ }, , )NS Q q=  →  a timed 

transition system representing his behavior, where: 

( {0}) ( {0})Q P T += →   →  ,  

0 0 0( , )q m v= ,  

T = , 

( {0})Q T Q+→     , 

0v  is a function that assigns a value 0 to each place. 

The clocks are assigned to the places (tokens) in model N . 

For each ip P  there is exactly one clock ix X . We 

also assume that there may be at most one token in the 

place. Hence, if px  is the clock assigned to the place p , 

( )pinv x  means the invariant assigned to this place. 

Contract deployment

  

Request Quote{KeySession}
  

KeySession{code}

Keyc_p

Check

Acknowledge-
ment

User Client TEE-DS
Bounty 

Contract

Initiate

Keyc_p, Owner list, 
Hash{code}

P1

P2

P3

P4

P5
P6 P9

P8

P7

 

Figure 4. Contract deployment model in ShadowEth 

protocol 

Source: own study 

Change of state ( , )q m v=  to ( , )q m v  =  was 

created as a result of the launch of the transition t , marked 

as  tq q⎯⎯→ , is possible if: 

1) ( )m m Ft tF = −  , 

2) for each p Ft Ct  :  

 2.1) ( ) 1m p  , 

 2.2) min ( , ) ( ) max ( , )I p t v p I p t  ,  

3) ( ) 0v p =  when p tF , and ( ) ( )v p v p = for 

all others. 

Change of state q to q  was created as a result of the 

passage d  units of time, marked 
dq q⎯⎯→ , is possible 

if: 

1) 'm m= , 

{0}d R+  , 

2) for each : ( ) ( )p P v p v p d = + , and 

3) for each place p  where the token is: 

( ) ( )v p v p d = + , 

( ) ( )v p inv p  . 

E. DISCRETIZATION OF THE TIMED TRANSITION 

SYSTEM 

Transition system NS  after discretization is a discrete 

system 

0( , , , )NSA QA QA=  →  (0.1) 



Michal Horodelski and Piotr Filipkowski 6 

where sets QA , 0QA ,  , →  mean successively a set of 

symbolic states, initial symbolic states, actions, and system 

transitions. System NSA  can be represented by a graph 

with vertices in QA , the edges described by the relation 

QA QA→   and marked with actions from  . 

The system actions represent running transitions in the set 

T . 

The symbolic state aggregates some states of the 

system NS  with the same marking. Symbolic state s  is 

represented by ( , )s m Z= , where m  is the marking of the 

net N , and Z  is a zone limiting the indications of clocks 

assigned to places where there is at least one token in m , 

and a zero clock. 

Clock indications are limited by a range [0, ]min , 

where min  it's the smallest value ( )inv p  for places 

where the token is or   when there are no limitations. 

The zero clock constantly indicates the value 0 . 

Symbolic initial state 0 0 0( , )s m Z =  is the start marking 

0m  and zone 0Z . This zone limits the indications of the 

clocks assigned to the places where there are tokens in the 

initial state in such a way that each clock has to indicate 0  

( 0Z  is a zero matrix).  

Change of the symbolic state s  to s represented by 

→  is about: 

• determination of symbolic state aggregating all 

possible states of the system NS  created by launching the 

transition t  in s , represented by ( )ts PostTd s = , 

• designation for s  all system states NS  resulting 

from the longest possible passage of time represented by 

( )PostTd s . 

In brief, ( )( )ts PostTd PostTd s = , 

where the zone in s  cannot be empty. In the case of a zone 

in s  or s  is empty, that means t  was not allowed in s . 

Symbolic state ( ) ( , )ts PostTd s m Z  = =  is 

created by launching an enabled transition t  in the 

symbolic state s , where: 

• ( )m m Ft tF = −  , 

• (( {min ( , )p Ft pZ Z I p t x
 =    

|max ( , )}) ) { 0}
j

Ol j

x Ne

I p t x


  =  

a clock px  is associated with the place p . 

State ( )ts PostTd s =  in practice, it is calculated in 

stages: 

• designation of new marking ( )m m Ft tF = −  , 

• for Z   assigning a zone created by applying for Z  

limitations resulting from the possibility of a transition t :  

{min ( , ) max ( , )}p Ft pZ Z I p t x I p t
 =     

• for Z   assigning it to a canonical character, 

• leaving in Z   limitations for the clock 0x  and those 

clocks assigned to places in which there is at least one token 

in  m Ft−  (set Ol ), 

• adding successively to Z   limitations of new reset 

clocks associated with places tF  (set Ne ), 

• clock differences from Ne  and those who were 

already in the zone Z   because no limitations are set to  , 

• at the end for Z   assigning it to a canonical 

character. 

Symbolic state 

( ) ( , )ds PostTd s m Z   = =  (0.2)  

is a result of the longest possible passage of time d  from 

the moment the state was established s , where: 

• '' 'm m= , 

• ( )
Zx XZ Z x d x inv x


 =     , 

Z  is the future of the zone Z  , ZX  set of clocks from Z  . 

The lack of a finite value is the future of the zone 

d =  means no limit to the maximum 

delay: ( ) ( )dPostTd s PostTd s = , which reduces the last 

point to: ( )
Zx XZ Z x inv x


 =   . 

The set NQA  consists only of the symbolic state 

0 0( )ds PostTd s=  and all symbolic states can be obtained 

by applying the assembly tPostTd PostTd  for 

previously created states starting from 0s , where t T  is 

an enabled transition for these states.  

Figure 5 is presenting example of graph NSA . 

 

Figure 5. Form of presentation of the behavior fragment - 

zone graph (overview data) 

Source: own study 
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F. AN ALGORITHM THAT GENERATES A 

REPRESENTATIVE FRAGMENT OF THE STATE SPACE 

Those definitions are used interchangeably in 

algorithm No. 1 to create a new algorithm for producing 

zone graphs for models of c-TdPN systems with invariants 

and an additional stop condition. 

Data: 

system  – system c-TdPN with invariants with 

additional technical place g  stored token and assigned 

clock point at 0  ( 0gx = ), 

0 0 0' ( , ' )s m Z=  – initial moment of system model, 

for all ,i j : . 0ijZ z = , 

d  - limiting the maximum moment of generating 

space state or d =  when there is no limit, 

0 0( )ds PostTd s= , 

0: { }wait s= , 

pass =  , 

approx  - chosen approximation of states: no-app, 

simple k , xk or xLU  

Results: Generated discretized space of states c-TdPN, 

saved in Pass  

Algorithm: 

 

Algorithm No. 1. The algorithm that generates the 

zone graph of the c-TdPN system models 

After calling the function ()GenerateZoneGraph  

set pass , if the execution of the algorithm is completed, it 

stores all nodes of the system model space state until the 

moment d , or a representative fragment of it in the case 

d = . 

The main function loop is to check if the states are still 

untested (lines 2-13). In the case when there are no more 

undiscovered states, the execution of the algorithm ends. 

Otherwise, the undiscovered state is assigned to the symbol 

s  and removed from the collection wait  (line 3). Next, if 

in pass  there is a symbolic state that has the same 

approximation approx  as s , this algorithm goes to the 

next run of the main loop, and s  is skipped (line 4). 

Otherwise, for each active transition t  in state s  the new 

symbolic state is calculated s  and added to set wait  if it 

has a non-empty zone (lines 5-10). Then information about 

the examined state s  is saved (line 11), and the algorithm 

execution goes back to the main loop.  

G. APPROXIMATE SYMBOLIC STATES 

Four well-known approximations were chosen for the 

study of c-TdPN with invariants, including the solution used 

in the TAPAAL tool. These are the following 

approximations k , xk , xLU  [12], plext [13]. Each of the 

approximations was adapted for the c-TdPN model with 

invariants. 

Let ( , )s m Z  =  mean the state created by the 

approximation of the state ( , )s m Z=  and ,i jx x X  set 

of zone clocks Z  and Z   (including zero clock). The 

approximation does not change the marking of the symbolic 

state, but only the values of constraints written in the zone, 

so as not to increase the area of actuations of active 

transitions in s . 

A simple approximation k  consists in choosing one 

integer k , equal to the largest finite constraint in the model. 

If the clock's indication exceeds the number k , its further 

value is unnecessary. New zone ( )aZ k Z =  is calculated 

according to the formula: 

 

The approximation of xk  differs from the 

approximation of k , that for each clock x  a separate value 

xk  corresponding to the largest finite constraint in the 

model for this clock is selected. The zone ( )x

aZ k Z =  is 

calculated according to the formula: 

 

H. ADDITIONAL STOP CONDITION OF ALGORITHM 

Algorithm No. 1 has an additional stop condition 

defined, thanks to which it is possible to generate the initial 

fragment of the state space of the tested system model up to 

a certain point of d  without using approximation. This will 

generate a poorer fragment of behavior (discretized space of 

the system model states), although it will allow verification 

of its properties on the basis of contained paths and states 

that can be achieved without exceeding the moment d .  

This fragment can be used for: 

• faster obtaining a representative model of behavior 

limited to a given moment, 
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• faster property verification, 

• checking whether the tested system action will be 

carried out until d , 

• answer to the question about what may happen in the 

system until moment d . 

An additional stop condition also allows to test the 

algorithm's operation: 

• until moment d  with the selected approximation, 

• until moment d  without approximation. 

I. TDPN-TCTL (TTS) LOGIC TO DESCRIBE THE 

SYSTEM MODEL BEHAVIOR. 

The verified properties will be described in the logic 

called c-TdPN-TCTL, which is an extension of the TCTL 

logic. 

Let N , NS  and NSA  be defined as in the previous 

chapter. 

Syntax of logic c-TdPN-TCTL has the following form: 

 
where true  is keyword and GMEC  . 

The semantics of logic c-TdPN-TCTL was defined: 

 

where ( , )s m Z=  is a symbolic state, gx  is a clock 

assigned to a token located in the technical (artificial) place 

of the system, used to measure time from the moment of its 

initiation. Whereas . ijs z  means limiting clocks i  and j  

from the node zone s . 

J. ALGORITHMS TO VERIFY THE PROPERTIES OF A 

SYSTEM MODEL.  

Let N , NS  and NSA  mean successively the system 

model, its behavior model and behavior model after 

discretization. 

In the further part, the symbolic state will be called a 

node with some selected features. Let ,   be GMEC 

formulas. Node w  has the following features: 

.w m  - marking, 

.wZ  - zone, 

. ijw z  specific upper limit of the difference of clocks 

i jx x−  from zone Z , 

0.w z g−  and 0. gw z  is the earliest and the latest 

possible indication gx  in node w , 

.w potomni  - set of nodes to which the arrow goes 

  from node w  ( .w potomni = when there are no 

arrows), 

.w ref  is a node approximated from w  (always if 

.w ref    then .w potomni = ), 

. ( )w spel   - true when marking .w m  ensures 

truthfulness  , 

. ( , )w espel I  - true when the form ula   is met at 

the time of the interval .I wZ  at least in one path 

passing through the node w , where I  is the interval in 

which the clock gx  will be displayed. 

Let I , J  compartments be positive semi-axes, 

wherein [ . , . ]I I a I b=  and [ . , . ]J J a J b= . The 

operations are defined for compartments: 

subtraction (reduction) of the scalar value c : 

[ . , . ]J c J a c J b c− = − − , 

safe reduction:

. ( ) [max{0, . },max{0, . }]I I redukuj c I a c I b c= = − −  (0.3) 

In addition, let the zone graphs NSA  mean the system 

state space N  after discretization and 0 0( )ds PostTd s=  

starting node of the graph. 

K. PROPERTIES OF VERIFICATION ALGORITHM 

IEF .  

Property IEF  will be verified using the function 

( , )EF I  and recursive auxiliary function 

( , , )EFRef wezel I . The function EFRef is to check 

whether wezel  passes a path that has a beginning in the 

node 0s , in which IF  is fulfilled (fulfilled   at the 

moment in .I wezel Z ). Function ( , )EF I  returns 

true when property IEF  is met in the graph being 

examined NSA  (in the symbolic state 0s ). 

Node 0 0( )ds PostTd s= , where 0s  is an initial 

symbolic state of graph NSA . 
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Algorithm No. 2. Algorithm for the verification of EF 

system properties 

The procedure performing function EFRef  in 

wezel  checks five cases. 

First of all if wezel  occurs later than the interval I  

procedure returns false because all fragments of paths 

coming from this node are irrelevant (line 1-2).  

Second, if the formula   is met in marking .wezel m  

and clock limitations for gx  contain a moment from the 

interval I  procedure returns true (lines 3-4). 

Third, when wezel  has child nodes, it should be 

checked whether at least one of these nodes passes a path 

that fulfills IF . If so, the procedure returns true, 

otherwise false (lines 5-11). 

Fourth, if the previous cases did not take place, the 

procedure checks whether the node wezel  has an 

approximation in NSA  (whether .wezel ref   ). If so, 

the procedure returns true when one of the child nodes of 

the node .wezel ref  passes the path that fulfills the 

property JF  , where 
0. ( . . gJ I redukuj wezel ref z=  

0. )gwezel z−  (lines 12-17). Otherwise, the procedure 

returns false (line 18). 

IV. SYSTEM WITH SMART-CONTRACT 

TECHNOLOGY 

A. SHADOWETH TIMED PETRI NET MODEL. 

Model of ShadowEth, which authors have prepared, 

includes not only model of contract deployment (Figure 4) 

but also model of contract invocation (Figure 6). Second 

model was also invented with the help of sequence diagram 

presented in [10, ShadowEth].  

Contract invocation model represents the next part of 

the protocol and is responsible for calling the private 

contract deployed in the blockchain. 

In both models (Figures 4 and 6), it was assumed that 

the ranges of token availability are in the form of [0,1]  and 

an invariant with every invoice limiting the token's age to 

the one unit moment at each place.  

V. ANALYZING THE BEHAVIOR OF THE SYSTEM 

AND SIMULATION TESTS 

With the algorithm No. 1 can generate a representative 

portion of the behavior model of the system in the form of 

discretized graph zones which were analyzed in model 

checking. 

Then, using algorithms such as algorithm No. 2, it is 

possible to automatically verify the assumed property of the 

system model. 

During the research, the main focus was on verifying 

the confidentiality of information stored in contracts. A 

formal verification of ownership was carried out [5]. The 

confidentiality of concluding contracts on three levels was 

examined: specification of the contract, performance of the 

contact and its status. 

Selected verification results are presented in the 

following tables. 

  

Keyc_p, 

Remuneration, 
Keyc_p{Args/Url, Keyreg,}

  
Query

Keyc_p

Code, Data,
Keyc_s

Update 
Request

Query

Acknowledgement

Keyreq{ret}

Keyc_p, 

Keyc_p{Args, Keyreq}

Check

User Client Bounty Contract TEE-DSWorker Client

IVS, Keyreq{ret}, 
SettleInfo 

Version(Before),
Hash(After)

Execute

Contract invocation

P1 P2
P4

P6

P3

P8

P10

P14 P12

P16

P15

P11

P13

P9

 
Figure 6. Contract invocation model in ShadowEth protocol 

Source: own study 

TABLE I 

Contract Deployed Verification 

Property MEANING Verification 

1IAF  Sending a request for Keysession 

for confidential communication. 

1 3: { 1}P = =  

true 
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2IAF  The user has received Keysession: 

2 1 4  : { 1, 1}P P = = =  

true 

3IAF  TEE-DS. generates a pair of 

keys: Keyc_p i Keyc_s dedicated 

to the contract: 

3 5  : { 1}P = =  

true 

4IAF  The user has received Keyc_p: 

4 6 7: { 1, 1}P P = = =  

true 

5IAF  The user has sent information 

about a new confidential 

contract to Bounty contract: 

5 9: { 1}P = =  

true 

The next table summarizes the verified properties for 

the Contract invocation. 

 

TABLE II 

Contract invocation Verification 

Property MEANING Verification 

1IAF  The user has called the 

contract: 

1 2 5: { 1, 1}P P = = =  

true 

2IAF  Bounty contract authorizes the 

call and adds a new entry to 

the list: 

2 6  : { 1}P = =  

true 

3IAF  TEE-DS. at the request of 

Worker Client, he performs 

the contract using the private 

key: 

3 10  : { 1}P = =  

true 

4IAF  Bounty contract confirms the 

performance of the contract: 

5 16: { 1}P = =  

true 

VI. SUMMARY 

The paper presents the application of the developed 

method, explosion-proof state of the system model, 

modeling and analysis of the system property using smart-

contract technology on the example of the ShadowEth 

system. The protocol for contract deployed and contract 

invocation was described, the method used was presented, 

models for both parts of the protocol were presented, the 

properties related to confidentiality were defined, and 

ownership verification was provided in both models. In all 

cases, properties were met. It was shown that it is possible 

to use the developed method for modeling and verification 

of smart-contract systems. 
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