
ADVANCES IN CYBER-PHYSICAL SYSTEMS

Vol. 4, Num. 1, 2019

A REPRESENTATIVE FRAGMENT METHOD OF ANALYZING COMPLEX

SYSTEMS OF SMART CONTRACTS

Michal Horodelski1 and Piotr Filipkowski1

1Institute of Mathematics and Computer Science, Faculty of Mathematics Informatics and Landscape

Architecture, The John Paul II Catholic University of Lublin, Poland

Author's e-mail: michal.horodelski@kul.pl
2Institute of Information Systems and Digital Economy, The Collegium of Economic Analysis of Warsaw School

of Economics, Poland

Author's e-mail: pfilip@sgh.waw.pl

Submitted on 24.06.2019
© Horodelski M., Filipkowsk P., 2019

Abstract: The paper presents the use of states of explosion-

proof method for analyzing the behavior of systems that

provide smart contract technology. The selected example

system is ShadowEth, whose main task is to ensure sufficient

confidentiality of information stored in the Ethereum

blockchain currency. The Petri network model for the

ShadowEth system has been presented. The system properties

according to the specifications have been defined. Properties

described in a certain extension of the TCTL logic and

verification have been carried out.

Key words: petri net, time, smart-contract, shadoweth,

Ethereum.

I. INTRODUCTION

The work contains a description of the method

allowing to analyze the systems that provide smart contract

technology. This method is resistant to the explosion of the

modeled system states. The basis of the presented method is

the Petri net theory. The extension used in comparison to

classic Petri net has reading places, as in contextual net, and

the time that has elapsed since the token appeared in the net

places. This treatment allows reader to model the passage of

time directly for system objects that are represented by a

token, place, presence of a token in a place or relations

between these objects. The authors assume that the reader

knows at least a base of Petri net model.

The second chapter describes a system called

ShadowEth [10], which provides an extension of smart-

contract technology, and approximates selected problems in

it. The third chapter presents the basics of the modeling

method used. The formal description of the Petri net

extension and the ShadowEth system model are described.

In the paper, the ways to represent the semantics of the

model and the language of the system model description are

presented. The fourth chapter presents Petri nets models of

protocol. The fifth chapter presents the analysis of the

behavior of the described system, and the results of the

system simulation. The final chapter presents conclusions

and directions for further research.

II. SYSTEM SHADOWETH

ShadowEth system [10] is an extension technology of

smart systems providing contract [2], [4] in such a way that

it provides protection / confidentiality of the data in the

smart contract in three areas: specification, performance and

state of the contract.

Smart contracts are programs whose operating

principle (data storage method) is based on blockchain

technology. Smart contract allows for the autonomous

transactions by two contracting interveners. In other words,

the smart contract is a protocol allowing digital access to

verify correctness and support the negotiation process

within the contract concluded by two parties. The term

“smart contract” was used for the first time by Szabo [9] in

1994 in the publication "Smart contract", in which he

explained the principle of operation of such contracts on the

example of taking out a loan for the purchase of a car.

Smart contract operates using blockchain technology,

which not only implements the account book of the signed

contacts and transactions, but also is the basis for the

functioning of the Ethereum currency.

A. BLOCKCHAIN AND SMART CONTRACT

TECHNOLOGY

The blockchain technology allows to perform an

electronic ledger, also known as a blockchain, which is

distributed and publicly available [6], [7]. Blockchain

technology with the help of users called miners/workers

allows for the authorization of transactions concluded in the

system between clients/interveners/parts.

The method of authorizing a new block containing

transactions and attaching a block to the chain is carried out

by the so-called consensus mechanism. The literature

contains a description of various mechanisms / algorithms

authorizing data such as Proof of Work (PoW), Proof of

Stake (PoS), Practical byzantine fault tolerance (PBFT) or

Delegate Proof of Stake (DPoS).

Michal Horodelski and Piotr Filipkowski 2

Certainly the most known and fundamental

mechanism is the PoW mechanism derived from the

Bitcoint cryptocurrency. PoW solves the problem of so-

called sybil attack of attaching virtual nodes to the peer-to-

peer network in order to obtain a numerical advantage over

the approval of the next block. PoW's operation is carried

out with the help of participants (miners/workers) of the

peer-to-peer network.

Figure 1. The mechanism of consensus PoW.

Source: [14], p. 2.

According to the diagram from Figure 1, miners

generate and solve a computing problem called nonce. The

solution of a nonce is a difficult task that requires time and

computing power. However, the verification of the solution

is much faster and much less expensive. Then the result is

included in the set of transactions closed in a block and sent

to other network participants in order to confirm

verification. If 51% of the miners approve the solution, the

block maintains its attachment to the chain and waits for

perpetual approval/signature by generating next 6 blocks by

the miners. One block is approximately every 10 minutes.

Therefore, the perpetual approval of the next chain block

takes about an hour for the network. It also happens that

alternative blocks are attached to the chain next to each

other. In this case, forks are formed. However, only the

branch that will become the longest is maintained. Blocks

from other branches are canceled.

In a peer-to-peer network, different ways of

broadcasting information about a new block are used. These

methods, called propagation mechanisms, can be divided

into groups. The author refers to three groups in which the

action is based on:

• Advertisement-based propagation

• Sendheaders propagation

• Unsolicited push propagation

For example, in the first group, when node A receives

information about the new block, it sends a message called

inv message to other peer-to-peer nodes connected to the

network. When node B receives a message from A, it will

follow the established rules. If B already has information

about the new block, he will not take any action. Otherwise,

B will respond to the announcement by sending a reply

message. When A receives a reply message, it will send B

full information about the new block. The second group is

the improvement of the previous one by sending

information about block headers.

Figure 2. Diagram of adding another block in PoW.

Source: [15], pp. 3416-3452.

B. SHADOWETH PROTOCOL.

The main task of the ShadowEth system, described in

[10, ShadowEth], is to provide a confidential platform for

private smart-contract, which can be stored in the generally

available accounting book of the Ethereum currency. The

system offers confidentiality in three areas: specification,

performance and smart-contract status.

One of the components of the system is the trusted

enclave network, which stores data in the TEE-DS network

acting as a trusted distributed data store.

The confidentiality of the code and information is

maintained through a trusted communication channel

(prepared before the contract is initiated) between the user

and the TEE-DS network. Just before the conclusion of the

contract, i.e. the transfer to the block chain (account book),

it is encrypted. The contract can only be decrypted in the

trusted enclave network.

In order to achieve the confidentiality of smart-

contract performance, the only information that goes to the

accounting ledger is information that allows him to be

called (found) and allows its verification. The TEE-DS

network generates a unique public and private key pair for

each contract. The private key remains secret and the public

key is published. When writing a contract to the accounting

ledgers, the arguments are encrypted with the help of a

public key. Only the participant in the enclave group who

owns the private key can decrypt the data.

In order to ensure the confidentiality of the smart-

contract status in the accounting book (Ethereum platform),

only the hash / signature of the entire contract is stored, not

the complete information as in the classic smart-contract.

Access to information about contract details is possible only

within the enclave network. In the case of insufficient

memory, data is sent to external media, but in a securely

encrypted way.

The structure of the system is analogous to the usual

smart-contract system.

A representative fragment method of analyzing complex systems of smart contracts 3

Figure 3. ShadowEth system architecture

Source: [10], p. 546.

In the ShadowEth architecture scheme, there is a chain

of blocks - Ethereum. Inside the chain, there may be a

special case of the contract called Bounty-contract.

Bounty contract is the part of the contract that is

publicly available and included in the Ethereum accounting

book. Every Ethereum user can view bounty-contract,

although there is no access to the details of the contract.

The User Node consists of the User Client and

Ethereum Client components. User Client is a set of

interfaces for the end user, thanks to which Etherum Client

support is possible. The use of interfaces does not require

the privileges of the participants of the enclave network.

The Worker Node, in the same way, consists of the

Worker Client and Ethereum Client components. The

Worker Client component is responsible for creating and

managing confidential contracts. To use the Worker Client

component, the user must be in the enclave network and

have the appropriate permissions.

TEE-DS (being a distributed database) stores detailed

information on confidential contracts.

Conclusion of contracts and their recalling works

according to the defined protocol. The ShadowEth protocol

can be divided into two scenarios:

contract deployment - the user defines the business

logic of the confidential contract, compiles the code and

places it in the TEE-DS. The information that allows him to

be identified / searched is sent to the bounty contract. In this

part, a pair of keys was generated, private (remaining only

in the enclave) and a public key generally available.

contract invocation – it involves calling a private

contract (deployed) in the blockchain, and it is possible for

the users to do it just like an ordinary contact in the

Ethereum network.

The Contract deployment section includes the

following stages:

• the user sends the contract source codes to the

TEE-DS through a secured communication

channel (thanks to Keysession).

• TEE-DS generates a pair of keys Keyc_p and

Keyc_s, unique for each contract (p - public, s –

private/ secret).

• TEE-DS sends Keyc_p back to the user.

• The user sends identification information for a

confidential contract to Bounty contract - which

signals a new contract (private)

• Bounty contract creates a new record with the

contract in its contract list in which it adds

identification information, sets the version to 0,

and the status to "deployed".

• Once the deployed transaction has been

recognized, the code of the private contract is sent

to the remaining TEE-DS employees.

A private contract deployed in a block chain can be

called by users just like a normal contact in the Ethereum

network. The calling of a private contract is carried out

according to the following steps:

• the user initiates a contract invocation by the user's

client. The user must specify a contract Keyc_p,

remuneration and appropriate parameters including

the function name and its calling arguments.

• The user's client forwards the request:

1) adds a time stamp (date) to the content of the

request,

2) generates a confidential Keyreq key which is used

only for the given request,

3) when using Keyc_p, encrypts the request with the

exception of pay and sends data to the Ethereum client.

• The Ethereum client generates an invoked

transaction containing the contract Keyc_p, an

encrypted request, and remuneration sent to the

Bounty Contract.

• In the moment when the Bounty Contract receives

the requested transaction:

1) verifies the identification data to make sure that the

contract exists and that the request comes from one of the

users included in the list of contract owners.

2) adds a new entry (new pass) with information

attached to the referenced transaction to the list-to-do with

the TODO designation and in the meantime, sends the

remuneration to the account.

• At the moment when the requested transaction was

recognized, the workers can see the tasks

completed. They can choose any task and get

related information, including Keyc_p and an

encrypted request from Bounty Contract.

• using Keyc_p worker, one can ask TEE-DS for the

contract code and load the contract into your

enclave network together with the encrypted

request.

• In the enclave, the contract-gate firstly decrypts the

request to get a list of arguments of the called

function and Keyreq and then uses a specific

function,

• If the execution of the function ends without error,

the contract-gate will distribute the modification of

Michal Horodelski and Piotr Filipkowski 4

the contract status for the remaining employees in

the TEE-DS and will generate a response

containing:

1) version of the contract before execution,

2) contract status hash after execution

3) the value returned by the function (when the

function returns something), which is encrypted by Keyreq

4) information about the agreement (when it is)

5) IVS.

• The worker's client sends a response to the Bounty

Contract, which can verify the correctness of the

IVS with Keyc_p, to ensure that the worker has

completed this task correctly.

• After verification, the Bounty contract updates the

list entry to be marked as FINISHED, fills in the

return value (if present) and updates the contract

information (version number, contract status hash).

• Then the user can provide the value return and

decrypt it using Keyreq.

• If the result is marked as an agreement, the Bounty

contract will generate an agreement transaction

with the information about the agreement in a reply

message. The first Worker who completes this

process will receive remuneration.

• When the result is confirmed by BC, other TEE-

DS workbenches will accept modifications.

III. DESCRIPTION OF MODELING METHODOLOGY

Construction of the development prefix for c-TdPN

systems whose behavior is represented by the time-based

transition system may be similar to the TPN systems in the

algorithm described in [1] on page 9. The difference in the

new proposed solution is an application of the algorithm

skeleton to another Petri net model, another way to

determine symbolic states ()Post s and ()tPost s and

another way to verify the stop condition s Pass .

In the c-TdPN model, the transition may be time-

barred due to the passage of time in contrast to the TPN

transitions.

The urgency of making a transition can be enforced by

assuming the maximum time of performing the transition

from the moment it is possible [11] or by adding restrictions

to the presence of tokens in places.

For practical purposes, the c-TdPN will be added for

places restrictions to the length of stay in one token, called

invariants (inv).

The model of the c-TdPN system with invariants is the

c-TdPN model extended by an additional inv relation

allowing to determine the maximum length of the token stay

in the selected place of the system model.

C. FORMAL DESCRIPTION OF C-TDPN AND TTS

MODELS

Model c-TdPN is represented by structure

(, , , , ,)N P T F C I m= , where:

• P is a finite set of element called places,

• T is a finite and disjoined with P set of elements

called transitions,

• () ()F P T T P    is a set of pairs

representing arcs connecting places with

transitions and transitions with places,

• C P T  is (disjoined with F) a set of pairs

representing arcs called reading arcs, connecting

places with transitions,

• I is a function that assigns for each arc

(,)p t F an interval of [0,] and for each arc

(,)p t C exact interval [0,] ,

• m is a function, called initial state, which assigns

for each place a finite set of undistinguishable

elements called tokens.

Functions such as m represent possible states of

system wherein m represents initial state.

Transitions represent actions that the system can

perform if at any place from where the arc leads to them, we

can choose at least one token if the time has elapsed since

the appearance of such a token falls within the arc of

accessibility assigned to the arc.

Performing such an action causes the consumption of

the selected tokens and creation of a token in each place

where the arc originates from the transition, which

represents this action.

Starting from the initial state, the execution of

sequentially enabled transitions creates a graph of the

executed transitions and achieved states.

The time that has elapsed since placing the token in

the place is called the token's age.

Limitation of the structure N to (), ,P T F

(respectively to (), , ,P T F C) with the interpretation

described is a well-known model of Petri net (resp.

contextual Petri net) and limitation to (, , ,)P T F m (resp.

to (, , , ,)P T F C m) network system (resp. contextual

network system) with initial state m . Formally, it is a graph

with two types of nodes (places and transitions) with arcs

connecting nodes of different types.

Timed Transition System (TTS) of the system whose

model is N (c-TdPN) is the structure 0(, , ,)S Q Q=  →

where:

• Q is a set of system states,

• 0Q Q is a set of initial system states,

•  is a finite set of system actions,

A representative fragment method of analyzing complex systems of smart contracts 5

• a relation ({0})Q Q+→     is a set

of edges representing the change in the system

state.

Changing the state of the system from q to 'q can

occur due to finalization of the action a or by the

passage of {0}d R  moments. The change is

represented by
xq q⎯⎯→ which means (, ,)q x q →

where { , }x a d . For x d= we can write q q d = +

which means the state q after d of moments without the

occurrence of any system action. Both the possibility of

action and the passage of time depend on the type of system

model.

Path (or process) in S we will call the maximum

sequence of successive states due to the alternating time

units {0}id R  and the action instances ia  .

Formally, the path  in S , starting in the state 0iq Q is

a sequence:

1 1 2

1

1 1 2

()

()

i i

i i i

d

i i i i

d d

i i

a

a

i

q q d q

q d q



+ + +

+

+ + +

= +

+ 

⎯⎯→ ⎯⎯→

⎯⎯→ ⎯⎯→ ⎯⎯→

In a special case, the path can be started in any state

q Q by calling it the suffix of the process. The set of all

paths (runs) beginning in q is represented by ()q .

The model of contract deployed in ShadowEth

protocol, shown in Figure 4, is represented by structure

0(, , , , ,)N P T F C I m= , where:

• 1 2 9}{ , ,...,P P P P=

• T is a set of transition, represented by squares with

captions,

• F is represented by arrows,

• C does not occur,

• 0m is a function that assigns 1 to places 1P , 2P

and 0 for others.

D. THE SEMANTIC OF THE MODEL C-TDPN

Let 0(, , , , , ,)N P T F C I inv m= mean the c-TdPN

model with invariants and 0(,{ }, ,)NS Q q=  → a timed

transition system representing his behavior, where:

({0}) ({0})Q P T += →   →  ,

0 0 0(,)q m v= ,

T = ,

({0})Q T Q+→     ,

0v is a function that assigns a value 0 to each place.

The clocks are assigned to the places (tokens) in model N .

For each ip P there is exactly one clock ix X . We

also assume that there may be at most one token in the

place. Hence, if px is the clock assigned to the place p ,

()pinv x means the invariant assigned to this place.

Contract deployment

Request Quote{KeySession}

KeySession{code}

Keyc_p

Check

Acknowledge-
ment

User Client TEE-DS
Bounty

Contract

Initiate

Keyc_p, Owner list,
Hash{code}

P1

P2

P3

P4

P5
P6 P9

P8

P7

Figure 4. Contract deployment model in ShadowEth

protocol

Source: own study

Change of state (,)q m v= to (,)q m v  = was

created as a result of the launch of the transition t , marked

as tq q⎯⎯→ , is possible if:

1) ()m m Ft tF = −  ,

2) for each p Ft Ct  :

 2.1) () 1m p  ,

 2.2) min (,) () max (,)I p t v p I p t  ,

3) () 0v p = when p tF , and () ()v p v p = for

all others.

Change of state q to q was created as a result of the

passage d units of time, marked
dq q⎯⎯→ , is possible

if:

1) 'm m= ,

{0}d R+  ,

2) for each : () ()p P v p v p d = + , and

3) for each place p where the token is:

() ()v p v p d = + ,

() ()v p inv p  .

E. DISCRETIZATION OF THE TIMED TRANSITION

SYSTEM

Transition system NS after discretization is a discrete

system

0(, , ,)NSA QA QA=  → (0.1)

Michal Horodelski and Piotr Filipkowski 6

where sets QA , 0QA ,  , → mean successively a set of

symbolic states, initial symbolic states, actions, and system

transitions. System NSA can be represented by a graph

with vertices in QA , the edges described by the relation

QA QA→  and marked with actions from  .

The system actions represent running transitions in the set

T .

The symbolic state aggregates some states of the

system NS with the same marking. Symbolic state s is

represented by (,)s m Z= , where m is the marking of the

net N , and Z is a zone limiting the indications of clocks

assigned to places where there is at least one token in m ,

and a zero clock.

Clock indications are limited by a range [0,]min ,

where min it's the smallest value ()inv p for places

where the token is or  when there are no limitations.

The zero clock constantly indicates the value 0 .

Symbolic initial state 0 0 0(,)s m Z = is the start marking

0m and zone 0Z . This zone limits the indications of the

clocks assigned to the places where there are tokens in the

initial state in such a way that each clock has to indicate 0

(0Z  is a zero matrix).

Change of the symbolic state s to s represented by

→ is about:

• determination of symbolic state aggregating all

possible states of the system NS created by launching the

transition t in s , represented by ()ts PostTd s = ,

• designation for s all system states NS resulting

from the longest possible passage of time represented by

()PostTd s .

In brief, ()()ts PostTd PostTd s = ,

where the zone in s cannot be empty. In the case of a zone

in s or s is empty, that means t was not allowed in s .

Symbolic state () (,)ts PostTd s m Z  = = is

created by launching an enabled transition t in the

symbolic state s , where:

• ()m m Ft tF = −  ,

• (({min (,)p Ft pZ Z I p t x
 =  

|max (,)})) { 0}
j

Ol j

x Ne

I p t x


  =

a clock px is associated with the place p .

State ()ts PostTd s = in practice, it is calculated in

stages:

• designation of new marking ()m m Ft tF = −  ,

• for Z  assigning a zone created by applying for Z

limitations resulting from the possibility of a transition t :

{min (,) max (,)}p Ft pZ Z I p t x I p t
 =   

• for Z  assigning it to a canonical character,

• leaving in Z  limitations for the clock 0x and those

clocks assigned to places in which there is at least one token

in m Ft− (set Ol),

• adding successively to Z  limitations of new reset

clocks associated with places tF (set Ne),

• clock differences from Ne and those who were

already in the zone Z  because no limitations are set to  ,

• at the end for Z  assigning it to a canonical

character.

Symbolic state

() (,)ds PostTd s m Z   = = (0.2)

is a result of the longest possible passage of time d from

the moment the state was established s , where:

• '' 'm m= ,

• ()
Zx XZ Z x d x inv x


 =     ,

Z  is the future of the zone Z  , ZX  set of clocks from Z  .

The lack of a finite value is the future of the zone

d = means no limit to the maximum

delay: () ()dPostTd s PostTd s = , which reduces the last

point to: ()
Zx XZ Z x inv x


 =   .

The set NQA consists only of the symbolic state

0 0()ds PostTd s= and all symbolic states can be obtained

by applying the assembly tPostTd PostTd for

previously created states starting from 0s , where t T is

an enabled transition for these states.

Figure 5 is presenting example of graph NSA .

Figure 5. Form of presentation of the behavior fragment -

zone graph (overview data)

Source: own study

A representative fragment method of analyzing complex systems of smart contracts 7

F. AN ALGORITHM THAT GENERATES A

REPRESENTATIVE FRAGMENT OF THE STATE SPACE

Those definitions are used interchangeably in

algorithm No. 1 to create a new algorithm for producing

zone graphs for models of c-TdPN systems with invariants

and an additional stop condition.

Data:

system – system c-TdPN with invariants with

additional technical place g stored token and assigned

clock point at 0 (0gx =),

0 0 0' (, ')s m Z= – initial moment of system model,

for all ,i j : . 0ijZ z = ,

d - limiting the maximum moment of generating

space state or d = when there is no limit,

0 0()ds PostTd s= ,

0: { }wait s= ,

pass =  ,

approx - chosen approximation of states: no-app,

simple k , xk or xLU

Results: Generated discretized space of states c-TdPN,

saved in Pass

Algorithm:

Algorithm No. 1. The algorithm that generates the

zone graph of the c-TdPN system models

After calling the function ()GenerateZoneGraph

set pass , if the execution of the algorithm is completed, it

stores all nodes of the system model space state until the

moment d , or a representative fragment of it in the case

d = .

The main function loop is to check if the states are still

untested (lines 2-13). In the case when there are no more

undiscovered states, the execution of the algorithm ends.

Otherwise, the undiscovered state is assigned to the symbol

s and removed from the collection wait (line 3). Next, if

in pass there is a symbolic state that has the same

approximation approx as s , this algorithm goes to the

next run of the main loop, and s is skipped (line 4).

Otherwise, for each active transition t in state s the new

symbolic state is calculated s and added to set wait if it

has a non-empty zone (lines 5-10). Then information about

the examined state s is saved (line 11), and the algorithm

execution goes back to the main loop.

G. APPROXIMATE SYMBOLIC STATES

Four well-known approximations were chosen for the

study of c-TdPN with invariants, including the solution used

in the TAPAAL tool. These are the following

approximations k , xk , xLU [12], plext [13]. Each of the

approximations was adapted for the c-TdPN model with

invariants.

Let (,)s m Z  = mean the state created by the

approximation of the state (,)s m Z= and ,i jx x X set

of zone clocks Z and Z  (including zero clock). The

approximation does not change the marking of the symbolic

state, but only the values of constraints written in the zone,

so as not to increase the area of actuations of active

transitions in s .

A simple approximation k consists in choosing one

integer k , equal to the largest finite constraint in the model.

If the clock's indication exceeds the number k , its further

value is unnecessary. New zone ()aZ k Z = is calculated

according to the formula:

The approximation of xk differs from the

approximation of k , that for each clock x a separate value

xk corresponding to the largest finite constraint in the

model for this clock is selected. The zone ()x

aZ k Z = is

calculated according to the formula:

H. ADDITIONAL STOP CONDITION OF ALGORITHM

Algorithm No. 1 has an additional stop condition

defined, thanks to which it is possible to generate the initial

fragment of the state space of the tested system model up to

a certain point of d without using approximation. This will

generate a poorer fragment of behavior (discretized space of

the system model states), although it will allow verification

of its properties on the basis of contained paths and states

that can be achieved without exceeding the moment d .

This fragment can be used for:

• faster obtaining a representative model of behavior

limited to a given moment,

Michal Horodelski and Piotr Filipkowski 8

• faster property verification,

• checking whether the tested system action will be

carried out until d ,

• answer to the question about what may happen in the

system until moment d .

An additional stop condition also allows to test the

algorithm's operation:

• until moment d with the selected approximation,

• until moment d without approximation.

I. TDPN-TCTL (TTS) LOGIC TO DESCRIBE THE

SYSTEM MODEL BEHAVIOR.

The verified properties will be described in the logic

called c-TdPN-TCTL, which is an extension of the TCTL

logic.

Let N , NS and NSA be defined as in the previous

chapter.

Syntax of logic c-TdPN-TCTL has the following form:

where true is keyword and GMEC  .

The semantics of logic c-TdPN-TCTL was defined:

where (,)s m Z= is a symbolic state, gx is a clock

assigned to a token located in the technical (artificial) place

of the system, used to measure time from the moment of its

initiation. Whereas . ijs z means limiting clocks i and j

from the node zone s .

J. ALGORITHMS TO VERIFY THE PROPERTIES OF A

SYSTEM MODEL.

Let N , NS and NSA mean successively the system

model, its behavior model and behavior model after

discretization.

In the further part, the symbolic state will be called a

node with some selected features. Let ,  be GMEC

formulas. Node w has the following features:

.w m - marking,

.wZ - zone,

. ijw z specific upper limit of the difference of clocks

i jx x− from zone Z ,

0.w z g− and 0. gw z is the earliest and the latest

possible indication gx in node w ,

.w potomni - set of nodes to which the arrow goes

 from node w (.w potomni = when there are no

arrows),

.w ref is a node approximated from w (always if

.w ref   then .w potomni =),

. ()w spel  - true when marking .w m ensures

truthfulness  ,

. (,)w espel I - true when the form ula  is met at

the time of the interval .I wZ at least in one path

passing through the node w , where I is the interval in

which the clock gx will be displayed.

Let I , J compartments be positive semi-axes,

wherein [. , .]I I a I b= and [. , .]J J a J b= . The

operations are defined for compartments:

subtraction (reduction) of the scalar value c :

[. , .]J c J a c J b c− = − − ,

safe reduction:

. () [max{0, . },max{0, . }]I I redukuj c I a c I b c= = − − (0.3)

In addition, let the zone graphs NSA mean the system

state space N after discretization and 0 0()ds PostTd s=

starting node of the graph.

K. PROPERTIES OF VERIFICATION ALGORITHM

IEF .

Property IEF will be verified using the function

(,)EF I and recursive auxiliary function

(, ,)EFRef wezel I . The function EFRef is to check

whether wezel passes a path that has a beginning in the

node 0s , in which IF is fulfilled (fulfilled  at the

moment in .I wezel Z). Function (,)EF I returns

true when property IEF is met in the graph being

examined NSA (in the symbolic state 0s).

Node 0 0()ds PostTd s= , where 0s is an initial

symbolic state of graph NSA .

A representative fragment method of analyzing complex systems of smart contracts 9

Algorithm No. 2. Algorithm for the verification of EF

system properties

The procedure performing function EFRef in

wezel checks five cases.

First of all if wezel occurs later than the interval I

procedure returns false because all fragments of paths

coming from this node are irrelevant (line 1-2).

Second, if the formula  is met in marking .wezel m

and clock limitations for gx contain a moment from the

interval I procedure returns true (lines 3-4).

Third, when wezel has child nodes, it should be

checked whether at least one of these nodes passes a path

that fulfills IF . If so, the procedure returns true,

otherwise false (lines 5-11).

Fourth, if the previous cases did not take place, the

procedure checks whether the node wezel has an

approximation in NSA (whether .wezel ref  ). If so,

the procedure returns true when one of the child nodes of

the node .wezel ref passes the path that fulfills the

property JF  , where
0. (. . gJ I redukuj wezel ref z=

0.)gwezel z− (lines 12-17). Otherwise, the procedure

returns false (line 18).

IV. SYSTEM WITH SMART-CONTRACT

TECHNOLOGY

A. SHADOWETH TIMED PETRI NET MODEL.

Model of ShadowEth, which authors have prepared,

includes not only model of contract deployment (Figure 4)

but also model of contract invocation (Figure 6). Second

model was also invented with the help of sequence diagram

presented in [10, ShadowEth].

Contract invocation model represents the next part of

the protocol and is responsible for calling the private

contract deployed in the blockchain.

In both models (Figures 4 and 6), it was assumed that

the ranges of token availability are in the form of [0,1] and

an invariant with every invoice limiting the token's age to

the one unit moment at each place.

V. ANALYZING THE BEHAVIOR OF THE SYSTEM

AND SIMULATION TESTS

With the algorithm No. 1 can generate a representative

portion of the behavior model of the system in the form of

discretized graph zones which were analyzed in model

checking.

Then, using algorithms such as algorithm No. 2, it is

possible to automatically verify the assumed property of the

system model.

During the research, the main focus was on verifying

the confidentiality of information stored in contracts. A

formal verification of ownership was carried out [5]. The

confidentiality of concluding contracts on three levels was

examined: specification of the contract, performance of the

contact and its status.

Selected verification results are presented in the

following tables.

Keyc_p,

Remuneration,
Keyc_p{Args/Url, Keyreg,}

Query

Keyc_p

Code, Data,
Keyc_s

Update
Request

Query

Acknowledgement

Keyreq{ret}

Keyc_p,

Keyc_p{Args, Keyreq}

Check

User Client Bounty Contract TEE-DSWorker Client

IVS, Keyreq{ret},
SettleInfo

Version(Before),
Hash(After)

Execute

Contract invocation

P1 P2
P4

P6

P3

P8

P10

P14 P12

P16

P15

P11

P13

P9

Figure 6. Contract invocation model in ShadowEth protocol

Source: own study

TABLE I

Contract Deployed Verification

Property MEANING Verification

1IAF Sending a request for Keysession

for confidential communication.

1 3: { 1}P = =

true

Michal Horodelski and Piotr Filipkowski 10

2IAF The user has received Keysession:

2 1 4 : { 1, 1}P P = = =

true

3IAF TEE-DS. generates a pair of

keys: Keyc_p i Keyc_s dedicated

to the contract:

3 5 : { 1}P = =

true

4IAF The user has received Keyc_p:

4 6 7: { 1, 1}P P = = =

true

5IAF The user has sent information

about a new confidential

contract to Bounty contract:

5 9: { 1}P = =

true

The next table summarizes the verified properties for

the Contract invocation.

TABLE II

Contract invocation Verification

Property MEANING Verification

1IAF The user has called the

contract:

1 2 5: { 1, 1}P P = = =

true

2IAF Bounty contract authorizes the

call and adds a new entry to

the list:

2 6 : { 1}P = =

true

3IAF TEE-DS. at the request of

Worker Client, he performs

the contract using the private

key:

3 10 : { 1}P = =

true

4IAF Bounty contract confirms the

performance of the contract:

5 16: { 1}P = =

true

VI. SUMMARY

The paper presents the application of the developed

method, explosion-proof state of the system model,

modeling and analysis of the system property using smart-

contract technology on the example of the ShadowEth

system. The protocol for contract deployed and contract

invocation was described, the method used was presented,

models for both parts of the protocol were presented, the

properties related to confidentiality were defined, and

ownership verification was provided in both models. In all

cases, properties were met. It was shown that it is possible

to use the developed method for modeling and verification

of smart-contract systems.

References
[1] Boucheneb, H., Gardey, G., & Roux, O. H. (2009). TCTL

model checking of time Petri nets. Journal of Logic and

Computation, 19(6), 1509-1540. Christidis, K., &

Devetsikiotis, M. (2016). Blockchains and smart contracts

for the internet of things. Ieee Access, 4, 2292-2303.

[2] Luu, L., Chu, D. H., Olickel, H., Saxena, P., & Hobor, A.

(2016, October). Making smart contracts smarter. In

Proceedings of the 2016 ACM SIGSAC conference on

computer and communications security (pp. 254-269). ACM.

[3] Kosba, A., Miller, A., Shi, E., Wen, Z., & Papamanthou, C.

(2016, May). Hawk: The blockchain model of cryptography

and privacy-preserving smart contracts. In 2016 IEEE

symposium on security and privacy (SP) (pp. 839-858).

IEEE.

[4] Atzei, N., Bartoletti, M., & Cimoli, T. (2017, April). A

survey of attacks on ethereum smart contracts (sok). In

International Conference on Principles of Security and Trust

(pp. 164-186). Springer, Berlin, Heidelberg.

[5] Bhargavan, K., Delignat-Lavaud, A., Fournet, C.,

Gollamudi, A., Gonthier, G., Kobeissi, N., ... & Zanella-

Béguelin, S. (2016, October). Formal verification of smart

contracts: Short paper. In Proceedings of the 2016 ACM

Workshop on Programming Languages and Analysis for

Security (pp. 91-96). ACM.

[6] Cong, L. W., & He, Z. (2019). Blockchain disruption and

smart contracts. The Review of Financial Studies, 32(5),

1754-1797.

[7] Cuccuru, P. (2017). Beyond bitcoin: an early overview on

smart contracts. International Journal of Law and

Information Technology, 25(3), 179-195.

[8] Zhang, F., Cecchetti, E., Croman, K., Juels, A., & Shi, E.

(2016, October). Town crier: An authenticated data feed for

smart contracts. In Proceedings of the 2016 aCM sIGSAC

conference on computer and communications security (pp.

270-282). ACM.

[9] Szabo, N. (1994). Smart contracts, 1994. Virtual School.

[10] Yuan, R., Xia, Y. B., Chen, H. B., Zang, B. Y., & Xie, J.

(2018). Shadoweth: Private smart contract on public

blockchain. Journal of Computer Science and Technology,

33(3), 542-556.

[11] Akshay, S., Genest, B., & Hélouët, L. (2014). Timed Petri

Nets with (restricted) Urgency.

[12] Behrmann, G., Bouyer, P., Larsen, K. G., & Pelánek, R.

(2006). Lower and upper bounds in zone-based abstractions

of timed automata. International Journal on Software Tools

for Technology Transfer, 8(3), 204-215.

[13] David, A., Jacobsen, L., Jacobsen, M., & Srba, J. (2012). A

forward reachability algorithm for bounded timed-arc Petri

nets. arXiv preprint arXiv:1211.6194.

[14] Li X., Jiang P., Chen T., Luo X., Wen Q., A survey on the

security of blockchain systems, Future Generation Computer

Systems, 2017, p. 2.

[15] Conti M., Kumar E. S., Lal C., Ruj S., A survey on security

and privacy issues of bitcoin, IEEE Communications

Surveys & Tutorials, 20(4), 2018, pp. 3416-3452.

A representative fragment method of analyzing complex systems of smart contracts 11

Michal Horodelski was born in

Zamoyskiego, Zamość, in 1985. He

obtained Master’s degree in

Mathematics, Bachelor of Computer

Science, Lecturer at the Institute of

Mathematics and Computer Science,

The John Paul II Catholic University of

Lublin, postgraduate at Institute of

Computer Science Polish Academy of

Science in Warshaw. He gained his

research experience in project carried

out at the Military Institute of Aviation

Medicine (Distributed platform for modelling and simulation of

information flows in the DIS/HLA standard), Vice President of the

European Centre for Information Society Technologies. A

graduade of The Faculty of Mathematics, Informatics and

Landscape Architecture, The John Paul II Catholic University of

Lublin

Piotr Filipkowski was born in

Bialystok in 1976. Doctor of

economics (in Business Information

Systems), assistant professor at the

Institute of Information Systems and

Digital Economy of the Warsaw

School of Economics. He gained his

research experience in projects

carried out at the Military Institute of Aviation Medicine (assistant

professor of Executive Board - coordination of strategic projects),

Department of Information Society Technology, KUL JPII

(assistant professor). He graduated from the Faculty of Electrical

Engineering and the Faculty of Management at Bialystok

University of Technology, Institute of Systemic Research of the

Polish Academy of Sciences and the Faculty of Management at the

University of Lodz. President of the European Center for

Information Society Technologies. The Secretary of Postgraduate

Studies "Cybersecurity management", The Secretary & Member of

CEA Council of the Warsaw School of Economics. Author of

numerous publications in the area of information society

technologies and co-creator of the modeling and simulation system

and the ® sign for the platform of proprietary intelligent systems

solutions. He lectures "Management Information Systems",

"Introduction to Business Information Systems". Author of

lectures "Digital Technologies in Business Relations", "Mobile

Digital Office" in English and Polish.

