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Abstract: Cyber-Physical Systems (CPS) are integrations
of computation and physical processes. We consider
effective computations for designing difficult systems. In
this paper, we propose new method of exact quadratic
regularization for deterministic global optimization (EQR).
This method can be used for the solution of a wide class of
multiextreme problems, in particular, general quadratic
problems. These problems will be transformed to
maximization of norm a vector on convex set. The convex
set is approximated by a polyhedron or intersection of
balls. We offer the modified dual problem for maximization
of norm a vector on intersection of balls. It allowsto receive
the solution of a primal problem. We use only local search
(primal-dual interior point method) and a dichotomy
method for search of a global extremum in the general
quadratic problems.

Index Terms global optimization, exact quadratic
regularization, general quadratic problems, intersection of
balls, modified dual theory, test problems.

I. INTRODUCTION

Many problems referring to economy, cyber-physical
systems, finance, project optimization, planning,
computer graphics, management, scheduling, sensor
networks and other difficult systems can be transformed
to general quadratic optimization problems in finite
dimensional space. Computer networking, medical
devices, mohile devices, robots, transportation and
energy systems can benefit from CPS co-design and
optimization techniques. The design, construction and
verification of cyber-physical systems pose a multitude
of computation challenges that must be addressed by a
community of researchers.

Such problems contain many of local minima and
belong to NP-difficult class. It is necessary to develop
new methods of global optimization for the solution of
these problems.

The existing methods in global optimization can be
classfied as deterministic and  probabilistic.
Deterministic ones include: Lipschitzian, Branch and
Bound, Cutting Plane, Difference of Convex Function,
Outer  Approximation, Reformulation-Linearization,
Interval methods [1]. They demand the exponential
number of iterations for finding global extremum. The
probabilistic methods include random search, genetic

and evolutionary methods [2]. However, these methods
adlow to find global extremum only with some
probability.

Often for the solution of the general quadratic
problems we use semidefinite optimization. Generally,
semidefinite optimization allowsto find only estimations
of agloba extremum [3].

In this paper, we propose new method of exact
quadratic regularization for determinigic global
optimization. This method can be used for the solution of
a wide class of multiextreme problems, in particular,
general quadratic and polynomia problems. The method
EQR includes local methods of optimization and of a
dichotomy method. Effective primal-dua interior point
methods are used for the solution to this problems [4].

1. METHOD OF EXACT QUADRATIC
REGULARIZATION

Consider new method of exact quadratic regula-
rization for the solution of the problem of global
optimization. We will consider nonlinear programming
problems of the form

min{ fo(x) | f;,(X) £0,i =1,...,mxI E"}, (1)

where al functions f;(x) are twice differentiable, x isa

vector in n-dimensional Euclidean space E". Let the
solution of a problem (1) exist, its feasible domain is

bounded and X’ is the point of global minimum (1). We
transform the problem (1) to the following one

MIN{ X1 | fo(X) +SE Xuq, fi(X) £0,i =1,...,mxT E"}, (2)

where the value sis chosen so that (X' )+s3||x |F.
The solution to the problem (2) is the point (X', X,.) .

where X, = fo(X)+s3 0. Further, using the
replacement x=Az where matrix A of the order
(n+1)" (n+1)isgiven by
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The problem (2) istransformed to the following one

min{ || z|P| fo(x) + s £l [P,

f.(x)£0,i=1..mzl E™}, (3)

where z=(X,X,,,) . Thus, the problem (1) transformed
to the minimization of a norm of square vector. The
valuer > 0 exists so that all functions f,(2)+r || z|? are

convex on the bounded feasible domain of the problem
(2). It follows from the fact that Hessians of these
functions are positively defined matrixes (matrixes with
adominant main diagonal).

Let us use the quadratic regularization to transform
the problem (3) into the following convex problem

min{d|gi(z)£d,i:O,...,m,r||z||2£d} 4
or

max{|| z|| 9:(2) £d,i =0,...mr || z]?=d}.  (5)
whereall g,(2),i =0,...,m are strong convex functions

%@ =fo()+s+(-DlizI*g(@D=fi()+rlz|Pi=1..

Example 1. Then problén
min{ || X|%]- 4% - X3 - XX, - 2% - 22%, + 54 £,
3% - 2x2 +8x X, +64x - 30x, +102 £ O}

has 3 local minimumsbut the problem (4)

min{d |- 4x2 - X5 - XX, - 2% - 22X, + 54+ 2(x2 +

+x2 +x2)+54£d,

3XZ - 2X5 +8X X, +64x, - 30%,206¢ + X2 + x2) +102 £ d}

has only one local minimum.
Example 2. Then problem

min{|4- (% - )%- x5 |- % +8%, £11,
X +4x%, £7,6% +4%, £17,% £2.5% £2}
will be transformed to (5)
max{ || z|P]4- (% - D?- 3¢ +s+(r- D||z|PE d,
- % 8%, £11, % +4X, £7,6% +4X, £17,% £2.5,%, £2}
wheres= 10, r = 3and d = 33.4. This problem will have

only onelocal minimum.
Example 3. Then problem

min{ || x|[?] - 42 + 5% +2X3 - 6%, £
£ -10,- 2X2 - 8% - 4%5 +6X, £ -5}
has 3 local minimums and the problem
max{ || x|P[l| x| +s+4 || x|£ d,
- 4x2 +5% +2x2 - 6%, +10+5| x|*£d,
-2xX2 - 8x - 4X5 + 6%, +5+5| x|£ d}

also has 3 local minimums. After linear transformation
of space

max{ || z|P’[ll z- 3| +s+4| z|F£d,
-4z - 3 +5(z- 3 +2(z,- I*-
-6(z, - 3)+10+5| z|*£ d,

-2z- 3*- 8(z- 3)- 4(z,- I*+
+6(z - 3) +5+5||x|PE d},
the problem becomes one-extreme (s = 18).
Theorem 1. Let (2°,d,) be the solution to the
problem (5) and the condition (3) holds for the
parameter s. Then X' =Z° isthe solution to the problem

().

Proof. We obtain
fo(z%) +s+(r- D1 2° IP£ dy,
. (Z°)+r || 22 |PEdy, i=1,...m
Taking into account r || 2° |*=d,, we get
fo(Z°)+sE| 2P, f(Z°)£0, i=1..m
Thefirg constraint is equivalent to
fo(Z°)+sEZ° P (L =0)or f,(2°)+s=] 2 |P.

Let Z bethe solution to the problem (1) and
(= fo(@)+s d =12 P (fo(Z)+s=lIZ ).
Then, by the conditions

fo(z%) +sEI2°|P,

foz)+s1Z |P
and ||Z°|PENZ" |P implies fy(Z')3 fy(z°), whence,
fo(Z') = f,(2°) . Similarly, by the conditions

fo(z%) +s= 2|,

foz)+s=lZ |
and |2 |PE)|Z |P follows fy(Z')3 fo(z°), whence,
again f,(Z') = f,(z°) . Thetheorem is proved.

Let (Z,d")be the solution of the problem (4). If

r||Z |P=d" holdsthen Z isthe solution to the problem

(2). Otherwise, we will solve a problem (4) for the fixed
value of a variabled. Let for d = d the condition

r|Z |P=d" be satisfied. By this value d* we will find
a dichotomy method. If d* is minimum then Z - the

solution to the problem (1).
Consider the problem

max{|| z|F| g;(2) £d,i =0,..,m,z3 G (6)
whereall g,(2),i =0,...,mare strong convex functions.

For special cases, a convex feasible domain of the
problem (6) is convex polyhedron or intersection of the
balls. It is easy to prove the following theorem.

Let S isfeasible domain of the problem (6). The
convex set can be described of a ball.

Theorem 2. Let S be convex s,
S={x|[x- c|P£r%} and X - the solution to the
convex problem

max{c" x| xI S} 7)
then X - the point of global maximum of problem
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max{ || x|’ xT S} (8
if | X - c|P=r2.

Proof. The proof follows from this, the side
(0,X) of the triangle (0,x,c) is more than the side
(0,x°) of thetriangle (0,x°,c) for any x°T S.

Any convex set can be described of a convex

polyhedron P . Then the problem (6) is approximated by
the following

max{|| X |*| Ax£ b,x3 O} .
We use exact quadratic regularization and have
max{ [[X|ja X +|X|* = b < d, i=1,...,m,
IXIE =% < d, i=1,...,n}.

Feasible domain of this problem isintersection of balls.
a. Feasibledomain isintersection of balls

Any convex feasible domain can be approximated by
intersection of the balls. We show that the solution of the
problem

max{|| x [Pl x- & [PE2,i =1,....m} ©)

can be found by a dual method. Let us notice that the
problem (9) can have the duality gap that is nonzero.
The Lagrange function of the problem (9) can be
written as
m .
LOGE) =X - a1 x- I -1%)
1=
The method of multipliers by Lagrange dlows to find
the solution to the problem (9)

(10)

x =L (1)
é I i = 1
i=1
Thus, for solving problem (9) it is necessary to define
optimal Lagrange multipliers | 3 0. If the point of
global maximum X is known, then we find Lagrange
multipliers solving the system of linear equations
X - &1,(<-a)=0
i=1
For m>n this sysem has many sdutions but only one solu-
tion coinddes with optima Lagrange multipliers of the prob-
lem (9). Wewritedown Lagrange function (10) in aform

ez 2 i iR .2
Lo 1) =[xl -'alh(IIXII -2xa +||a' || - %)
=
or

_ o 2 o0 i, m iR .2
LOx 1) =@- al)|Ix|+2&xa +al(la |"-r)
i=1 i=1 i=1

that is transformed into
2

g i & AR
m alia| Jalal
L(x,|)=(1- &1,)[x+-=L - = -
= 1- 4| “ a-a1,) (12
i=1 i=1

m 2.2
-& 131 IF 1),
i=

Substituting the solution (11) into formula (12) we
obtain adua problem

Ty i 0

'T'"_alia | _ m i
minf—2—- &1,(la' |?-r?)&l,-12 01 3 0y. (13)

T é | - 1 i=1 i=1 |

T ia b

Add the condtraints of an initia problem into
congtraints of dual problem (13), expressed by dua

variables. We obtain the dual convex problem
2

Tom s 2 i u
iflatal” , ala i
hd n - 4 . !
. : Ig11 - _5_11I N(EN ] 'ml— all £r : (14)
minj al;-1 = al;-1 Vs
) bl :
i - i
ii=L..mal;-130l 30 T
| 2 b

The objection function of dual problem is convex,
when p>0, where

o
i=1
If the condition p>0 holds for the optima

Lagrange multipliers then they are the solution to the
problem (9). We find the solution to the problem (9) by
the formula (11). If p£0 for the optimal Lagrange

multipliers then the problem (14) has non-optimal
Lagrange multipliers. These multipliers define the
solution to the problem (9) X by the formula (11). We
substitute X into the system
X-al,(x-a)=0,
i
where | isthe set of active constraints in problem (9).
Then, the solution of (15) is optima Lagrange
multipliers. We find optimal Lagrange multipliersin the
following example

min{ || || (4 +2) + (%, - 2)? £16,(x +2)* +
+(x, +2,5)% £30,
(- 0,5 +(x, - 0,5)*£6}.
For adual problem (14) the solution is
| =(0.02230177, 0.177738467, 0.80006496) .

(15)

It does not coincide with optimum multipliers. This
solution defines the point X =(0.456183345,
2.755152574) of globa maximum problem (9). Its
optimal multipliers | © =(0,0.1887523,0.78185117) are

found by the following system
- 0.456183345 = ,(- 0.456183345+ 2) +

+l 5(- 0.456183345- 0.5),
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2,755152574 =1 ,(2.755152574 + 2.5) +
+l 5(2.755152574 - 0.5).
If the problem (15) has no solution then we add the

artificia constraint ||x- a™* |P£ 2, where a™ and

2

m+1 and

raae chosen such as |[|x - a™|fP<r

X - a™ <0. Adding a new constraint increases the |
valuesin proportion tothe value x - a™!<0.
Theorem 3. If the problem (9) has the solution then

the solution | * to a modified dual problem
min{g(l )|1£ & | LIx()- @ PER2i=1,..,m] 3 0}
i=1

(16)
will define a point of a global maximum x = x(I *) of the
problem (9).

Prof. Let us present constraints of a problem (9) in
the form

lz0 ) |7 - 2z(1) & +||& |PEr2i =1,...m

We will multiply both parts of inequalitieson | ; and we
will find their sum, receive

m m m .
() I ,éll i - 2Z(1 ),él| i +'é1| (I I - %) £0
1= 1= 1=

and use (4) can be expressed as
m . m
,éll (NI DE ('éll - 202017
1= 1=

Whence it follows that || z(I )||2£ g(l) as
o) =1~ DllZ)IP- 213l 1P -17)

Let the solution of dual problem | ° define only a point of
a loca maximum of a problem (9). Then to the global
solution of a problem (9) there will correspond other point

| *. Convex st {I |g(l )£ g(l ")} will contain interior
points of feashle set of a problem (16), otherwise the

point |1 * will be aso the solution to the problem (16).
However, that contradicts convexity of a problem (16).
These interior points will be interior and for set

{I lz0)YEz( ")} but then for these interior points

inequality ||z(I )|?>g(l ) holds. Then we have a cont-

radiction. It proves that the solution to the problem (16)
definesa point of aglobal maximum of aproblem (9).

We propose the following agorithm for the solution
to the problem (9):

Step 1. We solve problem (14) and check duality gap.
If it is equal to zero then the problem (9) is solved.

Step 2. We calculate the point X by the formula (11)
and define these of active congtraints at this point. We
solve a linear system of the equations (15) and define
optimal Lagrange multipliers.

Step 3. For the found multipliers we check duality
gap. If it is equal to zero the problem (9) is solved.
Otherwise, we add new congtraint in a problem (9) and
passto Step 1.

[11. GENERAL QUADRATIC OPTIMIZATION
Consider the problem (1) where
f.(x)=x" Ax+h'x+c,i=1...m

Then the problem (1) will be transformed to the
following

min{ug X% +Vg X +W, [U] X% + V! x+W £0,

i=1..mPx=q}
where U™ = ux? +...+UX, or
min{ud y+vi x+w, [u' y+v x+w £0,
i=1..mPx=q,x =y;,j=1..n}.
We use exact quadratic regularization and obtain
max{ || |’}
subject to
Ug Y +Vg x+Ww, +s+] z|P£d,
U y+v x+w +2| z|P£d,i =1,...,m,
pix+2(zIf -a£d,j=1..k,
X; - yj+2l|zIPEd,j=1...n

Qox

(p{x- q;) +2||z|F£d,

.ﬂ\

n

él(yj - ) +2]|z|FEd.
J:

where z= (X, Xp+1, Y, Q).

Table 1
The compar ative
numerical experiments
Problem n m | MethodEQR | Thebest Ref.
. known
glob. min. glob. min.

Egg Holder 100 | 0| -89948532 - 89938 | [5]
Rana 100 | 0| -50855.784 | - 4104718 | [5]
Nie 50 | 0| -93.999987 86.118 | [6]
Nie 49 | 1] -098284629 | 05322069 | [6]
Nie 50| 0 -180 156 | [6]
Nie 40| 0 -1560 15505 | [6]
meanvar 9 2 | 4,735427246 5243399 | GL
G16 5[ 38 1.914608 | -1.9046617 | [7]
Charles Audet | 16 | 21 | 156.2196293 174788 | [8]
Ex7 3 5 13 | 15 0.0249967 | 1.206897 | GL
Ex8 4 7 63 | 41 26.994309 28898 | GL
Ex6 2 5 10| 3 -70.9586 7075 | GL
Ex2 1 8 24110 15639 15090 | GL
Haverly 12 9 -406 400 | GL
Harker 20 | 7 | -1020.24298 986513 | GL

Feasble domain of thisproblem isintersection of balsand
dlipsoids These dlipsoids are dmog the bells They coindde
with al QCQP. Wewill replace dlipsoids by the balls

The accuracy of the approximation satisfies the
condition

_[de 1 0
2&M1-al2 &
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IV. NUMERICAL EXPERIMENTS

In this section, we check the practical performance of
method EQR. We have found solutions to more than 350
difficult test problems (see example:

http://www.gamsworld.org/global/globallib.htm,).

Some results are shown in Table 1. These known test
problems were solved by different methods during many
years.

V. CONCLUSION

We have solved many difficult optimizing problems
in optimal designing, clustering, sensor networks and
chemistry [Kos]. The EQR method can be used for the
solution of discrete problems. We offer for the first time
amethod for solving classes of multiextreme problems.

The comparative numerica experiments have shown
that new methods are very efficient and promising.
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