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NEURAL NETWORK MODEL FOR IDENTIFICATION OF MATERIAL CREEP CURVES USING
CUDA TECHNOLOGIES

This paper addresses the problem of identifying rheological parameters of wood using artificial neural networks with parallel
learning algorithm using Python programming language, Chainer framework and CUDA technology. An intelligent system for
identification of rheological parameters of wood has been developed. The system created contains the most user-friendly interfa-
ce, all the necessary set of tools for automation of the process of visualization and analysis of data. In the process of creation of
the intellectual system, the following tasks were envisaged: to carry out the analysis of artificial intelligence systems and the
analysis of training of artificial neural networks, in particular multilayer neural networks of direct propagation, recurrent neural
networks and the Kohonen neural network; examine the structure of the Chainer framework and its interaction with CUDA; to
conduct existing cloud technologies to accomplish the task; to conduct the analysis of algorithms of studies of artificial neuron
networks, their mathematical providing; to implement parallelization of learning algorithms and to develop the necessary softwa-
re. Using Chainer allows you to create a memory pool for GPU memory allocation. To avoid memory allocation and erasure du-
ring computing, Chainer provides the ability to use the CuPy memory pool as a standard memory allocation without dealing with
memory allocation. An intellectual system to determine the physical and mechanical parameters of a mathematical model of non-
isothermal moisture transfer and viscoelastic deformation of capillary-porous materials was developed. It provides the opportu-
nity to identify parameters of the kernels of creep and relaxation that is written as a linear combination of exponential operators.
The proposed algorithm of approximation and obtained calculated ratios of rheological behavior of wood by means of multilayer
neural network with exponential activation functions in hidden layers allows to increase the accuracy of approximation of experi-
mental creep data. The developed mathematical models can be used to create an automated systems of finite-difference calculati-
on of temperature and moisture content, stress components during the drying of capillary-porous materials with taking into acco-

unt the technological parameters of the drying agent.
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Introduction

Today, artificial neural networks have become wi-
despread to solve a large class of tasks: information proces-
sing, first of all for identification, emulation, intellectual
control, and predicting time series of arbitrary nature in the
context of structural and parametric uncertainty. Particu-
larly urgent is the problem of identifying the parameters of
wood creep, which is the starting point for establishing the
corresponding parameters of mathematical models of non-
isothermal moisture transfer and viscoelastic deformation
of capillary-porous materials during drying. The phenome-
non of creep occurs in materials of different nature: wood,
metal, plastics, concrete and others. The physical mecha-
nisms of creep are individual for each of the materials. Cre-
ep studies also show that the process of this process is simi-
lar at first glance, and different materials require different
approaches to describe certain phenomena that are characte-
ristic of the material.

Neural networks represent promising computational
technologies that provide new postulates to the study of
control and analytical tasks. The use of neural networks al-
lows to consider the factors based on which you can build
short-term forecasts. Applying neural network architecture
and the knowledge base, it is possible to obtain effective
positive identification system parameters. To take into ac-
count external parameters, you must enable the correspon-
ding input to the neural network. This uses the algorithm
for determining the importance and significance of input

variables, with the exception of parameters that have little
influence. On the rheological characteristics of wood is
influenced by such factors as: temperature, humidity, size,
breed and others. Definition of levels of impact factors on
the behavior of the material is an actual problem that requi-
res the involvement of advanced technology to solve, such
as the use of artificial neural networks.

The construction of neural network model is adaptive
without the participation of the expert in the learning pro-
cess that allows you to create a system of decision-making.
In particular, based on the numeric values of humid fields,
the decision on the establishment of the following mode of
drying or extend the drying process in the currently active
mode.

The object of the study is the process of training artifici-
al neural networks to identify the parameters of the materi-
als creep curves.

The subject of the study is the parallelisation of artificial
neural network training for the task of identifying the para-
meters of material creep curves using Python programming
language, Chainer framework, and CUDA technology.

Purpose of the work is design and software implementa-
tion of the information system for artificial neural networks
parallel learning algorithm for the task of identifying the
parameters of the materials creep curves using Python prog-
ramming language, Chainer framework, CUDA technology
and cloud technologies.

The object of the study is the developing of an intelli-
gent system for identifying the parameters of the materials
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creep curves using artificial neural networks with a parallel
learning algorithm.

The scientific novelty is the development of parallel al-
gorithm for artificial neural networks learning using the Cha-
iner framework, CUDA technology and cloud technologies.

The practical significance of the obtained results. The
intelligent system which allows to determine the coeffici-
ents of mathematical models by identifying the parameters
of materials creep was developed.

Analysis of using neural networks for
identification parameters problem

The task of identification (processes, systems) or the
construction of a mathematical model based on the results
of observations occupies one of the main places in the mo-
dern theory of management and decision-making in various
fields: engineering, economics, biology, etc. A separate and
difficult question remains the definition of model parame-
ters (parametric identification). In some cases they are
known from the developer, in others they can be obtained
as a result of measurements or tests with special effects on
the control objects (identification experiments).However,
most real systems are nonlinear in nature. Not only the pa-
rameters, but also the type of the model is often unknown to
them. The only thing that is usually available in practice is
the ability to communicate between system input and out-
put. One of the promising methods use artificial neural net-
works that are universal approximation and allow with suf-
ficient accuracy to simulate the dynamics of virtually any
object [11].

The most effective mathematical models that can be
used to predict the development of processes are those that
use time series to construct them [22]. Traditional identifi-
cation approaches are becoming less suitable for modelling
complex nonlinear systems. Most processes cannot be
described using traditional statistical models because they
are substantially nonlinear and have either a chaotic or qua-
si-periodic or mixed (stochastic, chaos-dynamic, determi-
nistic) basis. Adequate apparatus for building models of vir-
tually any nonlinear structure can be methods that are based
on artificial intelligence, namely artificial neural networks
that have the ability to model nonlinear processes, adapt
and allow you to work with noisy data. Radial-base structu-
res that have high learning speeds and versatile approxima-
tion capabilities are promising [1], [6], [22].

Multi-layered, reverse error propagating neural net-
works are also widely used, which, with the backdrop of ot-
her intelligent tools that can be used to identify systems, ha-
ve many significant benefits [1]. The general approach to
solving the problem of identification in the context of artifi-
cial neural networks is shown in [6], but the question of
practical implementation of parallel learning algorithms for
network training in order to increase its efficiency remains
unresolved.

The purpose of this article is to increase the efficiency
of use of neural networks of direct distribution with back-
propagation and their modifications in over-the cottages of
parameter identification of creep of wood.

Comparative analysis of the study of training algorithms
for artificial neural networks is performed by such criteria
as the time of algorithm execution, the time of program
implementation of algorithms, the speed of convergence of
algorithms and the accuracy of the program result at a given

number of iterations. The run time of the algorithm is the
number of steps that are performed in this algorithm from
the beginning to the end. To count the number of steps in-
vestigated in this work algorithms, it is convenient to use
the above block diagram [2], [4], [5], [8], [9], [10], [12],
[13], [23], [24].

The number of steps characterizes nothing but the
complexity of implementing algorithm, which is now a ma-
jor factor, as often working hours for a programmer is more
expensive than working hours on a computer, unlike in ye-
ars past. The speed of program execution is generally influ-
enced by the following factors:

e input information into the system;
e the quality of the compiled code of the program;
e time complexity of a program.

It should be noted that in case of complication of the
network structure, the magnitude of the weight vector can
become a factor that will have a significant impact on the
learning time of ANN [2], [10]. In general, we can conclude
that the optimal choice for ANN training in the problem of
identification of rheological parameters of wood is the algo-
rithm of back propagation of the error in view of the opti-
mal ratio of learning time and accuracy. Such a parameter,
as the complexity of the algorithm, plays a less important
role, since in such a task, the accuracy of the obtained para-
meters is the main factor, since this accuracy is directly pro-
portional to the results obtained from the implementation of
mathematical models [5], [13], [18], [19].

Parallel calculations allow you to split the task into a
number of smaller sub-tasks, but also to speed up the com-
putations by performing parallel tasks and optimizing data
sharing. The practical application and broad scope of tasks,
which is only ever expanding, has led to an increase in the
interest of the world's manufacturers of video accelerators
to the possibilities of parallel computing and, as a conseq-
uence, the emergence of non-graphical general purpose cal-
culations on GPUs (GPGPU, General Purpose computation
on GPUs) [7], [14], [25]. GPU parallelization is achieved
thanks to the structure of the GPU multiprocessor core,
which operates on the principle of SIMD (single instructi-
on, multiple data; one command stream, many data stre-
ams) and is, in fact, a parallel processor, allowing to per-
form special parallel algorithms for data processing.

One of such technologies the implementation of parallel
non-graphical computations on GPUs is technology CUDA
(Compute Unified Device Architecture) from the company
NVIDIA, which has generated considerable interest in the
global community. In particular [3], [7], [14], [25], [26] the
wide spectrum of issues related to the implementation of
programs using CUDA technology, and the creation of
clusters on the basis of CPU i GPU. The emergence of non-
graphical computing graphics cards paved the way for the
development of new methods of parallel computing, not
only on personal computers, since equipped with such a vi-
deo card PC even without a multi-core processor can be
used as a parallel computing machine of low power, but al-
so to the emergence of new architectural solutions methods
of organization of cluster computing.

From a technical point of view, there are several options
of graphics processors, which greatly affect their computa-
tional power [7], [14]:

e number of computational cores with single and double preci-
sion (FP32 and FP64 Cores);
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e the peak number of floating-point (single and double precisi-
on, Peak FP32 GFLOPs and Peak FP64 GFLOPs);

® Memory Interface

® bit and memory type (GDDR or HBM);

® Memory Size;

e size of second level cache (L2 Cache Size).

From a software perspective, you can classify GPUs ba-
sed on the software interfaces (CUDA, OpenCL, OpenGL,
and DirectX) and their maximum processor-supported ver-
sion. In addition to these characteristics, the CUDA archi-
tecture provides capabilities that can greatly optimize the
architecture.

The parallelization consists of two stages: the first is in
the analysis of that task can be accomplished with the help
of GPU computing capabilities, and the second stage is lo-
oking for all available GPUs with support for performing
mathematical calculations, dividing the current task into
sub-problems, what are the GPUs can perform in parallel,
and pass these sub-tasks to the GPUs [26].

Parallelization at the level of the GPU is by creating
special algorithms adapted to the specific architecture of
graphics processors. At first glance, such a number of levels
can increase the runtime due to the increased time of data
transfer between levels and data exchange on the same le-
vel. Because the implementation of parallel computing at
each level of architecture depends directly on the hardware
on which the parallel algorithms will be implemented, each
level of hybrid architecture has its own hardware and
software. Today, the most progressive implementations of
GPGPU technology is CUDA technology (Compute Unifi-
ed Device Architecture), announced by NVIDIA in 2006
and supported on a number of NVIDIA graphics cards (Ge-
Force 8, GeForce 9, GeForce 200, NVS, Quadro, and Tes-
la), and ATI Stream Technology (or ATI) FireStream and
AMD Stream Processor) developed by AMD [25]. These
prerequisites, as well as the high popularity of NVIDIA's
video card solutions, have led to the choice of CUDA
technology to parallelize the neural network learning algo-
rithm and explore the possibility of more efficiently solving
the tasks with the GPU.

Implementation of interaction between CUDA and
Chainer framework. Using of AWS cloud technologies.
Chainer provides implementation of training cycles imple-
mented by the chainer.training module. It is based on many
other basic functions Chainer, including Variable and
Function, Link / Chain / ChainList, Optimizer, Dataset i
ReporterCompared to the training cycle abstraction of other
machine toolkits, the Chainer training base aims at maxi-
mum flexibility while maintaining simplicity for typical
tasks [15].

Trainer
Updater ‘—/ Extension
P ~
Iterator Optimizer Extension
i s :
Dataset Model Extension
:use '

Fig. 1. Scheme implementation of Trainer in Chainer

Chainer provides a feature called Trainer that simplifies
your model's learning process Figure 1. Writing your own

training cycle can be useful for learning how a trainer
works or for implementing features not included in the stan-
dard Trainer. The core of the training cycle abstraction is
Trainer, which implements the training cycle itself. The tra-
ining cycle consists of two parts: Updater — which actually
updates the settings for training, Extension — for arbitrary
functions implemented in the learning algorithm.

Updater and some extensions use chainer.dataset and
Iterator to scan datasets and download mini-batches. Tra-
iner also uses Reporter to collect the observed values, and
some extensions use DictSummary to collect and compute
statistics. NVIDIA CUDA Deep Neural Network Library
(cuDNN) is a graphics accelerating library of primitives for
deep neural networks. cuDNN provides highly customizab-
le implementation for standard procedures such as forward
and backward convolutions, merging, rationing, and activa-
tion layers. cuDNN is part of the NVIDIA deep learning
SDK [7], [14], [25], [26].

Researchers and developers rely on cuDNN to accelera-
te the GPU with high performance. This allows them to fo-
cus on learning neural networks and developing software
applications, rather than spending time setting up low-GPU
performance. cuDNN accelerates widely used deep learning
frameworks, including Caffe2, MATLAB, Cognitive Tool-
kit, TensorFlow, Theano, and PyTorch. cuDNN is freely
available to NVIDIA Developer Program members. It is ad-
visable to use AWS to test the learning of neural networks
using cloud technologies. Now the main task is to choose
the EC2 machine. AWS enables you to select AMI to facili-
tate the machine setup process.

Amazon Machine Image (AMI) provides the informati-
on you need to run an instance that is a virtual server in the
cloud. You can run multiple instances from the same AMI
when you need multiple instances with the same
configuration. You can use different AMIs to run instances
when you need instances with different configurations.
AMI may contain the operating system, required modules,
tools, and dependencies.

Software implementation of the system

According to the complete learning procedure, first you
need to prepare the dataset. The next step was the creation
of the iterator on the dataset. Chainer provides some itera-
tors that implement the generic strategy of creating mini-
batches, repeating over data sets.Seriallterator is the simplest
one that retrieves mini-batches in the main stream.Multip-
rocesslterator and Multithreadlterator is parallel version of
Seriallterator.It supports operational sub-processes and sub-
threads to load the next mini-batches in parallel.

© chainer.link.Link

£ _within_init_scope
_device_id
_cpu

= = [
© collections.Iterable
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{ name
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Fig. 2. Class diagram of the implementation of the multilayer
neural network of direct distribution
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Chain, Links and Functions have been implemented to
implement the neural network model in Chainer. Chain is a
combination of Links with an object interface (Figure 2).

An intelligent system for identification of wood creep
parameters using a neural network with a parallel learning
algorithm has been developed [15], [16], [17], [18], [19],
[20], [21]. In particular, the diagram of variants of using of
the training of the neural network is shown in Figure 3.

Choose use
U __--Y\ CUDA ornot
~use
S eme. Prepare
%\‘U s
Actor \\\\\\\S “A(Define dataset Extends
R iterator

NN, Use, Choose Serial or
Use ™ a Parallel Iterator

Choose model

N\, Use optimizer
N

\ \
\\ \
“ Choose model
\ updater

\
\
\

Choose trainer
extension
Fig. 3 Diagram of options for using the developed intellectual
system

Composition is one of the most important features of
neural networks. Neural networks are made up of many
reusable fragments, and each model can be integrated into a
larger training system. The network allows to describe the
neural network on the basis of the composition such as col-
lection parameters, serializing, copying the structure of the
general parameters etc.

(€ chainer.link.Chain

® __init__(self, **links)

® __getitem__(self, name)

m __setattr__(self, name, value)

® __delattr__(self, name)

® add_link(self, name, link)

m copy(self)

# to_cpu(self)

@ to_gpu(self, device=None)

m params(self, include_uninit=True)
m namedparams(self, include_uninit=True) I __metaclass__
® links(self, skipself=False) A

& collections.Callable
® __call__(self, *args, **kwds)
® __subclasshook__(cls, C)

m namedlinks(self, skipself=False)
@ children(self)

® copyparams(self, link)

® addgrads(self, link)

® serialize(self, serializer)

t _children

Y

@ project.models.kohonen.Kohonen

® __init__(self, width)

w __call__(self, x, *args, **kwargs)

™ pos(self, y, *args, **kwargs)

m neighbor(self, center, var, **kwargs)

® calc_delta(self, x, neibh, Ir=0.1, **kwargs
1 width

Fig. 4. Class diagram of the implementation of Kohonen neural
network

Recurrent neural network training is implemented ac-
cording to a typical training cycle, but Chainer Trainer does
not have all the necessary attributes to train a Kohonen neu-
ral network, so some of them need to be implemented. The tra-

ining sample for training the network used is the same as for
multi-layer neural network of direct distribution (Figure 4).

Application of artificial neural networks with paral-
lel learning algorithm for identification of rheological
parameters of wood. Determination of creep of wood is
the starting point for the calculation of the basic rheological
characteristics of the material during drying. For the study
was using the principle of viscoelastic heredity. It, in turn,
leads to the construction of integral equations.

For a linear stress state, the relationship between stres-
ses o(t) and strains () is described by integral equations

n
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which is the kernel of the integral equation, reflects the ef-

fect of a single voltage TI(r—7), acting a single time inter-

Rt—-7). The relaxation function

val at a time

t
0] :?+%jﬂ(z,r)a(t)dr is the resolvent of kernel of the

0

t
creep O'(t):Eg(t)+Ej R(t,0)e()dr .We define the creep
0
function of wood as a linear combination of exponential
operators.
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where, o, is initial stresses; 7., — relaxation time;
@, VM, 1; — parameters for which identification will be

carried out.
Select the activation functions in the hidden layer of the
neural network direct propagation in the form:

8 (1) = P, @)

0o (1) = ) ®)

So, get the handling mechanism of the rheological beha-
vior of wood. By implementing the training algorithm of
experimental data on creep, get identify rheological para-
meters of wood.

Figure 5 shows the approximation of experimental creep
data of wood using an artificial neural network with the
implementation of the parallelization of the learning algo-
rithm by CUDA. The maximum deviation of the approxi-
mate values from the experimental values does not exceed
3 %.
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Fig. 5. The approximation of experimental data of creep of
wood using artificial neural networks

Hence, it can be concluded that the use of direct propa-
gation neural networks with activation functions selected in
the form (4) i (5) is an effective tool for approximation of
experimental creep data of wood and identification of para-
meters of mathematical models.
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Fig. 6. Comparison of training time using 100 processes for
parallel issue with and without using CUDA

The analysis of performance indicators shown in Figure
6 indicates the feasibility of using parallel learning algo-
rithms for artificial neural networks, in particular, for the
neural network Kohonen the learning time using paralleli-
zation using CUDA technologies was 4.51 sec., without
using parallelization the learning time was 6.88 sec.

Conclusions

As a result of designing a system of parallel learning of
artificial neural networks, an analysis of artificial intelligen-
ce systems and analysis of training of artificial neural net-
works were conducted. The structure of the Chainer frame-
work and its interaction with CUDA is investigated. The
analysis of existing cloud technologies for the implementa-
tion of the task and the analysis of algorithms for training
artificial neural networks, their mathematical support; tra-
ining algorithms were parallelized. Training on artificial neu-
ral networks using Amazon Web Services was conducted.

The necessary software of intelligent system of identifi-
cation of creep parameters of wood using the neural net-
work with parallel learning algorithm is developed. The
analysis of performance indicators shown the feasibility of
using parallel learning algorithms for artificial neural net-
works, in particular, for the neural network Kohonen the le-
arning time using parallelization using CUDA technologies.
Analyzing the results, we can conclude that the use of direct
propagation neural networks with exponential activation
functions on the hidden layer is an effective tool for appro-

ximation of experimental creep data and identification of
parameters of mathematical models of wood rheological be-
havior.
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Hayionanonuii nicomexniunuil ynigepcumem Yrpainu, m. Jlveie, Yrpaina

HEWMPOMEPEXEBA MO/IEJIb ITIEHTU®IKAIII KPUBUX ITIOB3Y4YO0CTI MATEPIAJIY 3

BUKOPUCTAHHAM CUDA TEXHOJIOTIH

Ll pobora npucesdeHa npodneMi ineHTudikamii peosorivHUX mapamerpis JAEPEBUHU 3 BUKOPUCTAHHSAM MITYYHUX HEHPOH-
HUX MEpeXK 3 posnapajeieHuM aJropuTMOM HaBYaHHS 3a JOTIOMOrOI0 MOBHM mporpamyBanHs Python, ¢peiimBopky Chainer Ta
texHoJorii CUDA. Po3po6iieHo iHTeIeKTYalbHY CUCTeMY ieHTH(IKAIT peosioriyHuX napamerpis gepeBunu. CTBOpeHa crcTe-
Ma MiCTUTh MaKCHMAaJbHO 3pO3yMiNuii iHTepdeiic KoprcTyBada, Bech HEOOXiIHUI KOMIIIEKC IHCTPYMEHTIB JJISi aBTOMATHU3Aalii
npoliecy Bizyaniszailii Ta aHami3y JaHuX. Y TPOILIECi CTBOPEHHS IHTENEKTYalIbHOI ccTeMu 0yI10 epe10aveHo BUPIlIeHHS! HACTYTI-
HMX 3aBJIaHb: IPOBECTH aHAJi3 CHCTEM IITYYHOIO iHTENEKTY Ta aHalli3 HABYaHHS IITYYHUX HEMPOHHHUX MEpEeX, 30Kkpema Oararo-
IAPOBUX HEHPOHHUX MEPEXK MPSMOro MOLIMPEHHS, PEKYPEHTHOT HEHPOHHMX Mepexk Ta HeUpoHHOT Mepexki KoxoHeHa; ociim-
TH cTPYKTYpY (¢peiimBopky Chainer ta iforo B3aemosito 3 CUDA; npoBecTH aHali3 iCHYIOUMX XMapHUAX TEXHOJOTIH JUIs peaiza-
il 3aBJaHHs; POBECTH aHaNi3 aITOPUTMIB HaBYAHHS IITYYHUX HEHPOHHHUX MEpEXK, IXHE MareMaTu4He 3a0e3MeueHHs; 31iHCHU-
TH pO3MapajIeliCHHs alrOPUTMIB HaBUYAHHS Ta pO3pOOUTH HEoOXiIHe porpamue 3abe3nedeHus. Bukopucranns Chainer nae 3mo-
I'y CTBOPIOBATH ITyJI laM'sTi st po3noainy nam'sti GPU. 1100 yHUKHYTH po3MOIiay Ta BUIYYCHHS TTaM'sITi i1 4ac 00YUCIICHb,
Chainer HaJja€ MOKJIMBICTh BUKOPUCTOBYBATH Iy nam'sti CuPy sk cTaHZapTHUE pO3IIOIi aM'Ti HE MaKOYM CIpaBy 3 PO3MOIi-
7om nam'sti. st Bu3HaueHHs (i3MKo-MeXaHIuHUX MapamMeTpiB MaTeMaTuyHol MOJEIi Hei30TepMiuHOTO BOJIOTONEPEHECEHHS Ta
B'SI3KO-TIPY’KHOTO JIepopMyBaHHSI KamiJsIpHO-MIOPUCTUX MaTepialiB y Mpoleci CyIIiHHS PO3pOOICHO iHTENEKTYalbHY CHUCTEMY.
Bona Hastae MOXIMBICTH MPOBECTH iACHTH(]IKALIIIO MapaMeTpiB sep MOB3YYOCTi Ta pesakcailii, 0 3anucyeThesl K JiHiliHA
KOMOiHaIlis eKCMOHEHI[iaTbHIX OTIepaTopiB. 3aNpONMOHOBAHUM alTOPUTM arpoKCHMAIlii Ta OTpUMaHi pO3paxyHKOBi CHiBBiJHO-
IICHHS PEOJIOTIYHOT MMOBEIIHKY AEPEBUHH 3a JIOMIOMOTOI0 6araTonrapoBoi HefipomMepexki 3 eKCIIOHEeHIiaTbHIMH (PyHKILISIMU aKTH-
Ballii y MPUXOBAHUX Iapax Jac 3MOTY MiBUIIUTH TOYHICTH alpOKCHMallii eKCIIepUMEHTANBHNUX JTaHUX MOoB3yvocTi. Po3pobieni
MaTeMaTH4YHI MOJIETi MOXKYTh OyTH BUKOPHCTAHI /TSI CTBOPEHHS CHCTEM aBTOMAaTH30BAHOTO CKiHUCHHO-PI3HUIIEBOTO PO3paxyH-
Ky TeMIeparypH, BOJIOTOBMICTY Ta KOMIIOHEHT HAlpyXXeHb MiJ Yac CYUIiHHS KamiJspHO-TIOPUCTUX MaTepialiB 3 ypaxyBaHHIM
TEXHOJIOTTYHUX MapamMeTpiB areHTa CyIIiHHS.

Kniouoei cnosa: inentudikaliisi mapameTpis; posnapajieatoBaHHs; IITY4YHI HeMpoHHI Mepeski; python; chainer framework; cuda.
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