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DETERMINATION OF THE HORIZONTAL STRAIN RATES TENSOR
IN WESTERN UKRAINE

Doppler Orbitography and Radio-positioning Integrated by Satellite (CORS) observations from 37 Global
Navigation Satellite System (GNSS) stations located in the Western Ukraine area were processed using Bernese
Processing Engine module (BPE) of Bernese GNSS Software version 5.2 for a time span of about 2.5 years. To
get a better agreement for constrains, the IGS stations closest to the surrounding area of study were chosen with
fixed coordinates of ITRF2008 at epoch 2005.0. Eastern and Northern components of velocities of GNSS
observations from these 37 permanent stations, calculated from GNSS measurements, were used to construct a
2D model of horizontal strain rates field for the area. This study is presented in three parts. Firstly, two exact
solutions for the components of the 2D strain rate tensor derived on the geosphere based on solving the
eigenvalues — eigenvectors problem were analyzed, including skew symmetric rotational rate tensor. Secondly,
based on the most simple and useful formulas from the first stage, a rigorous estimation of the accuracy of
components of the 2D strain rate tensor were obtained based on the covariance propagation rule. Finally, the
components of the 2D strain rate tensor, dilatation rate and components of the sheer rate tensor in the region
were computed. A model of the rotation rate tensor was constructed for the described area, which led to the
conclusion that the region of study should be interpreted as a deformed territory. Based on the computations
from the GNSS-data model of components of horizontal deformations, the rates of principal values and rates of
principal axes of the Earth’s crust deformation were found. To be consistent, the main tectonic formations are
shown as the background intensity of different components of velocities, the rotation rate and strain rate tensors.
Topographic features of the region were based on the SRTM-3 model (Shuttle Radar Topography Mission) with
resolution 3"x3". At the first sight, the maximum sheer rates have greatest values in the areas located around the
Ukrainian Carpathians. The dilatation rate has also a similar distribution. Nevertheless, because in the paper
only eigenvalue — eigenvector problem without accuracy estimation has been considered, which possibly leads to
doubtful conclusions regarding interpretation and requires an additional solution of a purely mathematical
problem. The full covariance matrix of the strain rate tensor should be found based on given full covariance
matrix of the velocity components obtained by Bernese software. As a matter of fact, the study region is very
complex in terms of crustal movements, which, according to the results obtained, require further densification of
permanent GNSS stations.

Key words. Horizontal velocity, strain rate tensor, dilatation rate, maximum sheer rate tensor, accuracy
estimation, skew symmetric rotational rate tensor.

Introduction

The deformations of the Earth's crust caused by
the processes of the deep earth dynamics arose
because of the translational-rotating motion of the
planet in space. Such deformations are classified both
in terms of their changes in time, and in the
distribution of various spatial displacements. In
particular, they can be age-related, periodic and
occasional, and in addition, they can be divided into
global, regional, and local deformations. Our
knowledge of the Earth's crustal movements is
strongly dependent on their nature and the period of

deformation determinations obtained from various
measurements [Minster & Jordan, 1978; DeMets, et
al. 1990; DeMets, et al., 1994; England, Molnar,
1997; Kreemer, et al., 2000, Crespi, et al., 2000; Bird,
2003; et al.]. Traditionally, studying the deformations
of the Earth's crust involved investigating the
horizontal and vertical components of the deformation
field. In principle, the deformation analysis became a
mostly geodetic task using satellite geodesy. These
allowed the monitoring and determining with high
accuracy the three-dimensional deformation field by
means of VLBI (Very Long Baseline Interfero-
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meters), SLR (Satellite Laser Ranging), DORIS
(Doppler  Orbitography and  Radio-positioning
Integrated by Satellite), GNSS (Global Navigation
Satellite System), and InSAR (Interferometric
Synthetic Aperture Radar). Development of these
technologies cannot occur without the precise
definition and implementation of the Earth's
coordinate system to study the deformations of the
Earth's crust, as reported in the IERS Conventions
2010 by [Petit, Luzum]. Measurements from the
moderately dense network of GNSS stations were
used for this study in the Western Ukraine region.
Deformation analysis represents a fundamental
tool for solutions of the problems of modern
geodynamics for the study of spatial and temporal
changes of deformation fields and modern movements
of the Earth’s crust. Due to tectonic processes, their
peculiarities can be explained by analyzing long-term
GNSS observations in different regions of the world.
Therefore, today such investigations contain a
common application of the experimental study of
deformations using the latest GNSS technologies, in
particular, a traditional approach in geophysics. The
determination of deformations of the Earth’s crust,
which is devoted to a very large number of scientific
works every year, is usually based on the
mathematical approach having a tensor nature. From
the outcome of such investigations [see, for example
in separate papers of, Crespi et al., 2000; Kreemer et
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al., 2000; Marchenko, 2003; Vanichek, et al., 2008;
Marchenko et al., 2010] now already stated that it is
possible to calculate the 2D and 3D strain rate tensor
with 2D and 3D rigorous accuracy estimation
[Marchenko, 2003; Marchenko et al., 2010], analysis
of the deformation field components, and the
construction of mathematical models of active fault
zones. Such a study of deformation processes using
GNSS observations leads to the refinement of known
tectonic plates.

As will be shown below in later sections, for the
deformation analysis of the Earth’s crust, the
additional requirement requires the determination of
partial derivatives of the vector functions of the strain
rates. In the ideal case, these functions should be
given continuously in the space-time domain, which,
however, is not achieved by geodetic measurements
that have discrete nature in space and time. Since
modern tectonics are generally determined from
geophysical and geodetic measurements, they also
have a discrete nature. For this reason, the initial data
also require continuous nature in space and time and
should be evaluated by means of approximation by
unknown functions based on a known discrete
distribution, which represents a problem having a
unique solution. As was noted by Juliette et al., 2006,
this problem is nothing else but preprocessing part of
the deformation analysis and can be solved by either a
finite element method or such worldwide approach as
the least square collocation.
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Fig. 1. Distribution of 26 GNSS station and topographical
heights [m] according to STRM-3 model
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Fig. 2. Eastern V, component [mm/yr]
of velocity vectors in the ITRF2008 system at epoch 2005.0

Fig. 3. Northern V/,, component [mm/yr] of velocity vectors
in the ITRF2008 system at epoch 2005.0
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Data

Continuous observations CORS from 37 GNSS
stations were processed using Bernese Processing
Engine module (BPE) of Bernese GNSS Software
version 5.2 for the time span of about 2.5 years. To
get a better agreement for constrains the IGS stations
closest to the surrounding area of study were chosen
with fixed coordinates of ITRF2008 at epoch 2005.0.
Fig. 1 demonstrate 26 permanent stations in the West
Ukraine area called here as Set 1. Set 2 represents 11
stations, which are surrounding the study region. As
well-known, the studied area is characterized by
complexity of tectonic and geological structures. For
better understanding, on the Fig.l we give
additionally the topographic features of the region
based on the SRTM-3 model (Shuttle Radar
Topography  Mission)  with  high  resolution
3"x3".Obtained coordinates of 37 stations and 2D
velocities were applied in the following as input data
to calculate the strain rate tensor and rotational rate
tensor. Figures 2 and 3 illustrate the eastern V, and

northern V,, components derived by BPE velocity

vectors in the time span about 2.5 years calculated
with respect to the ITRF2008 system at given epoch
2005.0 yr. The main tectonic formations are shown as
the background intensity of different components of
eastward V; and northward V), velocities based on

the SRTM-3 model.

Strain rate and rotations rate tensors

Based on the general equations for the
determination of rotation tensor on the spherical
Earth, let’s assume that for each station vectors of the

rectangular coordinates (x;,¥;.2;) and
corresponding velocity (ij , Vyj , sz ) are known in
ITRF system. Transformation to the local NEU
geocentric coordinates (¢;,4;, R) , having the
positive directions to North, East and Up, is well
known and can be described for the velocities (V) ,

v/, V/) by the following rule:

Vaeu =R 2 -V, ()

xyz 2

where the rotation matrix R, is applied for the

transformation from the global right to the local left
coordinate system NEU with the axis direction North—
East—Up. Obviously that the following formulas for
(2) and (3) are hold:

—singpcosA —sin@sinA cos@
R, ;= —sin A cosA 0 |, (2)
COSQCOSA  cospsinA  sing

”

VNEU=|:VI{;’ VEja VJ]T,

V. =[v. v v 3)

z

Now if we assume that studying strains are
infinitesimal, the corresponding tensor of second
degree can be additively decomposed into ¢ infini-

tesimal strain rate tensor and w; as the rotation rate

(vorticity) tensor.

According to Hains, Holt, (1993) the horizontal
strain rate field may be inverted if the rotation vector
function Q(r) is known that expresses continuous
horizontal velocity field on a sphere:

v= R[Q(F) x f'] , ()]
where R is the Earth’s radius; r is the unite radial
vector. The equation (4) is crucial in Hains, Holt
(1993) theory and allows  straightforward
determination of the horizontal velocity field on a
sphere. Thus the components of the strain rate tensor
S, given by (Haines, Holt, 1993; Kreemer, 2000) for

the 2D space read:
. n oQF) V. n  o0Q(r)
€1, = —_— L=
cosp OA R cosep OA
& 0Q(F) +& s 0Q(F) ’

= 5
Foo op R o ©)
1( . 0Q(F) € 0Q(F)
o2 =71 - .
2 op cosep OA

where V. is the velocity in radial direction; Q(F) is

the for the chosen patch or selected plate considered
as arigid body.

Two vectors r=(R,p,A) and
ry =(R,¢),%,) given on the spherical Earth with the
radius R and the local directions (n,é,r) and
(n,,€,,5)) to the north, east and vertical Up, can be

expressed in the following form:

i =[-sinpcosA, —singsini, cose], (6)
€=[-sinA, cosi, 0], (7)
f =[cosgpcosA, cosgsini, sing]. (8)

In the first approximation the linear velocity v at
the point r can be stated via the strain rate tensor
Vv(r), determined through Hamilton operator V
[Ward, 1998]:

V(1) = V(1) + (1= 1) VV(xy ). 9)

Considering hypothetically that movements take
place in the tangent plane to the Earth’s sphere is true,
then from the known relationship between the linear
and angular velocity one gets

v=Q(r)xr. (10)

Moreover, taking into account (10), equation (9)

can be transformed as follows:
v=Q(1y)xr, +(r-r,) '[Vﬂ(ro)x ro] .1

The first term of the equation (11) represents

rotation around the pole €£(r;), and the tensor

[VQ(ry)xr,] can be additively decomposed into the

strain rate tensor S;(r,) and rotation rate tensor
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R,(r)). If Q(r)=const, then VQ(r,)=0 and
tensors S, (r,) and Ry (ry)) cannot be determined.
For the transformation from the 3D space to the 2D
space as surface of the sphere, it is sufficient for Q(r)

to consider dependence from two polar coordinates
only

Qr) =Q(p,1), (12)

Then the horizontal strain rate tensor and accuracy

of it constituents can be estimated by neglecting the

velocity ¥, inradial direction in (Eq. 5) and using the

known eastern V, and northern V), velocities

derived from GPS observations. This assumes the

ST
vector [V,{,, Vi J of a horizontal velocity or residual

velocity at the j number of geodetic point in the north
Vi and the east ¥/ directions in the NEU local

coordinate system (as example, after removing of the
NUVEL-1A model). In such a case unknown
parameters could be considered as infinitesimal
values and should be determined by elements of the
symmetric strain rate tensor S, :

oVy 1(aVy N Vg
o 2\ 04 O¢
"oy L v,
2\ 04 Op oA
. .o, (13)
_ €op  Epn
é(p/l Ean
and skew symmetric tensor R, or rotation rate
(vorticity) tensor:
0 1 [GVN ~ aVEJ
2000 0
R, = .
1f ¥y Vg 0
2\ 04 O¢

. (14)
10 1
=
-1 0
where @ is the rotation rate of the region, assumed as
a rigid body. Obviously the rotation rate is adopted
here as a function of spherical coordinates. The strain

rate tensor S, and the rotation rate tensor R, are
then given by the formulas (13) and (14), if the

velocity vector v =[Vy,V; ]T consists of the northern

Vy and the eastern V; components.

Thus, it becomes necessary to determine the
fundamental function Q(r) in the considered

approach. Generally all geodetic and geological data
require some preliminary analysis and prediction to
the nodes of selected usually uniform grid to
determine the derivatives presented in equation (5) -
(14). In addition, the elastic properties of a tectonic
plate can be modeled through spatial derivatives of a

function Q(r), which are equal to zero in (5) for such
areas, which are located on the same plate and with
the same function Q(r) dependent from the Euler
pole. Generally speaking, in the frame of considered
theory, any area for which, Q(¥)=const can be
interpreted as a rigid plate or region.

Solution of eigenvalues — eigenvectors problem

To analyze the solution for the eigenvalues and
eigenvectors of the symmetric tensor S, , given by

the expression (13), we recall that there are two
different approaches. In order to select an optimal
version for formulas and further accuracy estimation
we will consider these two different solutions.
According to the well known first solution given for
strain tensor (see, for example, Vanicek, et al., 2008)
the invariants of the matrix (13) can be calculated as
follows:

I, =Trace(Sy)=¢€,, +€,, =27 , (15)

I, =Det(S)) =&pp8, —Eay (16)
and used to solve the characteristic equation
A I A+1,=0. (17)

The solution of the equation (17) leads to the
invariants /; and [/, of the matrix (13). Two
eigenvalues A, and A, are obtained as a solution of

this quadratic equation:

4 =[‘2+” —+v/2, 4 =I‘T"”=;g—u/z, (18)

where we suppose that 4, > 4, and v =4, — 4, is the
roots difference of the equation (17) or the so-called
rate of maximum shear, which is determined based on
invariants (15) and (16) and the corresponding
elements of the strain rate tensor (by substituting for
4, and 4, in equation for v =4, — 4, ) we get:

V=1 4L, =€y~ 617 +465 . (19)

It is evident that two principal axes represent such
directions of strain rate tensor that characterize the
maximum and minimum axes corresponding to the
expansion A,; and compression A, of some chosen

certain area of study and can be found based on
known values A, and A,. Usually an eigenvector

problem is solved in digital form.

Nevertheless we shall discuss another approach.
Henceforth the eigenvalues (18), which correspond to
certain vectors, can be obtained together with
directions of the eigenvectors in a closed form that is
necessary for further accuracy estimation of all
components of the eigenvalue-eigenvector problem.
For this, we first recall that the principal axes of our
tensor (13) coincide with the principal directions of
the so-called tensor-deviator, which is defined not
only by symmetric properties of the strain rate tensor
(13), but also by a zero trace Trace(S,). For
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instance, among other types of tensors-deviators that
have already been studied in terms of the derivation of
analytic solutions of the eigenvalues — eigenvectors
problem are the Earth's inertia tensor and well-known
from GOCE satellite mission gravitational gradient
tensor [Moritz, & Muller, 1987; Marchenko, &
Schwintzer, 2003; Marchenko, 2003; Marchenko, et
al., 2016]. Coming to the corresponding transfor-
mation through Trace(S, ) of the tensor (13) to the

deviator D), it is easily seen:

S, =D, + Trac;(SV) ’
Trace(S .
DV=SV—%=SV—)(. (20)

Equations (20) provide the desired matrix —
deviator D, :

D, =l ‘éw —&5, 2%/1 an
2 2%/1 €30 ~€pp

The solution of eigenvalues — eigenvectors
problem for the deviator (21) is straightforward, since
the invariants have the simplest form

i = Trace(D, ) =0,
iy =Det(Dy) = [ (¢, ~£1,)° /4 +623, |, (22)
that allows solving the corresponding quadratic
equation and finding both roots and its restoring to the
original equation (17):
22 +i, =0,

A

%}zi\/(éw —&,, ) 4+EL =40/2, (23)

A, . A . v/2 ”
AT "’“{—u/z‘ @9

After some algebraic manipulations formulas (20)-
(24) provide the important practical aspect. The tensor
S, can be written now in the following way

SV=1{%T” .“.}, 5)
2l 7 X+
where
X =(Ep +€;1)/2,
Y1=6 —€pp > Y2 =26y, (26)
In the equation (26) y is the dilation rate or the rate of

average expansion (compression) of the region surface;
y, and y, represent the rate of components of the total

rate y in a studying area. It is obvious that the rate that

thisrate y can be derived from y, and y,:

7 =N+ - (27)
Thus, in the relationships (5), (13) and (25), the
last representation of the tensor S, becomes

especially important, since it enables one to obtain a
solution of the characteristic equation (17) for the
tensor (25) in the most appropriate form

10

A, =(j(.+;?.)/2} ‘ 28)
Ay=(x—=7)/2

According to Vanicek et al., (2008), for the study

of deformation field, the so-called maximum

displacement v=A,—A, is used as an invariant

characteristic in the form (19). It is easily seen from
(28) and v=y, these concepts are algebraically

identical in the case of strain tensor and strain rate
tensor considered here in the 2D space. In our case the
parameter v =y is nothing else but the rate of

maximum shear.

Now comes important step for the determination
of the eigenvectors (also called by principal vectors)
in view of the fact that the eigenvalues A; and A, of
the tensors (13) or (25) correspond to their principal
vectors A, and A, respectively. Remembering the
definition of A; and A, these vectors can be found

as a nontrivial solution of the homogeneous (singular)
system of algebraic equations
Sy —-A)-A; =0, (29)

where I is the (2x2) unit matrix. Consider the matrix
of the system (29) in the vector form

S, —Ajlz[s] —Aey, s, —Ajez] , (30)
where each auxiliary vector s; represents the i-th
column of the matrix S :

s]=l|:x._ylj|’ sz=l{_y2l, 31)
2l 7 2| x+7

Here e, and e, are the unit vectors in the adopted

horizontal local coordinate system.
Thus, the system of linear equations (29) provides
the following two conditions of orthogonality
(si_Ajeja A])zoa (l=1,2) )
(j=const). (32)
Therefore, each eigenvector A ; will be normal to
a plane, in which all-auxiliary vectors s; —Ae;
belongs to each fixed j=const. The transformation
of the matrix S, —A I into the system of principal
axes (A;, A, ) leads to the relationship
A=A 0
Sy -AI= >
0 Ay =4
rank(S, — A ;I)=1 where A; > A, (33)
for each (j = 1, 2). The result (33) reflects the
following fact: there is only one linearly independent
vector in the set s; —A e; for each fixed (j = 1, 2).
Thus, we can obtain an eigenvector A; as a vector
product of the corresponding linearly independent
vectors s; —A e;. Simplest general solution can be

formed by analogy with a three-dimensional case
[Marchenko, 2003] by calculating the following
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vector product, which coincide with the eigenvectors
but are unnormalized,

Z;=(s,—Ae)x(s,—Asey) . (34)

After standard normalization of each vector Z ;

A =Z,/[Z,.Z)) . (35)

As a result, transformation (34) allows us to

one gets

represent every non-unique eigenvector in the
simplest form
_ 2
Z,=P+A;s+Aje, (36)
where
P=s/xs,,s=5+5,, e=e +e, =[I l]T. (37)
Thus, the resulting equations (35) - (37) give a

rigorous solution of the problem. However, for a
strain rate tensor, which is studied in the 2D case,
there are significantly simpler dependencies that
allow further accuracy estimation of eigenvalues and
principal axes using known velocities field and its
covariance matrix from GPS-data processing. Note
that the eigenvalues A, and A, of the tensors (13) or
(25) assumed as principal values of strain rate tensor
that correspond to the principal vectors of the
maximum A; (minimumA,) extension (compres-
sion) in these principal directions.

In this case, these vectors, considered as axial,
correspond to principal directions. Simplest formulas
represents the azimuth o, of the first principal axis

A,, calculated by the formula (38), and the azimuth
o, of the second principal axis A,, which is

determined from the condition that the principal axes
are perpendicular to each other:

1
a =—arctan[y2j , ay=a;+7/2.  (38)
2 4

The azimuth f=oa,+7/4 corresponds also to
axial vector in the direction of the maximum shear
and equivalent to the bisector of the angle between the
principal axes A, and minimal A,. Equation (38)
together with the solution (25) (28) of the
eigenvalues problem allows us to proceed to a
rigorous estimation of the accuracy of the parameters
from given GPS observation.

Error propagation for the eigenvalues — eigenvectors
problem

According to [Marchenko, 2003; Marchenko, et
al., 2010], the formulas for the accuracy estimation of
the eigenvalues and eigenvectors can be obtained via
error propagation if the input data represented in
following form

T=[ép. 110 61 | - (39)

together with the known covariance matrix C;p of
the components (39) of the strain rate tensor. Taking

into account that adopted functional dependence for
the calculation of eigenvalues is the relationships
(28), which are based on the vector

tz[)&a Y]a 7}2]T =

T

=[Cpp +€10)/2. €35 =6pp 265 | . (40)
we come to the additional task of preliminary
accuracy estimation of the components of the vector
t. Therefore, using the covariance propagation rule
the matrix (41) of the following partial derivatives is
necessary

5 1/2 1/2 0

t

Xl 1 ol 41

o (41)
0 0o 2

When (41) is given, the full covariance matrix C,,

of the vector t can be found by means of error
propagation rule

T
ot ot

Cy= a_TCTT (G_Tj . (42)

For further accuracy estimation of the eigenvalues
T

)\,:[A], A2] ) (43)

we recall that each eigenvalue can be represented as a
dependence on two parameters only: the dilation rate

x and two components y, and y, allowing to obtain
the rate of the maximum shear y = (;?]2 + ;?22)”2 27).

It should be noted that accuracy of the dilatation rate
x and accuracy of the components y, and y, (21)

are derived from (42) and the variance var(y) of the
parameter y can be found in the following way

d dy ot ay ot )
Var(V)——t t((;;j ’ CTT( ! j >

ot oT ot oT
a7 {0 " V—?] (44)
ot Yy ¥

Differentiating (43), according to usual rules, we
get the matrix of partial derivatives from the
eigenvalues vector A with respect to the components
of the vector t (42) and the complete covariance

matrix C,; :

1 n 7
a2 2 2
o |1 1|
2 2y 2y
o . (on) an ot oot
C _—c . (@5
Mot (atj ot oT TT(&taTj 45)

Accuracy estimation of the directions of the
principal axes reduces in the evaluation of the
accuracy of azimuths (38), which correspond to the
maximum A, and minimum A, directions. Applying
the covariance propagation rule to the first of the
relations (38), variance of azimuth of the first
principal direction can be obtained

11
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9o |y N Y2
ot 2 27 |

T
var(a,) = %Ctt (%j =

day Ot ooy ot \'
= C 1 , 46
ot oT TT(at aTj (46)

Variance of the azimuth o, of the second principal

axis and the azimuth B of the direction of maximum

shear will be equivalent, since partial derivatives of
these three parameters coincide.

Estimation of the strain rate tensor
in the West Ukraine area

The initial eastern V; (Fig. 2) and northern V),

(Fig. 3) linear velocity were found from the 37 GNSS
stations located in the study area using Bernese
Processing Engine module (BPE) of Bernese GNSS
Software version 5.2 for the time span about 2.5
years. To get a better accordance for constrains the
IGS stations closest to a vicinity of study location was
included with additional fixed coordinates of
ITRF2008 at epoch 2005.0. Therefore, these
velocities V; and V) also related to the ITRF2008

system (epoch 2005.0) as source information. See
figures 2 and 3.

22°

The components &, ,, € €,, of the strain

09 >
rate tensor were computed straightforward through
numerical differentiation using unites [ustrain/yr=10
S/year]. Then formulas (24) - (27) allow to calculate
the dilation rate y and the rate components ¥, , ¥,
of the tensor — deviator. Obviously the eigenvalues
and eigenvectors can be derived from formulas (28)
and (38) respectively. Figure 6 illustrates the
eigenvectors obtained from (38) in the points of

GNSS stations location. Then the components &, , ,
g 0o g ol of strain rate tensor and the component

@ of rotational rate tensor have been calculated
based on formulas (13) and (14) respectively. We

omit here the parameters ¢, ,, € €,, and give

0 >
the value @ illustrated by Fig. 4. After determining

the components ¢, ,, & €,, of the strain rate

09
tensor, formulas (24) - (27) allow easy calculation of
the maximum A, and minimum A, eigenvalues
given in the local NEU system (ITRF2008 frame), the
dilation rate y , the rate components ¥, , ¥, of the
tensor — deviator and directions of the rate of the
principal deformations A, and A, as eigenvectors. It

is evident that the maximum and minimum
eigenvalues should be derived from formula (28).

I
B =5 ~f =8 -2 1

Fig. 4. Basic component of rotation rate tensor @ [10%year]
(rotation rates of the region)

12
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SRR
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Fig. 5. Dilatation rate [ustrain/yr] based on principal deformations
corresponding the expansion A, and compression A,

1
0.00 0.02 0.04 0.06
Fig. 6. Maximal shear rate [pstrain/year]; directions

of the principal deformations (<) A,
(expansion) and (—<) A, (compression)

13



Fig. 5 demonstrates the dilation rate y . Maximum

sheer rate vector y with directions of the same

principal axes is presented in fig. 6, which correspond
to the maximum A, and minimum A, eigenvectors

or principal deformation rate in the region. To be
consistent, the main tectonic formations are shown on
all Fig. 2 - 6 as the background intensity of different
components of the velocity components, rotation rate
and strain rate tensors. Topographic features of the
region were based on the SRTM-3 model (Shuttle
Radar Topography Mission) with resolution 3"”x3".

Summary and Conclusion

In summary we can conclude.

1.  GNSS observations from the 37 stations
located in the Western Ukraine area were processed
using Bernese GNSS Software version 5.2 for the
time span about 2.5 years. Therefore, coordinates and
velocities of 37 GNSS stations have been calculated.
Those results were used to construct the 2D model of
horizontal strain rates in the region of Western
Ukraine, including a part of the Carpathian
Mountains.

2. Then after densification a digital model of
linear horizontal velocities of the Earth's crust
movements for the Western Ukraine area was
calculated. Two well-known methods for analytical
solution of the eigenvalues — eigenvector problem for
the 2D strain rate tensor are analyzed, and their
identity is shown. Simplest formulas were chosen for
further use in calculations and rigorous accuracy
estimation.

3. For better understanding, the basic tectonic
formations are shown as the background intensity of
different components of velocity, the rotation rate,
and strain rate tensors. Topographic features of the
region were based on the SRTM-3 model (Shuttle
Radar Topography Mission) with high resolution
3"x3" (Fig. 1). A model of the rotation rate tensor was
constructed for the region of Western Ukraine, which
leads to the following conclusions. According to the
classical approach, it is assumed that each tectonic
plate should be rigid (having the same linear
velocities for each sub-region lying on the same
plate), then any area for which the condition @ =0 is
fulfilled (linear velocity = const), considered as a non-
deformed region. This condition & # 0 is not fulfilled
for the Western Ukraine area.

4. Based on the computations from GPS-data
model of components of horizontal deformations, the
rates of principal values and rates of principal axes of
the Earth’s crust deformation were found. At the first
sight, it should be pointed out that the maximum sheer
rates have greatest values in the areas located around
the Ukrainian Carpathians. The dilatation rate has also
a similar distribution.

5. However, this paper deals only with the
problem of eigenvalues — eigenvectors without
estimation of accuracy, which may lead to doubtful

conclusions about interpretation and require
additional solution of a purely mathematical problem.
The complete covariance matrix C;; of the strain

rate tensor must be found from the given covariance
matrix of the velocity components obtained by Berne
software. This problem was omitted in the article due
to possible further development.
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OLIIHIOBAHHS TEH30PA ILIBUIKOCTEN TOPU30HTAJIBHUX JIE®GOPMAILIIA B PETTOHI
3AXIJIHOI YKPATHU

JHani GNSS cnocrepexxens (CORS) 3 37 cranmiii, po3ranioBanux y paiioni 3axigHoi Ykpainu, o0poOiieHi 3a
nmorromororo Mmoayist Bernese Processing Engine (BPE) Bepacbkoro mporpamuoro 3abesneuenns GNSS Bepcii
5.2 mpotsiroM miepiofy dacy 0nm3bko 2,5 pokis. 1106 mocsrtu kpaioi 3roau odpai ctanuii IGS, HaitGnmkyi 10
HaBKOJIMIIHLOIO paloHy JociipkeHHs, 3 ¢ikcoBanumu koopauHatamu [TRF2008 B emoxy 2005.0. CxinHa Ta
MiBHIYHA CKJIAJIOBI MBUAKOCTI criocTepexkeHb GNSS 3 1ux 37 HMOCTIHHUX CTaHIliH, 0OOUUCIICH] 32 pe3yabTaTaMu
BuMiproBaHb GNSS, BuKoprcTaHi It TOOYIOBH JBOBUMIPHOI MOIEII TOJIS TOPU3OHTANBHUX AedopMaltiii taHoi
MicreBocti. Lle mocmifkeHHS TNpeacTaBieHO y TPbOX 4YacTWHax. llo-mepiie, MpoaHadi30BaHO ABAa TOYHUX
pimeHHst uis KomroHeHTiB 2D TeH3zopa mBumkocTed aedopmariii, orpuMaHux Ha reocdepi Ha OCHOBI
PO3B'SI3aHHS BJIACHUX BEIIMYMH — 3a]adi BJIACHUX BEKTOPIB, BKIIOYAIOYM CHUMETPUYHHHA TEH30p LIBHIKOCTI
obepranust. [lo-apyre, Ha OCHOBI HaWOUIBII MPOCTUX 1 KOPUCHUX (POPMYIT 3 MEPIIOTO €Tary OTPUMAaHO CTPOre
OIIIHIOBAHHS TOYHOCTI KOMIIOHEHTIB 2D TeH30pa MIBHIOKOCTEH Jedopmaliiii Ha OCHOBI IpaBUIIa
pO3IIOBCIOKEHHST KoBapianiid. Hapemri, oOumcieni kommonentH 2D TeH3opa mBUAKOCTI aedopmariii,
IIBUIKOCTI JMWIATAIlil Ta KOMIIOHGHTH TEH30pa pIBHUX IIBUAKOCTeW B obyacti. Jlns omumcanoi oOmacti
1oOyioBaHa MOJIENIb TEH30pa MBUIKOCTI 00epTaHHS, IO MIPHU3BEJIO 0 BUCHOBKY, 110 00JIACTh JOCIIDKEHHS CITij
IHTEepIpeTyBaTH SK neopMoBaHy TepuTopito. Ha ocHoBi obumcnens 3 GNSS-mozpeni JaHUX KOMIIOHEHTIB
TOPU3OHTANBHUX JedopMaliii BCTAHOBIEHO HOPMH OCHOBHMX 3Hauy€Hb Ta IIBHIKOCTI OCHOBHHX OCEH
nedopmariii 3emHoi kopu. 1[[o0 OyTH MHOCITITOBHUM, OCHOBHI TEKTOHIYHI YTBOPEHHS IIOKa3aHi SK (hOHOBA
IHTCHCUBHICTh Pi3HMX KOMIIOHCHTIB IIBHIKOCTCH, MIBUAKICTh OOCPTAHHSA Ta TEH3OPH INBUIKOCTI Iedopmarrii.
Tonorpadivni ocobnuBocTi periony 6a3yBanuck Ha Mozeni SRTM-3 (micis 3 Tonorpadii Shuttle) 3 po3ainbHOO
3matHicTio 3"x3". Ha mepumii mormsi, HailOnbln 3Ha4eHHsS OTPUMaHI B paioHaX, PO3TALIOBAHMUX HABKOJIO
VYxpaincekux Kapmart. [IBunkicTs aunatanii Takox Mae nonioHuit poznozisn. TuM He MeHIIe, OCKIIBKH B pOOOTI
0OYHCIIeH] JIMIE BJIACHI YMCIa Ta BJIACHI BEKTOPHU O€3 OLIHKM TOYHOCTI, I[e MOXKE MPU3BECTH I0 CYMHIBHHX
BHCHOBKIB IO/I0 IHTEpIIpeTallii pe3yJibTaTiB 1 BUMarae JOJaTKOBOTO BUPILIEHHS CYTO MaTeMaTHYHOI 3a/adi.
3HaWTH KOBapialliiiHy MaTpHIIO TeH30pa aedopmallii Ha OCHOBI 3aJaHOi KOBapialliiHOI MaTPHUI[i KOMITOHCHTIB
LIBHKOCTI, OTPHMaHHX NpOrpamMHUM 3a0e3redeHHsM Bernese. OCKiNBKM [OCHIIPKYBaHHH PETIOH € TyXKe
CKJIaJIHUM, TO 32 OTPUMAHUMH pe3ylbTaTaMH IOTPeOye IMOJabIIOro YIIIIBHEHHS! IIEPMAaHEHTHUX CTaHIH
GNSS.

Knmiouosi cnosa. TEH30p IIBUIKOCTEH TOPU3OHTAIBHHUX jAedopMallifi, IIBHAKICTh TUIATAIlli, TEH30pD
LIBHIKOCTEH MaKCUMaJIbHOTO 3CYBY, OLIHIOBAHHS TOYHOCTI.
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