
ADVANCES IN CYBER-PHYSICAL SYSTEMS
Vol. 4, No. 2, 2019

METHOD FOR TIME MINIMIZATION OF API REQUESTS SERVICE
FROM CYBER-PHYSICAL SYSTEM TO CLOUD DATABASE

MANAGEMENT SYSTEM
Nataliya Pavych, Tetyana Pavych

Lviv Polytechnic National University, 12, S. Bandery Str., Lviv, 79013, Ukraine
Author’s e-mail: nataliia.y.pavych@lpnu.ua

Submitted on 01.10.2019

© Pavych N., Pavych T., 2019

Abstract: Authors have analyzed the current state of
cloud calculations and discovered the necessity of Application
Programming Interface (API) usage in some of the cyber-
physical systems (CPhS). The expediency of creating tools to
reduce service time of Application Programming Interface
requests and effective synchronization of the local and cloud
database has been established. The authors clarified one of the
main features of data replication. The expediency of using
counter generations in the replication process instead of using
system timer has been justified. The authors proposed the
asynchronous method of accelerated service time for API
requests to cloud database management systems using a
synchronization accumulative table and registering changes in
database with two-step sets of generations. Library that
provides implementation of asynchronous API requests for
Salesforce cloud management systems has been developed.
Any Ruby on Rails application can use this library. Authors
have evaluated and carried out benefits for the proposed
solutions in test cases. Results of the test cases confirm service
time minimization of API requests to the cloud database
management system based on the proposed asynchronous
method.

Index Terms: API requests, cloud database, cyber-
physical systems, database management systems,
minimization method, service time.

I. INTRODUCTION
Nowadays there is a huge development and

implementation of CPhS (cyber-physical systems). CPhS
is a combination between physical processes and cyber
components that provide an organizing of calculation-
measuring processes, protected storage, and exchange of
business information, influencing physical processes [1].
Internet is one of the most important components of such
cyber systems. The analysis of principles of cooperation
between variety of components may help in finding out
usage expediency of cloud computing. Cloud computing
is a model that provides comfortable net access in
demand of certain configuration and calculation stock
(for example, net data exchange, servers, data storage
devices, apps and servers altogether and in-separate)
which can be promptly provided with the minimum
operating data or provider request [2]. Cloud computing
is an effective way for distributed calculations. In
addition, cloud computing effectively increases the
functional abilities of computer systems and networks.
High usage of cloud computing leads it to become the

base for a variety of innovations and calculations of
complex tasks. What is more, cloud computing became
popular in different computer companies and ordinary
users. Researchers agree on the idea that cloud
computing is one of the most perspective ways in the
development of computer calculation at all [2], [3].
Therefore, research about cloud computing applications
is highly relevant.

II. ANALYSIS OF RECENT PUBLICATIONS
Cloud computing includes CPhS usage of various

hardware and software net servers, methods and
instruments, as an Internet service is given to a user for
project performance or in order to solve different applied
tasks. The main component of such technologies is cloud
databases (CDB).

Cloud computing provides easy environment for
data storage and information processing. In addition,
cloud computing combines hardware tools, licensed
program software, communication channels and tech-
nical support [3].

Cloud computing is a certain base vector that is
given because of the synthesis of various technologies
and approaches [3]. We can state that the main compo-
nents of cloud computing are infrastructure, platform,
and program software. Infrastructure is a set of certain
physical devices (servers, information exchange chan-
nels and external storage devices). The platform is a set
of services and software available upon user requests [4].

Some of the main functions of cloud technologies
are the following [3], [4]:

• Access to personal information from any com-
puter connected to the Internet.

• Ability to work with information from any
device (PC, laptop, tablet, smartphones).

• Independence from any of the operating
systems as web-services work in any browser on the PC.

• Information can be viewed and edited from
different devices at the same time.

• Various paid programs are for free (or cheaper)
web – applications.

• Prevent information loss, as it is stored on cloud
storage.

• “Fresh” and updated information.
• Usage of the last updates and applications.

Nataliya Pavych, Tetyana Pavych 126

• Ability to unite information with other users.
• Easy to share information with users from any

part of the world.
Some of the disadvantages might be [3], [4]:

• Necessity in web-connection. Users should be
connected to the Internet in order to get access to the
cloud services.

• Software limitation. There are some limitations
which can be developed on the cloud and be given to
users. User has limitations within the software and does
not have an opportunity to set it up for his / her own
goals.

• Confidentiality. Nowadays confidentiality of
data stored on public clouds causes a lot of
controversies, however, in most cases experts state that it
is not recommended to store the company's most
valuable data on public cloud, as there is no technology
that would guarantee 100% confidentiality.

• Security. Cloud is reliable enough, however, in
case of attack, hacker gets access to huge data storage.
Another disadvantage is the usage of virtualization
systems that use the core of standard operating systems
(for example, Windows) that allows computer viruses to
penetrate the system and lead to vulnerability of the
whole system.

• Costly equipment. It is necessary to allocate
considerable material resources in order to build own
cloud which is not profitable for new small companies.

• Further monetization of the resource. There is a
big possibility that a company will increase costs for the
services provided.

Cloud database is a database which runs on cloud
calculation platforms such as Amazon EC2, GoGrid and
Rackspace.

There are two most common deployment models:
users can buy directly database access services served by
a cloud provider or they can manage databases
independently in the cloud with a concept of a virtual
machine. There are SQL-oriented and NoSQL models
among cloud database models.

Several approaches are used to load and manage
database on a cloud.

Concept of a virtual machine – cloud platforms
allow users to have an instance of a virtual machine for a
limited time and users can manage database in this
virtual machine. Users can download a concept
themselves from the installed database or use concepts
previously created and those which already include opti-
mized installation. For example, Oracle provides machi-
ne concept with Oracle Database Enterprise Edition
installation on Amazon EC2 and Microsoft Azure.

Database as a Service (DBaaS) – certain cloud
platforms provide operations for using a database as a
service without physical launch of a virtual machine for
the database. Therefore, owners of the application do not
need to install and “support” database. However, a
service provider takes responsibility for database
installation and support. In addition, owners of the
application pay according to application usage. For
example, Amazon Web Services provide three types of

database services as a part of an own cloud deal:
Amazon SimpleDB, NoSQL, key-store storage: Amazon
Relational Database Service, database service for SQL
with MySQL interface and Amazon DynamoDB. In this
way, Microsoft provides Azure SQL Database service as
a part of its cloud deal [5].

Another option includes database managed hosting
where cloud database provider doesn’t offer DBaaS, but
hosts database and manages it from the name of an
owner [5].

Database services consist of components that
manage main database instances using an application
programming interface (API) of current service. API
services are available for end-users and allow them to
perform operations of size changes on their own
database copies. For example, Amazon Relational
Database Services APIs allow to create database copies /
instances, conduct resource modification which is
available for database copies, delete database copies,
create database snapshots (which are similar to backups)
and recover database from snapshots [5].

However, the modern approach of using cloud
database service API in cyber-physical systems is not
completely worked out. The main problem is that an API
request could last for a long period. In addition, data
replication technology is not fully studied. In many
cases, this problem has bad effect on application tasks
performance in cyber-physical systems. Certain
drawbacks could be avoided by minimizing the service
time of API requests from CPhS to CDB.

III. RESEARCH GOAL
The goal of this research is to find a method in

order to minimize service time of API requests from a
cyber-physical system into a cloud database.

IV. RESULTS OF THE STUDY
Accelerated service time of API requests to cloud

database management systems is the most perspective in
terms of tracking changes in a local database, change
synchronization on cloud database or vice versa.

One of the most popular mechanisms for
synchronizing objects copy content is replication.
Changes that are made in one copy of the object could be
spread into other copies by replication [6]. There are two
types of replication: synchronous and asynchronous.

In a case of synchronous replication, if the given
replication is updated, all other replicas of the same data
fragment should be updated in the same transaction.
Logically, that means that there is only one version of
data [7]. In most of the products, synchronous replication
is performed using trigger procedures (perhaps, hidden
and managed by the system). However, one of the
disadvantages of synchronous replication is that the sys-
tem creates significant additional load while performing
transactions, where any replicas are updated. (In addi-
tion, certain problems such as data access could arise).

With asynchronous replication, an update of one
replica has spread to others through a certain amount of

Method for Time Minimization of API Requests Service from Cyber-Physical System to Cloud... 127

time instead of one transaction. Also, in case of asynch-
ronous replication, there is either delay or waiting time
during which separate replicas could be actually noni-
dentical (as we don’t have to deal with exact and timely
created copies, to define replica is not relevant) [7].

Based on the analysis of features given above, we
could establish that minimization of the request of API
service time from CPhS to the CDB management
systems is achieved with asynchronous replications.

Therefore, it is relevant to consider the corres-
ponding algorithm.

One of the main elements of asynchronous
replication is a primary key, which is mainly zipped with
64-bit binary code (NUMERIC (18, 0)). This is a
composite key recorded in one field. There are several
approaches, which provide the uniqueness of the primary
key. One of the popular solutions are methods which are
established on the conversion of keys (the same record
has a different primary key in different DB). However,
conversion of the key complicates the algorithm and
needs an additional amount of time.

The easiest solution is to use timestamps in order to
register changes. However, timestamps have certain
disadvantages:

• It is hard to set the same time on all of the CDB
nodes.

• System time depends on the human factor.
• Various time zones.
• Different ways of time combination in a

computer; there is a different idea of time with different
accuracy and limitation in every OS, DBMS and
programming language.

From all the things stated above, it is recommended
to avoid using timestamp and use a logical clock (which
is also called generation counter) instead. The value of
the logical clock increases every time after each event
(in this case the event is a replacement). It is possible to
restore the order of changes in one DB. However, it is
not possible to restore the order of changes in CDB
because you cannot compare the value of the logical
clock in different DB. The difference between the
generation counter and the logical clock is that
generations increase in common cases after several
changes. Then these changes belong to one generation.

Service tables (spreadsheets) or so-called register
tables (logs) are used in order to register changes in
algorithms that have certain properties:

– Each table XXXX (XXXX – code data table)
with data has one related registration table LOG_XXXX.

– Each record in the registration table has one
related record in data table if the record was inserted or
changed.

– If the record was deleted, then the records from
the registrar are not related to any record from the table.

The ID of records in the data table is an external
key, which refers to the related record from the registrar
table [7]. Registrar table LOG_XXXX has certain
structure shown in Table 1.

The client will call the general features of the
replication algorithm that receives data. The server will
call database. Replication starts from client initiative.

Table 1

Data registration table structure
Purpose Physical name
Record ID LOG_GID
Insert generation LOG_INS_GEN
Update / Delete generation LOG_UPD_GEN
Sign of deletion LOG_IS_DELETED
ID DB record owner (DB
where the record was created)

LOG_DB_ID

The sequence of data transfer can be separated into

several steps:
1. Request of the current state of the server

generation counter (Server.CURR_GEN).
2. For each generation, starting from the given

server generation +1 (Choose from DB_Profile) to
Server.CURR_GEN (changes are unknown for the
client) execute:

2.1. Start transaction; install replication condition
(Client.BEGIN_RECEIVE).

2.2. Receive changes from server (Server_DB-ID-
GEN, Server_MASTER-GEN, Server.
DETAIL_GEN); changes are memorized in
buffer tables (Client.DB_PROFILE_INPUT.
Client.MASTER_INPUT,
Client.DETAIL_INPUT).

2.3. Apply update changes (Client.PROCESS_
INPUT_TABLES): (main-subordinate sequ-
ence); insertion (main-subordinate sequence),
deletion (subordinate-main sequence).

2.4. Disable state of replication, memorize server
generation (Client.END_RECEIVE); approve
the transaction.

2.5. Set new generation (Client.SET_NEW_GEN);
installation of new generation performed in a
special transaction.

In the case of an exceptional situation, replication
could be prolonged from the last successfully accepted
generation instead of the beginning. During the
realization, the process server memorizes which genera-
tion the client has accepted (Server.SET_ CLIENT_
GEN). It is essential for clearing logs from “dead”
records. Apart from the Server.SET_ CLIENT_GEN data
are transferred only from the server to the client.

Accelerated service of the API requests to the
database management system could be set based on
algorithm modification by providing background data
synchronization in DB and CDB management. The
algorithmic-programming realization principles of this
approach are shown in the example of the implemen-
tation of versatile data integration between Salesforce
cloud database management and Ruby on Rails
application. It is expedient to show this software tool in a
gem (library package) [6] aspect for practical use.

Nataliya Pavych, Tetyana Pavych 128

The authors suggest an approach that involves
using local storage in the form of any relational database,
using object-relational mapping, which makes it easier to
read and modify data in database tables and
synchronization between the remote cloud database as a
whole. Also, this approach involves data processing in
the background mode, without user intervention in the
synchronization process.

An important aspect of the proposed approach is to
maintain the integrity and synchronization of both data
storage. Accelerated service method of API requests to
the cloud database management based on the application
of a synchronous accumulative table. The primary step
would be the formulation of the table, which contains all
important information about the exact changes which
happened in local and remote databases from the last
synchronization. Conclusion based on the analysis of the
given table is made in both local and remote databases.
The conclusion identifies what exact record needs to be
updated, pasted or deleted. Accordingly, synchronization
methods should consist of three main modules:
Accumulative table filter, Accumulative table analyzer,
and API call executor, which are shown in Fig. 1.

Fig. 1. The main components of API service requests

from CPhS to CDB

These modules are independent of each other, so as
you continue to work on a project that includes API
requests from cyber-physical system to cloud database, it
is possible to modify each of three parts separately with
no effect on other modules to improve results as the
given parts are functionally independent of each other. It
is proper to realize these parts as modules, as it allows to
use them in various applications such as web sites,
desktop and even mobile apps.

In addition, each module includes several
submodules.

The data storage module called as Accumulative
Table Filter includes the following sub-modules (Fig. 2):

• Timestamp file reader;
• Search synchronous models;
• Module to execute API requests for changes

that occurred in the remote database.
Accumulative table analyzer contains (Fig. 3):
• Parser collecting changes to the local repository;
• Parser collecting changes in the remote repository;
• Local storage synchronization module;
• Module for comparing local changes and

changes to the remote database.

Fig. 2. The components of Accumulative Table Filter

Fig. 3. The components of Accumulative Table Analyzer

The module for API request execution consists of
(Fig. 4):

• Module for executing Update calls;
• Module for executing Insert calls.

Fig. 4. The components of API call Executor

Suggested module library that related to mini-
mization of API service request could be implemented in
any Ruby on Rails application. A developer has an
opportunity to link any model (in a case that model
matches the look of remote table) to synchronization
with the remote table in the cloud database.

The person who admins the cloud database
management system should be able to modify the data of
the remote tables. As a result, the table in the local
database must acquire the same status as the remote one.

Method for Time Minimization of API Requests Service from Cyber-Physical System to Cloud... 129

According to the research results, the software tool
was implemented with several functions. First, the
system can create a communication channel between
local database, Ruby on Rails application and cloud
database on the Salesforce platform, based on configu-
ration file with clearly defined coordinates of endpoints.
Secondly, one of the functions is the ability to set
various synchronization strategies (constant, passive,
associative). Another function is also the ability to
synchronize separate fields and associative relationships
in the database. User has an ability to specify separate
fields in a table for synchronization and type of
associative connection with other tables in a database by
describing synchronization logic in relational models.
The system analyzes description and performs synchro-
nization of the associative tables and separate fields. All
synchronization events are proceeding asynchronously in
a separate flow that provides a higher level of service
comparing to direct API request.

Fig. 5. The list of modules on the gem library

The authors used Ruby (programming language)
for the development of the test software for data
synchronization between the local database and cloud
database on the Salesforce platform. Rails was used as a
software frame, and PostgreSQL for saving data.
Software is implemented in a library form (gem) for
universal use in any Ruby on Rails application. The list
of implemented modules is given in Fig. 5. The package

manager is also used to ease the creation process,
distribution and library installation (distributed package
manager) [8], [9].

These modules set logical conditions of library
functional modes:

1) Restforce::DB::Associations::Base – sets an
associative link between two mappings in a mapping
register.

2) Restforce::DB::Associations::BelongsTo –
determines connection of record reaction to specific
table in SalesForce database.

3) Restforce::DB::Associations::ForeignKey –
determines salesforce_id as an external key.

4) Restforce::DB::Associations::HasMany –
determines affiliation link of various Salesforce records
to a certain table in a SalesForce database.

5) Restforce::DB::Associations::HasOne –
determines an affiliation link of one SalesForce records
to a certain table in a SalesForce database.

6) Restforce::DB::Instances::Salesforce – serves as
a wrap for SalesForce objects, giving common API for
record attribute regulation with ActiveRecord.

7) Restforce::DB::Middleware::StoreRequestBo-
dy – provides storage of the body request in the
environment with HTTP-client.

8) Restforce::DB::RecordTypes::Salesforce –
serves as a wrap for only Salesforce object class which
allows to make an overview of the attributes and
mapping of attributes.

9) Restforce::DB::Strategis::Always – defines
initiation strategy for mapping, where new-founded
records should be always synchronized with Salesforce
in the database and vice versa.

10) Restforce::DB::Strategies::Associated –
defines initiation and mapping strategy, in which new-
founded records should be synchronized in another
system, but only that case, when the certain associative
record will be synchronized.

11) Restforce::DB::Strategies::Passive – defines
initiation strategy for mapping where new-founded
records should not be synchronized in another system.

12) Restforce::DB::Worker – represents a
continuous polling cycle through which all record
synchronization takes place.

13) Restforce::DB::Syncronizer – relates to record
synchronization in Salesforce with the records in the
local database.

14) Restforce::DB::Registry – tracks all mappings
which fall into its registrar.

15) Restforce::DB::Railtie – allows to start
necessary Rake:Tasks in every Rails application.

16) Restforce::DB::Mapping – covers multiple
reflections between database columns and Salesforce
field by providing utilities for converting hash attributes
from one to another.

17) Restforce::DB::DSL – determines syntax that
helps to set reflection between the database model and
other types of objects in Salesforce.

Nataliya Pavych, Tetyana Pavych 130

18) Restforce::DB::Configuration – provides
methods of rectilinear reading and recording in order to
allow users to set Restforce:: DB.

19) Restforce::DB::Accumulation – refers to the
accumulation of changes during one synchronization
run.

The approach refers to time minimization of
serving API request, which is realized by the created
library, provides usage of local storage on the basis of
any relational database, usage of ORM [8], which
simplifies reading and modification data in database
tables and synchronization between remote cloud
database in general.

The algorithm of the application could be split into
several linear and nonlinear scenarios.

The work of application started through correspon-
ding cycle integration of which is performing data
synchronization. The cycle is processing on the back-
ground mode without direct communication with the
user.

Further processes occurred during the iteration
cycle:

1) Reading of the timestamp file. This file includes
data that show the last successful synchronization.

2) Search of connected models. Special DSL [8]
shows which ActiveRecord ORM models and their field
could be synchronized.

3) Diff file formulation is based on changes in
records in the local and remote database and timestamp
data.

4) Two-side synchronization.
The data synchronization process is based on the

step-by-step review of the diff file and on the
performance of such commands like insert, update,
delete in relation to the local and remote databases.

The generated Diff file is based on changes, which
happened on the local and remote databases. That is,
conditionally, file could be divided into two sections:
local_diff and remote_diff. Changes that occurred in the
local database are stored in the first section, and changes
that happened in the remote database. Deleting data from
the local database is one of the important factors as the
process will be recorded into local_diff. Otherwise,
using timestamp these changes would be impossible to
track.

The synchronization process is given through the
related algorithm. There are a few important features in
this algorithm. Collector.Run – a method running of
which launches step by step data gathering process that
was modified both in local and remote databases.
Timestamp.Cache.timestamp receives the most recent
saved timestamp for a transmitted object. Timestamp
falls into marked time slots to make sure that this cycle
informed about modifications, which were made during
the previous run. Synchronizer run synchronizes records
for current comparison between changes in the local and
remote databases. This algorithm relies on connections
that are present in models subjected to synchronization.

Evaluation of benefit regarding method application
of accelerated API service based on test cases and on the
usage of ten typical queries to the database management
system. These queries are received using the Active
Record ORM tool [8], [10]. Actual time is compared
using synchronous and asynchronous requests to get a
quality estimate of the proposed improvements.
Quantitative values of related and absolute performance
are also being calculated.

CRUD (create, read, update, delete) are basic
operations used in most database management systems.
These operations are interpreted in related requests
(insert, select, update, delete), which are used by a
remote database for direct work.

After library launch, using demonstrative
application comparison between usual and asynchronous
API requests is conducted. Basic operations performed
in every cloud or local database were used in these
compartments. Comparison of performance conducted
for the basic operations is given in Figs. 5–8.

Fig. 6. Page rendering time dependency

for read operation

Fig. 7. Page rendering time dependency

for update operation

Fig. 8. Page rendering time dependency

for create operation

Method for Time Minimization of API Requests Service from Cyber-Physical System to Cloud... 131

Fig. 9. Page rendering time dependency for Delete operation

Received results of the test cases approve service

time minimization of API requests from cyber-physical
systems to database management systems with the
provided asynchronous method.

V. CONCLUSION
Results of modern state of CPhS analysis showed the

necessity of cloud calculation usage. The work necessity
of CPhS database and cloud database was set. In addition,
expediency of time service minimization of API requests
was shown. Service time of API requests highly depends
on features of replication. It proved that generation
counter data usage is more effective in the replication
process rather than a system timer. The asynchronous
minimization method of service API requests from CPhS
to cloud database systems is proposed and investigated.
The method is based on applying of synchronous
accumulation table and changing registration in a database
using the two-step generation setting. The implemented
library provides execution of asynchronous API requests
from CPhS to Salesforce database management system.

The possibility of any Ruby on Rails application is
foreseen in the library. The effectiveness of the proposed
solutions and service time minimization of API requests
from CPhS to cloud database by the proposed method was
checked on the test cases.

REFERENCES
[1] Melnyk А. Cyber-physical systems: problems of creation and

directions in development. Transactions on Computer systems and
networks, Lviv Polytechnic National University Press, No. 806, 2014,
pp. 154–161 (in Ukrainian).

[2] Chappell D. A Short Introduction to Cloud Platforms and Enterp-
rise – Oriented View, Chappell and Associates, San Francisco, 2008,
pp. 1–13.

[3] Lee G. Cloud Computing: Principles, Systems and Applications /
Nick Antonopoulos, Lee Gillam. L.: Springer, 2010, pp. 23–24.

[4] Qusay H. Demystifying Cloud Computing / Hassan, Qusay. – The
Journal of Defense Software Engineering. CrossTalk, 2011,
pp. 16–21.

[5] Galen G. What cloud computing really means. [Online]. Available:
https://en.wikipedia.org/wiki/InfoWorld

[6] Fowler M. Patterns of enterprise application architecture. Addison-
Wesley. 2015, 47 p.

[7] Pavych N., Kutkovyi B. Accelerated servicing method of API calls to
cloud-database management systems. Transactions on Computer
systems and networks, Lviv Polytechnic National University Press,
No. 883, 2017, pp. 154–161 (in Ukrainian).

[8] Gilmore J. Meet DataMapper ORM, the Unified Ruby Interface for
Data Stores. [Online]. Available: https://www.developer.com/
lang/rubyrails/meet-datamapper-orm-the-unified-ruby-interface-for-
data-stores.html

[9] Rowe M. The POSTGRES data model, Proceedings of the 13th
International Conference on Very Large Data Bases, Brighton,
England: Morgan Kaufmann Publishers, 2016, pp. 83–96.

[10] Kutkovyi В., Pavych N. (2017). API-calls optimization for cloud
database management systems. Pres. at International Scientific Journal
“Internauka”, No 14, 2017. [Online]. Available: https://www.inter-
nauka.com/en/issues/2017/14/3003.

Nataliya Pavych. Ph.D.,
Assoc. Prof at Software Department
of Lviv Polytechnic National
University. Master degree of Applied
Mathematics in 1996 at Ivan Franko
National University of Lviv. Her
Ph.D. thesis was defended in 2001.
Research in the database, data ware-
house, data analysis areas. Author of
more than 50 scientific works.

Tetyana Pavych. Junior Bu-
siness Analyst at Titan
International. Bachelor’s degree in
Management Information System
in 2019 at Northwood University,
Midland, MI, USA. Research in
the CRM management, business
intelligence, data analysis area.

