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Abstract: The Fourier integral transform has been used 
to reduce the diffraction problem of the normal SH-wave 
on a semi-infinite rigid inclusion in the elastic layer to the 
Wiener-Hopf equation. Its solution is obtained by the 
factorization method. The analytical expressions of the 
diffracted displacement fields have been represented in any 
region of interest. The dependences of the scattered field on 
the parameters of the structure have been given. The 
properties of identification of the inclusion type defect in 
the plane layer have been illustrated.  

Index Terms: Elastic layer, inclusion, diffraction, normal  
SH-wave, Wiener-Hopf technique. 

I.  INTRODUCTION 
The study of the diffraction of elastic waves by 

defects located in various constructions is important 
for the development of new intelligent diagnostic 
technologies that combine the usage of various technical 
means for collecting and processing of information. For 
example, they are based on the common use of optical 
and ultrasonic methods [1-6]. In order to provide the 
theoretical basis for this technology, the problem of SH-
wave diffraction from a finite crack in an elastic layer 
and on a crack located at the boundary of the junction of 
a layer with a half-space is solved [7–11] by the Wiener-
Hopf technique. In these articles, the cracks were 
modelled by a finite slit of zero thickness without any 
stresses on the faces. Within the framework of this 
model, the resonance vibrations are analysed to obtain 
the maximum response. The problem of SH-wave 
scattering from a semi-infinite crack in a plane elastic 
waveguide is solved by the mode-matching technique 
[12]; the reflected and transmitted coefficients as 
functions of frequency were analysed.  

 

 

Fig. 1. Geometrical scheme of the problem 

The purpose of this paper is to model the 
displacement field on the layer’s surfaces with an 
internal defect for its further identification. For this 
purpose, the problem of  SH-wave diffraction from the 
defect located in the elastic layer is solved. The defect is 
modelled by the rigid semi-infinite inclusion of zero 
thickness. Time factor is assumed to be i te ω−   and 
suppressed through the paper. 

II. FORMULATION OF THE PROBLEM 
Let us consider the elastic layer in the Cartesian 

coordinate system xOy as 

( ){ ( ) ( )}( ) : ,P y x , , y d , d ,z∈ −∞ +∞ ∈ − + ∈ −∞ +∞  
with the rigid inclusion ( Fig. 1): 

( ){ ( )}( ) : 0 , ,h x , , y h zΓ ∈ −∞ = ∈ −∞ +∞ . 
Let the incident normal transverse elastic wave of 

the horizontal polarization (SH-wave) propagates in the 
negative direction of the axis x  as  
 ( ) ( ), cosj xinc

z ju x y e yγ β= , (1) 

where 2 2, , 0,2,...
2j j j

j k j
d

π
β γ β= = − = ; k  is the 

wave number, k k ik′ ′′= + , , 0k k′ ′′ > .  
We seek the unknown diffracted field ( , )u u x y=  

from the solution of the mixed boundary value problem 
for Helmholtz equation   
 ( ) ( ) ( )2 2 2, , , 0x yu x y u x y k u x y∂ + ∂ + = , (2) 
with the boundary conditions on the defect  

( ), 0 0totu x h ± = , ( ),0x ∈ −∞                   (3) 
and on the elastic layer surfaces 
 ( ), 0tot

yu x y d∂ = ± = , ( ),x ∈ −∞ +∞ , (4) 

where tot incu u u= +  is the total field. We seek the 
solution in the class of functions which satisfy the 
radiation and the edge conditions. 

III. SOLUTION OF THE PROBLEM 
Let us introduce the Fourier integral transformation 

of the diffracted field as follows 

 ( ) ( ) i1, ,
2

xU y u x y e dxαα
π

+∞

−∞
= ∫ , (5) 

where iα σ τ= +  (σ ,τ  are the real values). 
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Next, we represent the solution of the Equation (2) 
in the Fourier transform domain in the form as 

( ) ( ) ( )
( ) ( )

, ,
,

, .

y y

y y

A e B e h y d
U y

C e D e d y h

γ γ

γ γ

α α
α

α α

−

−

 + < <= 
+ − < <

     (6) 

Here, ( )A α , ( )B α , ( )C α , ( )D α  are unknown 
functions, that are regular in the strip :α Π∈  
{ }0 0τ τ τ− < < , where 0k kτ′′ ′′− < < ; in order to satisfy 
the radiation condition at infinity,  we find that Re 0γ > , 

where 2 2kγ α= − . 
Let us introduce the Fourier integrals: 

( ) ( )
0 i1, 0 , 0 d

2
xU h u x h e xαα

π
−

−∞
± = ±∫ ,         (7) 

( ) ( ) i
0

1, 0 , 0 d
2

xU h u x h e xαα
π

+∞+ ± = ±∫ .         (8) 

Here, ( ), 0U hα− ± , ( ), 0U hα+ ±  are regular 
functions in the overlapping half-planes 0τ τ< , 0τ τ> −  
with a common stripe of regularity α Π∈ . 

Applying the Fourier transform to the boundary 
condition (3), we find that 

( ) ( ) ( ), 0 , 0U h U h Uα α α− − −+ = − =  
and 

( )
( )

( )
i cos

2 i
j

j

h
U

β
α

π α γ
− =

−
.                            (9) 

Using the notations (7)–(9), we rewrite the 
expression (6) as follows: 

( )

( ) ( )
( )( ) ( )( )

( ) ( )
( )( ) ( )( )

ch , ,
ch

,

ch , .
ch

U U
y d h y d

h d
U y

U U
y d d y h

h d

α α
γ

γ
α

α α
γ

γ

− +

− +

 +
− < <

−= 
+

+ − < < +

 (10) 

Further, using the condition of continuity of the 
normal stresses at ( ){ }0, , 0x y h∈ +∞ = ± , we reduce 
the problem to the Wiener-Hopf equation [13,14]:  

 ( ) ( )
( ) ( )

( )
( )
( )

1i cos

2 i
j

j

h M J
U M

M

β α α
α α

απ α γ

−
++

+
−

+ =
−

, 

α Π∈ .                             (11) 
Here,  

( ) ( )
0 i

1
1( ) , 0 , 0 d
2

x
y yJ u x h u x h e xαα

π
−

−∞
 = ∂ + − ∂ − ∫  

is the unknown function that is regular in the lower half 
plane 0τ τ< ; ( ) ( )3/ 2U Oα α+ −= , ( ) ( )1/ 2

1J Oα α− −= , 

if | |α → ∞  in the domain of regularity. The known 
functions ( )M α− , ( )M α+  are regular in overlapping 
half-planes 0τ τ< , 0τ τ> − ,  respectively. Outside the 
strip Π they have simple zeros at 1niα γ= ±  and poles at  

2niα γ= ± , 3niα γ= ± , 1,2,...n = , 

where                  

( ) ( )2 2
1

1 2
2n n kd

d
γ π= −  ,  

( )
2

2
2 1

1

1 1
2n n kl

l
γ π

  = − −  
  

,  

( )
2

2
3 2

2

1 1
2n n kl

l
γ π

  = − −  
  

,    

 1(2)l d h= ∓ ;  

( ) ( )M Mα α+ −= −  and 1/ 2( ) ( )M Oα α± = , if | |α → ∞ ; 

 
( )

1

2 3

i ( ) sin (2 ) ( )
( ) 2

( ) ( )
e k kd

M d
χ α α Μ α

α
Λ Μ α Μ α+

− +
= ,    (12) 

1 2
1 2

i( )
2 2ln lnd dl l
l l

α
χ α

π

= −
    

+         
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 ( ) ( )1 2cos cosk kl klΛ = , 
2i

1
11

( ) 1
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e
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=

 = +  ∏ , 

1i

2
21

( ) 1
i

l
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nn
e

α
πα

Μ α
γ

∞

=
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2i

3
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( ) 1
i

l
n

nn
e

α
πα

Μ α
γ

∞

=

 = +  ∏ . 

Applying the Liouville’s theorem, we arrive at the 
solution of equation (11) in the following form:  

i cos( ) (i )( )( )
i i2 ( )

j j

j j

h MMU
tM

β γα
α

γ α γπ α
++ +

+

 
= − 

− −  
.          (13) 

IV. REPRESENTATION OF FIELDS  
Substituting the expressions (13) and (9) into the 
representation (10), we find the integral representation of 
the diffracted field in the form as 

i1( , ) ( , )
2

xu x y U y e dαα α
π

+∞ −

−∞
= ∫ ,               (14) 

For the field analysis, we represent integral (14) 
through the series of the residues; for this purpose we 
deform the integration path into the upper/lower 
complex half-planes. As a result, the scattered field for 
each of the regions is written as follows: 
I. 0,x d y d> − < < : 

( ) ( ) ( )cos
,

2
j jh M i

u x y
d

β γ+
= ×  

( ) ( )
( )

11 1
1

0 1 1

1 cos
2

qq x
q q

q q q j

qlM i e
d

γπε γ

γ γ γ

+ −
+∞

=

 −  
 × ×

+
∑  
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( )cos ,
2

q y d
d

π −
×   

 
                         (15) 

where 1/ 2,qε =  when 0q =  and 1,qε =  when 1q ≥ ; 

II. 0,x d y h< − < < : 

 
( ) ( )

( ) ( )

( ) ( )
( ) ( )

( ) ( )2

2
1

21 2 2 2

cos
, ,

1 2 1 1/ 2
cos ;

2

q

j jinc
z

q x

q q q j q

h M i
u x y u x y

l

q e q y d
lM i

γ

β γ

π π

γ γ γ γ

+

∞

= +

= − + ×

 − − − +
×   −  
∑

(16) 

III. 0,x h y d< < < : 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )3

2
2

11 3 3 3

cos
, ,

1 2 1 1/ 2
cos .

2

q

j jinc
z

q x

q q q j q

h M i
u x y u x y

l

q e q y d
lM i

γ

β γ

π π

γ γ γ γ

+

∞

= +

= − + ×

 − − − +
×   −  
∑

(17) 

V. NUMERICAL ANALYSIS 
Numerical calculations of the total displacement 

field are represented for the layer that is shown in Fig. 1 
for two different positions of the defect: / 2h d=  and 

0h = . 
The defect is irradiated by a normal SH-wave (1) 

with number 0j =  of the unit amplitude. The 
dimensionless thickness of the plate is equal to 2kd . 

Case 1: / 2h d= . Under such condition, all the 
modes are evanescent in the region 0,x h y d< < < , if 
0 2 2kd π< < . In the region 0,x d y h< − < <  all the 
modes are evanescent, if 0 2 2 / 3kd π< < . In this region 
the first propagating mode appears, if 2 / 3 2 2kdπ π< < . 

Case 2: 0h = . In this case, the inclusion is located 
in the middle of the layer. In the domain 0 2kd π< <  all 
modes are evanescent; the first propagating mode is 
formed, if 2 2kdπ π< < . 

In Fig. 2 and Fig. 3 the dependences of the total 
displacement field ( )/(2 ),tot totu u x d y d= = ±  are 

shown on the layer surface ( )P y d= ± : the defect 

( )/ 2h dΓ =  (see Fig. 2) and ( )0hΓ =  (see Fig. 3). 
Here, taking into account the exponential nature of 

the damping of the summands (15)–(17), no more than 
five terms were used for the calculations. 

From the Fig. 2(а) we observe, that in the region 
0x <  the total field decays to zero on the layer surfaces 

y d= ± . The speed of the decaying on the surface y d=  
is higher, than on the surface y d= − . This happens 
because the waveguide area above the inclusion is 
narrower than the one below. If 0x > , the dependence 

totu  on the dimensionless parameter /(2 )x d  is 

oscillatory in its nature. The module of the complex 

amplitude of the oscillation on the layer surfaces for 
y d= −  and for y d=  is different, if /(2 ) 1x d < ; and 

this amplitude is twice as large as the amplitude of the 
primary normal mode ( ),inc

zu x y . That is, the oscillations 
in the incident and reflected waves occur in a phase. 
With the increase of thickness up to 2 4.5kd =  (see  
Fig. 2(b), we see that in the region 0x < , y d=  the 

total field totu  saves an exponentially decreasing 

behavior. Here, in the region above the inclusion, all the 
modes are evanescent. In the region below the inclusion, 
one propagating mode is formed. On the surface 0x < , 
y d= −  the behavior of totu  decreases exponentially to 

the value 0.25. This corresponds to the amplitude of the 
scattered mode. Oscillatory behavior of totu  is different 

for the upper and the lower surfaces, if 0x > . 
 

 
 

 

Fig. 2. The dependence of the total displacement field | |totu  
on the normalized coordinate / 2x d with / 2h d= ;  

a – 2 1.5kd = ;  b – 2 4.5kd =  

When the defect approaches the middle of the layer 
(see Fig. 3), the regions above and below the inclusion 
are equal in width. Obviously, for reasons of symmetry, 
the behavior on the sides y d= ±  must be the same, as it 
is evidenced by overlapping of the curves in this figure. 

a 
 

b 
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Fig. 3. The dependence of the total displacement field | |totu  
on the normalized coordinate / 2x d  with 0h = ;  

a – 2 1.5kd = ;  b – 2 4.5kd =  

For 2 1.5kd =  (see Fig. 3(а), all the waves are 
evanescent in the region 0x <  and only the reflected 
waves exist in the region 0x > . The overlapping of the 
reflected and the incident waves leads to the increase of 
the resulting amplitude twice as the amplitude of the 
incident wave. With the increase of the dimensionless 
frequency (see Fig. 3(b), 2 4.5kd = ), one propagating 
mode with the amplitude 1.75totu ≈  exits, if 0x < . In 

the region 0x >  the value of the amplitude has an 
oscillatory dependence within 1 0.2totu ≈ ± . 

VI. CONCLUSION 
Using the Wiener-Hopf technique, we obtained the 

exact analytical solution of the problem of the diffraction of 
normal SH-wave on a semi-infinite inclusion, which is 
located in an elastic plane layer. The influence of the 
inclusion depth on the distribution of the displacement field,    
depending on the thickness of the layer,  was investigated. It 
was found that the thickness of the layer and the frequencies 
of its probing form intense oscillations of the elastic field on 
the layer surfaces. The place, where the oscillation started, is 
an indicator of the defect which can extend to the area where  

oscillations are absent. The change of the frequency 
parameter allowed to estimate the depth of the defect. 
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