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Purpose. We examine the change in the Earth’s second degree zonal harmonic coefficient derived from
UTCSR SRL time series of Cy,(t) given () for the period from 1976 to 2017 as monthly solutions of the zonal
coefficient C,, and (b) for the period from 1992 to 2017 as weekly solutions of the zonal coefficient Ay,
obtained via the eigenvalue-eigenvector problem and related to the principal axes system. The mean difference
between the coefficients C,, or Ay, given in various systems consists of the value »10"*® which is smaller
than time variations in the coefficients C,, or A, . These time series of C,, were modeled by polynomias
different degrees simultaneoudly with Fourier series with seasonal signals (for annua, semiannual, and quarter-
year periods). Final representation was chosen at the epoch J2000 by means of the polynomial of second degree.
Then the models for the time-dependent astronomical dynamical dlipticity Hy and the precession constant p,
with respect to the common value p, =50.2879225@/ yr were constructed using the model for the zonal

coefficient 520 for the time-interval of about 25 yr. Asthe third step these time series of 520 (t) wereapplied to
determine a basic trend and periodic variations of the time-dependent Earth’s polar flattening from 1992 to 2017.
A variation of the global dynamica and geometrical figure of the Earth was investigated and some important
quantitative results were found: the polar flattening f, isincreasing within the considered 25 year time-interval.
Therefore, this study aimsto derive the variation of the global geometrical figure of the Earth, represented by the
second-degree coefficients of time-series and the astronomical dynamical dlipticity H . As aresult, a specia

attention was given to the study of temporally varying components including seasonal variations of some
fundamental parameters of the Earth.

Keywords. SLR, change in the zonal harmonic coefficient C,,, Earth’s polar flattening, dynamical dlipticity.

I ntroduction

Firg consistent estimate of temporal changein the
zonal harmonic coefficient Cyy(t) = - J,(t)/~/5 of the

Earth’s gravitational potential was obtained by Y oder
(1983) in the form of the so-called linear model for

Cyo(t) =Chy +DCyy = Cp + Cy(t - t) , where Cyy is
the time independent part given at epoch t, and ézo

is the secular variation of C,,. Now we have a new

development with the launch in 2002 yr of the
misson GRACE (satdlite-satellite observations)
together with the traditional Satellite Laser Ranging
(SLR) LAGEOS1 and LAGEOS2 (Laser
Geodynamic Satdlite) which were launched in 1976
yr and 1992 yr respectively (where LAGEOS-1 can
be considered as a main tool of the NASA Crusta
Dynamics Program). In general, basic estimates of
different solutions of C,,(t), S,,(t) are obtained
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from the analyss of SLR observations of five
geodetic satellites: LAGEOS-1 and 2, Starlette, Stella,
and Ajisai [Ries, 2017]. It should be noted that the
accuracy of satelite observations became more
precise after the launch of the Italian LARES mission
designed to test General Relativity in the weak gravity
field of the Earth, including geodetic data.

In the last decades these satellites together with
astronomical data allow to determine with higher
accuracy the Earth’s fundamental constants by means
of different approaches [Marchenko & Schwintzer,
2003; Groten, 2004; Petit & Luzum, 2010; Chen &
Shen 2010; Chen et a., 2015; Cheng et a, 2011;
Cheng, et al, 2013; etc]. Generadly speaking due to
ungtable determination of the precession constant
(before 2002) or the dynamical dlipticity Hy, the

consistency of fundamental parameters have led in
particular to the additional adjustment a epoch of
different sets of the second degree gravitationa
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harmonic coefficients C,,,, S,, of the Earth’'s
gravity models and various values of the dynamica
dlipticity Hp [Marchenko & Schwintzer, 2003].
Most recent gravity field models give more accurate
resolution of the time-dependent coefficients C,, (1),

S,m(t) from SRL and GRACE observations.

In addition, latest determinations of the dynamical
elipticity Hp derived from the precession constant
through VLBI are based on the non-rigid Earth's
rotation theory [Mathews et a, 2002; Bourda &
Capitaine, 2003; Capitaine et a. 2003; Fukushima,
2003; Liu & Capitaine, 2017] which was adopted by
IAU resolutions at the epoch J2000 (Capitaine et al,
2009). It has to be pointed out that new value of Hy
dready include the time-dependence of secular
variation of C,, [Marchenko & Schwintzer, 2003;
Bourda & Capitaine, 2004; Capitaine et al, 2009] in
the frame of linear model.

The consistency of the accurate modeling of the
time evolution of the gravity field model solutionsis
of great importance for the interpretation of physically
significant temporal gravity fied variations. For
example according to Cheng, et a. (2013) the above
mentioned linear model should be replaced by a more
precise one with the inclusion of a quadratic term at
least. Therefore, this study aims to derive (@) the
model for the zona harmonic coefficient; (b) the

tan X, =tanq, cosl ,,

These relationships give exact expressions for the

polar coordinates q,, |, considered at the unit

sphere. Thus, to avoid uncertainty in the deviatoric
part of inertiatensor in the case of different sequences
of finite rotations we will use on the contrary to usual
approach a commutative rotation about the nodes line
of XYZ and Xd& &¢systems, with the following

CnO = é. (' 1)m(zhm cosml

m=0

where B, (cosqp) are the A. Schmidt's quasi-

(2- dyo) =™ associated

normalized by the factor (!
Legendre functions of the first kind (d,, is the

Kronecker delta). For the order m=0 these functions
coincide with B, (cosgp) . When theorder m>0 we

have the following simple rdationship:
P (cosfp) =~/2n+1P (cosh) .
If we apply the transformation of the coefficients

9= 6C0:Co1:51:Ci Sulf , defined in the Earth's

appropriate model of the astronomical dynamica
dlipticity Hy for the evolution with time and further
solution of eigenvalue-eigenvector problem; (c) the
time-evolving mode of the Earth’s polar flattening.

Hence the following three sections will focus on
the modeing the time-dependent zona harmonic
Cyot) =-J,(t)//5,  astronomica
dynamical dlipticity Hy(t) as a function of time t
(fixed at the epoch J2000), and the time-dependent
polar flattening of the Earth.

coefficient

Modelling the time-dependence zonal
harmonic coefficient Cyg
Hereafter the coefficient C,y » Ay, will be
considered as 520 related to the principa axes

(A,B,C) system of the values of the principal
moments of inertia (A, B, C). In the first step we will
verify a differences between C,, and A,, using the
spherical Lambek formulas [Marchenko, 2009]. Let
us express the vector g=gC,;Cy1;S1:Co0i S E|T of
the harmonic coefficients, adopted in the frame XY Z,
via the vector gz¢:g@0;@1;§21;522;§22§ givenin
the coordinate system Xd&¥@¢ with a small angle

between the axes Z and Z', expressed by the mean
pole coordinates:

tanyp =- tang,sinl . 1)

transformation of the coordinate vector r¢=Qx from
XYZ to X¢Y &Z¢frame, where according to Marchenko
(2009) Q=Rs(-1p)R,(Ap)R5(I p) is the rotation
matrix dependent on the polar coordinates (1) of the
axis Z¢ in the system XYZ. The corresponding
relationship between the degree n zona harmonic
coefficients C,, and Ay, reads:

p+Bynsinml o )58, (cosqp) , )

fixed geocentric coordinate system XY Z, to the vector
8=6A0 0 0 Ay, OE|T of the two nonzero
harmonic coefficients A,,, A, in the coordinae
system of the Earth’s principa axes of inertia A, B,
C [Marchenko, 1998; Marchenko, & Schwintzer,
2003; Marchenko, 2009] we can determine A, at

epoch and the differences between C,, and Ay . In

this case such differences can be based on weekly
solutions UTCSR of the time-dependent coefficients

Con(), S,,(t) from 1992 to 2017. After
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transforming C,,(t), S,,(t) to the coefficients
Ayn(t) , A,(t) we got average difference between
C, and Ay, »10'% which is smaller than a mean
difference for UTCSR monthly solution via formula
(2). A value of difference » 10" ™ correspondstothe

o , ..
Roo = A+ ot 1) + B (t- 107 + Byt 1)+ & A cosG(t- 1) {F )2,
i=1 el

where A" arethemean vdueof A,, a somereference

epoch ty; ﬁzo, ﬁzo, %ZO are the parameters of secular
vaiaions in Ay, which are vdid in the vidnity of t;
(A ,f,) arethecomponents of an oscillaion for the annu-
al, ssmiannud, and quarter-year P periodsrespectively.
Fig. 1 (1976 to 2017) and Fig. 2 (1996 to 2017)
illugrate time series of A,;, UTCSR monthly and
weekly solutions respectivel y which were modeled by

magnitude of non-zero invariant |, » 10" according
to the typical Lambek’s formulas (Lambek, 1971).

Here one dsarts from the standard mode
considered in [Cheng, et al, 2011; Cheng et al, 2013]
representing the Ay, change:

3

2

polynomials up to the 3rd degree simultaneously
with Fourier series using the adopted usual
seasonal signals for the annual, semiannual, and
quarter-year periods. It has to be noted that the
second solution is based on the corresponding fully
normalized coefficients C,,, S,, which are

selected from the weekly or second UTCSR gravity
field model. Final models were based only on the
polynomial of second degree (blue line) and annual
period (green line) at the epoch J2000.

Table 1

Coefficients for the polynomial representation of the long-term trend for Ay, (blueline)
in theform Ay = Ay + Ky (t- t) + &0 (t- t,)? at epoch J2000 (see formula (3)

Version Al ﬁzo ﬁzo
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Fig. 1. Timeseries of C,, (UTCSR monthly solutions — red line) modeled by polynomials up to the

3rd degree simultaneously with the Fourier series using seasonal signals for annual, semiannual, and

quarter-year periods. Final representation includes only the polynomial of second degree (blue line)
and annual period (green line) at the epoch J2000
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In addition a second model is demonstrated in
Fig. 2 and Table 1 because the coefficient Ay, was

obtained via rigorous solution of the eigenvalue-
eigenvector problem [Marchenko, & Schwintzer,

2003] and the LAGEOS-2 satelite SLR
observations were provided additionally for the
time-interval from 1992 to 2017 as LAGEOS-1 was
launched at the end of 1976.
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Fig. 2. Timeseriesof A,, (UTCSR weekly solutions — red line) modeled by polynomials up to the 3rd
degree simultaneously with Fourier series using seasonal signals for the annual, semiannual, and
quarter-year periods. Final representation includes only the polynomial of second degree (blue line)
and annual period (green line) at the epoch J2000

Modelling the Earth’ s time-dependence
dynamical ellipticity
If the vector g of C,,, and S, is given, the

solution of the eigenvalue problem Marchenko and
Schwintzer (2003) provides the computation of the

corresponding A, A,, in the principal axes system
via the eigenvalues of the quadratic form the
corresponding degree 2 potential. By involving the
astronomical dynamical dlipticity H, we can
determine the normalized by the factor 1/Ma?
principal moments of inertia A, B, and C:

Hp =(2C- A- B)/2C U C=-BAy,/Hy, (49)
A=+/5Ay(1- 1/ Hp) - /15A,, 13, (4b)
B=+5A,(1- 1/Hp) +15A,,/3. (4c)

Then the orientation of the principal axesin the
XYZ frame is based on the exact solution of
eigenvector problem, using C,,,, S, only without
the dynamical ellipticity Hy . Table 2 summarizes

some estimates of Hp and the precession constant
pa- The first Hp was discussed in Williams
(1994) as obtained for the nutation theory, taking

into account secular variation ﬁzo. The AU Hp
was adopted in the MHB2000 non-rigid Earth’s
nutation theory [Mathews, et. al., 2002]. The values
of Hp given in Table 2 have small differences
between the adopted H according to

IAU2000/2006 Precession-Nutation model (see,
Petit, Luzum, 2010, IERS Conventions 2010)
contrary to previous determinations [Dehant, et al.,
1998]. To transform the associated quantities from
different p, to the common value

P, = 50.2879225¢ yr the relationship

dHp =6.494740 'd p, of Souchay and Kinoshita
(1996) was applied to compute the values Hy
given in bracketsin Table 2. Thesenew H, havea
much better accordance to the IAU 2000/2006 Hy
than determinations before 2002.
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Table 2

Deter minations of the dynamical ellipticity Hy . Transformed H -values

to the common M HB2000 precession constant p, =50.28792252/yr are given in brackets

Precessi stant 2/yr],
Reference ecession constant p, [2/yr] Hy
epoch = J2000
Williams, 1994 50.287700 0.0032737634
(50.2879225) (0.0032737779)
Mathews et al., 2002 (MHB2000) 50.2879225 0.0032737949
Capitane et a., 2003 50.28796195 0.00327379448
(IERS Conventions 2010) (50.2879225) (0.00327379450)
Fukushima, 2003 50.287955 0.0032737804
(50.2879225) (0.0032737783)

With Hp, Ay, A, the computation of A, B,
C, and the trace
Tr(l)= A+B+C =+5A,(2- 3/Hp)=3l,, of the
Earth’s inertia tensor according to Eg. (4) are

straightforward. By this we get a direct dependence of
A, B, C, Tr(l), and the mean moment I, of
inertia on the adopted gravity field model and on the
treatment of the permanent tide in the C,y » Ay
harmonic coefficient. It is assumed that the Hy

values are related to the zero-frequency tide system
[Groten, 2000].

Let us derive the variations of the dynamica
flatening Hp from Ay, A, timeseries and
| AU2000/2006 dynamical dlipticity
Hp =0.0032737945 fixed at the epoch J2000. If we
consider Hy, as a constant parameter, the expression
(4@) isvalid in the following form:

Hp =- % . (5)

3.2737955 +

3.2737954
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3.2737952

3.2737951
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3.2737949 -
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3.2737946 7

3.2737945

Long-term change in the dynamical ellipticity Hd*10"3

3.2737944

3.2737943

&
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T
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Year

Fig. 3. Change in the dynamical dlipticity H, modeled
by polynomials of second degree (red line) with t, = J2000
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If the celestial body is elastic and gravity field is
variable we need to add small variations of all
parameters in formula (5). From Eq. (5), teking
into account, that the non-tidd variation dc in
the dimensionless moment of inertia C isafunction

Hp(t) =

BA) _ VBALM) 1

of Ch(t), and the condition Tr(l)=constant
[Rochester, & Smylie, 1974] “as zona forces do not
change the revolution shape of the body” [Melchior,
1978], one gets for the secular changein Hy :

C()

where dc isthe variable part of C.

Hp (1) = Hp|,_,, +dHp =Hp|,

where dA,(t) is nothing ese but the change of the

transformed to the principa axes system of the time-
dependent zonal harmonic coefficient.

Hp(t) = HD|t=t0

where ﬁzo and ﬁzo are taken from the Table 1
(version Il) and shown in Fig. 3.
If Hy depends on the timet according to (8)

with
respect to the common value p, =50.2879225W yr

is aso posshle by means of
relationship:

the change of the precession constant p,

the following

C 1+d%’

C(t)=C+dc. (6)

This formula was used for the Taylor expansion
[Bourda, & Capitaine, 2004] written as:

i V/BdAy ()
=tg C !
The final solution is given at the epoch t; = 2000

(")

based on the following relationship:

- ?{'Kzo(t' t0)"’ﬁzo(t' t0)2) ) 8
H -H

N o(t) D|t=t0 | ©

pa(t) = pA|t=t0 6.494710 7

based on the expression dHy =6.4947X0 'd p, of
Souchay and Kinoshita (1996) and applied here to
solve the inverse problem. After computations based
on the moddl (8) we get the following similar to the
Fig. 3 dependence of the long-term change in the
precession constant shown in Fig. 4.
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Fig. 4. Change in the precession constant p, with respect to the common value p, =50.2879225¢ yr
modeled by means of the formula (9) (blue line) with respect to the epoch t, = J2000 and the
corresponding model for H
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Modelling the Earth’ s time-dependence polar
flattening

With the obtained model for Hy the solution

of eigenvalue-eigenvector problem and compu-
tation of polar flattening and other constants

in the system of principa axes of inertia
is straightforward. It should be noted that the
secular change in the 2nd-degree zonal coefficient
XZO has opposite sign in | and Il versions of the
model.
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UTCSR weekly solution for the inverse polar flattening

H.”
’Mm

|

il \J’ \ M’ﬂ\
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T
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T
2005 2015

Year

2010

Fig. 5. Time series of inverse polar flattening 1/ f, obtained from A,, for each current epoch (UTCSR

weekly solutions — red line) modeled by polynomials simultaneously with Fourier series using
seasonal signals. Final model includes only the polynomial of second degree (blue line) and annual
period (green line) at the epoch J2000

The second model is close to the simple linear

model for XZO because ﬁzo is two orders smaller.

The time variable coefficients in these solutions are
referred to one epoch J2000. Modelling the Earth’s
time-dependence polar flattening was obtained
based on the solution 1l. Fig.4 illustrates the
increasing of the polar flattening f, within the
considered time-interval because the inverse
flattening 1/ f, (as denominator) is decreasing.
This fact is in contradiction to our previous views

on the change in the Earth’s polar flattening
[Yoder, et a., 1983].

Conclusions

In summary we can conclude. The time-
dependent change of the Earth’s zona harmonic
coefficient was derived from the UTCSR SRL time

series of C,y(t) for the period from 1976 to 2017 (as
monthly solutions in the first step) and for the period

from 1992 to 2017 (as weekly solutionsfor C,,,,, S,
in the second step) and the obtained weekly zonal
coefficients A,, via the rigorous eigenvalue
eigenvector problem. The difference between the
coefficients C,, or A, given in various system
consists of the value »10™*® which is smaller then
time variations in the coefficients C,, or Ay .

These time series of C,, or A,, were modeled

by polynomials of different degrees simultaneously
with the Fourier series by means of standard seasonal
signals (with annual, semiannual, and quarter-year
periods). Fina approximation was chosen at the
epoch J2000 by means of the polynomials of second
degree only. Then the mode for the time-dependent
astronomical dynamical dlipticity Hp and the

precession constant p, with respect to the common
value p, =50.2879225¢7 yr were constructed using
the model for the zona coefficient Ay, for the 25

11
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year time-interval. This model allows determinations
of the Earth’'s timedependent fundamenta
parameters, including polar flattening. Therefore these

time series of 13\20(':) were applied to determine a

basic trend and annua periodic variaions in the
Earth’s polar flattening from 1992 to 2017. The
Earth’s polar flattening f, is increasing within this

time-interval although Y oder (1983) and other authors
from SRL LAGEOS-1 observations have obtained the
decreasing of f,. Fig.1 demonstrates this fact where

the long-term change of harmonic coefficient C,,

before approximate epoch J2000 has a variation ézo
with sign (+) and after this epoch we get a variation
&, with sign (-).
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Kagenpa Bumoi reonesii Ta acrponomii, Hauionansnuii yniBepcutet “JIpBiBcbka nomitexnika”, Byn. C. bannepu 12,
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3MIHA 30HAJIBHOI'O TAPMOHIYHOI'O KOE®ILIEHTA Cy, [TIOJIIPHOI'O
TA IMHAMIYHOI'O CTUCHEHHS 3EMJII 3A JAHUMMU CYITYTHUKOBOI'O JIABEPHOI'O
JIAITA3OHY
JocnipkeHo 3MiHy KoedillieHTa 30HaJbHOI TapMOHIKM Jpyroro crymneHs 3emii, orpumanoro 3 UTCSR
SRL yacoBux psaiB 620 (t) mamux (a) mis inrepBany 3 1976 p. mo 2017 p. sk MicsuHi PillleHHS 30HATBHOTO

koedimienra C,, ta (b) mis intepBany 3 1992 p. no 2017 p. K TIKHEBI pillleHHS 30HANBHOIO KoedillieHTa
Ayy OTPUMAHOTO 3a JOMOMOTION 3ajadi BIACHHX 3HAYEHb — BIACHUX BEKTOPIB i MOB'A3aHOTO 3 CHCTEMOIO
ronoBHuX oceit iHepii. Cepenns pizHuL Mik Koedimientamu C,y Ta A,y B PI3HHX CHUCTEMAX OILIHIOETHCS

»10 % | 10 € MenmuM, Hix yacosi apianii koedimientie Cyy Ta Ay . Lli wacosi psamn C,y MoxemoBamucs
MONIHOMAMH pi3HUX CTymeHiB cymicHo 3 psmamu Dyp'e (3 piuHMMH, MIBPIYHHMH Ta KBapTaIbHUMH
nepiogamu). OctatouHy Mozaenb obpano Ha emoxy J2000 3a momoMororo mojiHoMa Apyroro crymens. Ha

HACTYITHOMY KpOIli, BAKOPHCTOBYIOUH MOJENb AJIs 30HANBHOro KoedilieHTa Ay, 3 iHTepBaIOM Yacy ONU3bKO
25 pokiB, OOYIOBAaHO 3aJ€XKHI BiJf 4acy MOJENi aCTPOHOMIYHOI'0 JUHAMIYHOIO CTUCHEHHS Hp Ta mocTiiiHoi

npenecii P, 3 dikcamiero 3HaueHHs: P, = 50.2879225¢ yr 1AU 2000 na enoxy J2000. Ha tpersomy kpoui

qacoBi paau Ay (t) 3acTOCOBAHO T BH3HAYEHHS OCHOBHOTO TPEHIY Ta TeEpiONWYHUX Bapialiil 3a1eKHOr0
Bil yacy moiisipHoro ctucHeHHs 3emii 3 1992 poky mo 2017 poky. JociikeHo Bapiallifo TiI100aJbHOT
JIUHAMIYHOI Ta reoMeTpu4yHOi ¢iryp 3emii Ta 3HAWHAEHO JEsKi BaXJIMBI KUIbKICHI pe3yibTaTd. MOJISpHE
crucHenHs f, 30inbuIyeThCA B MEKax pO3IVISHYTOrO iHTEPBaJly 4acy, KN CTAHOBUTH OIM3bKO 25 POKIB, 110
CyNepedyuTh MONEepeqHIM TOoCTiKeHH M. Tomy MeToro 1iei poOOTHM € BH3HA4YeHHs Bapiamiid rio0anbHOT
reoMeTpuyHoi Girypu 3emii, MpeaCcTaBIeHUX Yepe3 TapMOHIYHI KOe(iI[iEHTH IPYTroro CTYIEHs YaCOBHX PSIiB
1 aCTpOHOMIYHOIO JMHAMIYHOrO CTHUCHeHHA Hp . fIk pe3ynprat, 0coOnMBY yBary NpHIiJIEHO BHUBYEHHIO

3aJIeKHUX BiJ] 4acy KOMIIOHEHTIB, BKJIIOYAIOYM CE30HHI Bapiamii HeskuX (QyHJAaMEHTalIbHHX MapaMeTpiB
3emui.

Kniouosi cnosa: SLR, 3Mina xoedinieHTa 30HaIHLHOI TAPMOHIKH, MTOJSPHE CTUCHEHHST 3eMJli, aCTPOHOMIYHE
JTMHAMIYHE CTHCHEHHSI

A. H. MAPYEHKO, A. H. JIONYIIIAHCKUI

Kadeapa reomesun wu  actpoHoMuM, HarMoHanbHBIH  yHHBEpCHUTET <«JIBBOBCKAs  IMOJUTEXHHKA,
ya. C. baugepsl, 12, JIbBoB, Ykpauna, 79013, si1. moura: march@pancha.lviv.ua

N3MEHEHUE 30HAJIBHOI'O TAPMOHMYHOI'O KOOODUILIMEHTA C20,
[HOJIAPHOI'O U AMHAMMNYECKOI'O CXXATUA 3EMIIN 110 JAHHBIM CITYTHUKOBOI'O
JIABEPHOI'O IVAITIA3OHA

UccnenoBano usmeHeHne Kod((UIMEHTa 30HAIBHON TapMOHUMKHM 3€MJIM BTOPOW CTEINECHH Czo(t) ,
nonydernoro u3 UTCSR SLR BpeMeHHBIX psimoB maHHBIX (&) mis uHTepBana ¢ 1976 r. mo 2017 r. kak
MECSIYHBIE pelleHUs Uil 30HANBHOro KoddduuueHra 620 u (b) mia uaTepBana ¢ 1992 r. mo 2017 r. kak
HeJleNbHBIE PEMIeHHs 30HATBHOT0 Koddduimenta Ay, TIONYYEHHOTO C TIOMOIIBIO 3aa9l HA COOCTBEHHBIE
3HAYECHUs! — OOCTBEHHBIE BEKTOPHI U CBS3aHHOTO C CHUCTEMOW TJIaBHBIX oceil mHepumu. CpemHss pa3zHula

Mexay kodbdunuentamu C,; n A,y B pasHBIX CHCTeMaX OlleHHMBaeTcs Kak » 107 B 4ro mensure, uem

BPCMCHHBIC Bapualliu KO3 NIUCHTOB C u . OTU BpEeMEHHBIE S11bI C MOACIUPOBAIUCH
20 0 20

MOJMMHOMAMH Pa3IMYHBIX CTEMEHeH COBMECTHO C psAAaMH Ce30HHBIX CHrHanoB @ypbe (C TOIOBBIM,
MOJYTOJIOBBIM U KBapTalbHBIM mepuogam). OkoHuaTenbHasi Momelb BbiOpaHa Ha 3moxy J2000 ¢ moMoribio

IIOJIMHOMA BTOpOﬁ crenenu. Ha CIICAYIOIEM 3TaIl€, UCIIOJIb3YyA MOJCIIb AJIA 30HAJIBHOT'O KO3(1)(1)I/IHI/ICHTa A20 C

HWHTECPBAJIOM BPEMCHH OKOJIO 25 JICT, MOCTPOCHBI 3aBUCANIMEC OT BPEMCHHU MOIACIU I aCTPOHOMHYCCKOI'O
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JIMHAMHYECKOro cxaths Hp U mocTosHHOM mpeneccun P, ¢ Qukcanueil sHauenus P, =50.2879225@ yr

IAU 2000 B smoxy J2000. Ha Tperbem sTame BpeMeHHBIE DAAbl Ay (t) HpUMeHeHbl Wi OIpeneneHHs
OCHOBHOT'O TPEH/Ia U TICPHOJUYCCKHUX BapHAIMA 3aBUCHMOT0 OT BPEMEHH MONAPHOTO cxkatus 3emuu ¢ 1992 r.
no 2017 r. HccnemoBaHa Bapuanus TJI00aJbHONH JUHAMUYECKOH W TeOMETPUYECKOd (Gurypsl 3emin u

HaﬁI[CHLI HEKOTOPBIC BAXXHBIC KOJIMYECTBCHHBLIC PE3YyIbTAThl. MOJSIPHOE CKATHUC fp YBCIINYMUBACTCA B

Ipenenax paccMaTpUBAEMOIO HHTEpBaja BPEMEHH, COCTABIAIOLIEIO OKOIO 25 JIeT HaxXxoguTcs B
MIPOTUBOPEUUHN C MPEeAbIAYIIMMH HcciaefoBaHUAMU. Ilo3ToMy, IeNbl0 JaHHOTO HCCIEAOBAaHUS SBIAETCA
orpeieNieHue Bapualuii ri1o0albHON reoMeTprUuecKor (GUTrypsl 3eMilH, NPEACTABICHHBIX Yepe3 rapMOHHYHbIE
K03(HULIUEHTH BTOPOIl CTENIEHN BPEMEHHBIX PSAA0B U aCTPOHOMHYECKOro JUHaMudeckoro cxatua Hp . Kax
pe3yibTar, ocoboe BHUMaHHE Y/AEJICHO U3Yy4EHHIO 3aBUCUMBIX OT BPEMEHU KOMIIOHEHTOB, BKIIIOYasi CE30HHbIE
BapHallMi HEKOTOPHIX (PyHAaMEHTaIbHBIX TAPaMETPOB 3EMIIH.

Kniouesvie cnosa: SLR, msmenenue xod¢pduimenta 30HaIBLHONH TapMOHHKH, IOJSIPHOE CKaTHE 3eMIIH,
ACTPOHOMHYECKOE JTUHAMUYECKOE CIKATHE..
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