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Мета. Дослідити методику побудови тривимірної функції розподілу мас надр усередині Землі та її 
похідних, узгоджену з параметрами гравітаційного поля планети до четвертого порядку включно. За 
побудованою функцією розподілу мас здійснити інтерпретацію особливостей внутрішньої будови 
еліпсоїдальної планети. Методика. На основі створеного початкового наближення функції, яке включає 
референцну модель густини, вибудовуються подальші уточнення. Використовуючи стоксові постійні до 
другого порядку включно, подаємо наступне наближення, яке надалі приймаємо як нульове. При цьому 
використання стоксових постійних до четвертого порядку включно приводить до розв’язку систем 
рівнянь. Встановлено, що долучення однієї тотожності приводить до однозначності розв’язку. Винятком 
є одна система зі стоксовими постійними 40 42 44, , .c c c  Зауважимо, що процес обчислень є 
контрольованим, оскільки степеневі моменти похідних густини зводяться до величин, що враховують 
значення густини на поверхні еліпсоїда. Результати. На відміну від моделі другого порядку, яка описує 
глобальні неоднорідності, отримана функція розподілу дає детальнішу картину розміщення аномалій 
густини (відхилення тривимірної функції від усередненої по сфері – “ізоденс”). Аналіз карт на різних 
глибинах 2891 км (ядро-мантія), 5150 км (внутрішнє-зовнішнє ядро) дає змогу зробити попередні 
висновки про глобальний перерозподіл мас за рахунок обертової складової сили тяжіння по всьому 
радіусу, а також за рахунок горизонтальних компонент градієнта густини. Цей факт є особливо помітним 
для екваторіальних областей. Навпаки, в полярних частинах Землі спостерігається мінімум такого 
відхилення, що також має своє пояснення: величина сили обертання зменшується при зміщенні до 
полюса. Побудована за допомогою запропонованого методу функція розподілу мас детальніше описує 
розподіл мас. Особливий інтерес становлять картосхеми компонент градієнта функції аномалій густини, 
а саме компонента, що співпадає з віссю Oz  – для верхньої частини оболонки вона від’ємна, для 
нижньої – додатна. Це означає, що вектор градієнта напрямлений у сторону центра мас. Характер 
значень для двох інших компонент різний і за знаком, і за величиною та залежить від точки розміщення. 
Наукова новизна. На відміну від традиційного підходу зміни для похідних густини однієї змінної 
(глибини), отриманих із рівняння Адамса-Вільямса, в цій роботі зроблено спробу одержати похідні за 
декартовими координатами. Використання в описаному методі параметрів гравітаційного поля до 
четвертого  порядку включно збільшує порядок апроксимації функції розподілу мас трьох змінних з двох 
до шести, а її похідних – до п’яти. При цьому, на відміну від традиційної методики, визначальним тут є 
побудова похідних, з яких відтворюється функція розподілу мас та використання геофізичної інформації, 
що акумульована в реферецній моделі PREM. Практична значущість. Отримана функція розподілу мас 
Землі може бути використана як наступне наближення при використанні стоксових постійних вищих 
порядків у поданому алгоритмі. Її застосування дає можливість інтерпретувати глобальні аномалії 
гравітаційного поля та вивчати глибинні геодинамічні процеси всередині Землі. 

Ключові слова: потенціал, гармонічна функція, модель розподілу мас, стоксові постійні, градієнт 
густини.  

 
Вступ 

Будь-які кроки в напрямку вивчення 
тривимірної структури внутрішньої будови Землі 
та небесних тіл роблять важливий внесок у наше 
уявлення про них. Адже саме переміщення мас 
усередині  планети  значною  мірою  дає ключ до 

розуміння динаміки руху тектонічних плит і,  
як наслідок цього факту, появу глобальних 
природних катаклізмів. Неоднорідності мас, 
розміщених в областях, що перебувають  
у зонах близьких до земного ядра, певною мірою 
прояснює формування магнітного поля Землі. 
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На відміну від створення одновимірних функ-
цій розподілу мас, тривимірний випадок прак-
тично почали розглядати лише в останні 
десятиліття. Наприклад, у відомій монографії 
[Буллен, 1978] розглянутий лише невеликий пара-
граф, присвячений цій проблематиці. Сьогодні 
розроблений метод сейсмічної томографії, який 
ґрунтується на даних спостережень сейсмічних 
хвиль та інформації про власні коливання Землі 
[Андерсон, 1984]. На його основі побудовані 
відхилення сейсмічних хвиль від радіального 
розподілу низці областей Землі [Liu, 2016; 
Мартышко, 2017], що дає можливість за відомими 
залежностями знайти відхилення від однови-
мірного розподілу неоднорідностей розподілу мас 
[Андерсон, 1984]. Додатковим засобом у такому 
напрямку може бути інформація про зовнішнє 
гравітаційне поле [Машимов, 1991], анізотроп-
ність якого великою мірою є наслідком 
відхилення від однорідності. Тому розробка 
методів із використанням параметрів гравіта-
ційного поля є важливою ланкою у дослідженні 
внутрішньої структури [Церклевич, 2012]. При 
цьому зауважимо, що практично всі методи 
побудови моделей густини використовують тільки 
стоксові постійні нульового та другого порядків 
(маса та полярний момент інерції) [Буллен, 1978]. 
Створення моделей із використанням стоксових 
постійних вище другого порядку можливе тільки 
наближено, з огляду на неоднозначність визна-
чення потенціалу (задача тіл нульового 
потенціалу) з використанням ітераційних методів. 
При цьому за початкове наближення береться, як 
правило, референцна модель густини, узгоджена зі 
стоксовими постійними до другого порядку 
включно [Мещеряков, 1986], а подальші уточ-
нення виконуються за умови мінімального 
відхилення від прийнятої моделі з врахуванням 
коефіцієнтів розкладу потенціалу до визначеного 
ступеня [Мещеряков, 1991]. У запропонованому 
дослідженні наведено спробу отримати набли-
ження за дещо інших умов, що приводить до 
методики побудови функцій похідних від густини 
(градієнта), а далі – дає змогу встановити вигляд 
вже її самої. Зведення степеневих моментів 
густини до контрольованих значень (величин, 
визначених на поверхні еліпсоїда) дає можливість 
аналізувати та вести контроль за обчисленнями. 
Побудовані за допомогою запропонованого 
методу градієнт та функція розподілу мас, з 
урахуванням параметрів гравітаційного поля 
третього та, частково, четвертого порядку, 
детальніше описують розподіл мас. При цьому, 
градієнт аномалій густини в точках 
еліпсоїдальних оболонок на розглянутих радіус-
векторах (глибинах) напрямлений до центра мас 

планети 
3

0 .
x
δ ∂

< ∂ 
 Отже, це дозволяє прогнозу-

вати перерозподіл мас усередині планети. Адже 
використання однакових даних в описаному 

методі збільшує порядок апроксимації з двох до 
чотирьох за рахунок можливості відновлення 
розподілу мас надр планети за її похідними. Тому, 
на відміну від моделі другого порядку, яка описує 
глобальні неоднорідності, отримана функція 
розподілу дає детальнішу картину розміщення 
аномалій густини (відхилення тривимірної функ-
ції від усередненої по сфері – “ізоденс”). Аналіз 
карт на різних глибинах (2891 км ядро-мантія, 
5150 км, внутрішнє-зовнішнє ядро) дає змогу 
зробити попередні висновки про глобальний 
перерозподіл мас за рахунок обертової складової 
сили тяжіння по всьому радіусу: її зменшення 
вздовж осі обертання та збільшення, віддаляючись 
від неї. Це особливо проявляється для еква-
торіальних областей. Навпаки, в полярних 
частинах Землі спостерігається мінімум такого 
відхилення, що також має своє пояснення 
(величина сили обертання зменшується при 
відході від екватора). 

Дослідження структури внутрішньої будови 
Землі та інших планет не втрачає актуальності на 
даний час [Мориц, 1994]. Дані про гравітаційне 
поле Землі є потужним джерелом при її вивченні, 
зокрема і внутрішньої структури. Це, своєю 
чергою, вимагає створення методів для їх 
використання. Відомо [Dzewonski, 1981], що при 
побудові сферично-симетричних розподілів мас 
Землі, використовуються маса та стоксова 
постійна другого порядку (полярний момент 
інерції). Інші коефіцієнти розкладу потенціалу за 
кульовими функціями описані в роботах 
[Martinenc, 1986; Щербаков, 1978; Мещеряков, 
1975, 1981]. Зокрема, в статті [Moritz, 1973], 
запропоновано зображати тривимірний розподіл 
гармонічною функцією, узгодженою з коефіці-
єнтами розкладу до визначеного порядку. У 
роботах [Мещеряков, 1975, 1981] запропоновано 
наближений метод побудови тривимірних 
моделей густини Землі, який враховує особливості 
внутрішньої структури та відповідає стоксовим 
постійним заданого порядку. Степінь досто-
вірності знайдених модельних розподілів не може 
бути оцінений. У зв’язку з цим виникає потреба в 
розробці методики, що дає можливість аналізу-
вати процес обчислень та об’єктивно оцінювати 
достовірність функцій густини. Спроба такої 
побудови була зроблена в роботах [Фис, 2008; 
Черняга, 2012], де задача зводиться до контрольо-
ваних величин (поверхневих інтегралів). Отримані 
таким чином модельні розподіли мас та відносні 
значення похідних тривимірних функцій уточ-
нюють їх поведінку.  

Мета 

Побудувати та дослідити методику створення 
тривимірної функції розподілу мас надр усередині 
Землі та її похідних, узгоджену з параметрами 
гравітаційного поля планети до четвертого 
порядку включно. За побудованою таким 
способом функцією розподілу мас здійснити 
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інтерпретацію особливостей внутрішньої будови 
еліпсоїдальної планети. 

Методика 

У статті [Fys, 2016] наведено загальні аспекти 
побудови тривимірних розподілів мас усередині 
кульових планет. Подальше узагальнення – це 
перехід до еліпсоїдальних фігур [Moritz, 1973], 
який не суттєво ускладнює алгоритм визначення 
функції розподілу густини мас. Тому 
розглядатимемо саме такий випадок. 

Нагадаємо коротко схему алгоритму такої 
побудови. За стоксовими постійними ,nkC  

,nkS ( ), 2n k ≤  динамічним стисненням H  та одні-
єю з найбільш репрезентативних моделей густини 

( )0δ ρ (наприклад, моделі PREM [Dzewonski, 
1981]) визначаємо тривимірну функцію розподілу 
мас усередині планетарного еліпсоїда 
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Степеневі моменти та коефіцієнти розкладу 
визначаються за формулами, взятими з монографії 
[Мещеряков, 1991]. 

На відміну від загальноприйнятої методики, 
будуємо альтернативну модель густини 4

aδ  та її 
похідних на основі алгоритму (описаний у [Fys, 
2016]) і цих же ж даних (стоксових постійних до 
другого порядку включно, динамічного стиснення 
та моделі PREM): 
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Порівняння числових результатів (різниці 
значень розподілу густини), поданих рис. 2–4 [Fys, 
2016], підтверджують доцільність продовження 
таких досліджень. Тому приступимо до побудови 
такого наближення, що узгоджується зі 
стоксовими постійними вже третього та, частково, 
четвертого порядків. Насамперед зауважимо, ця 
методика потребує знання моментів густини 
третього й четвертого порядків. Вони, на відміну 
від попереднього, не визначаються даними 
спостережень, у зв’язку з чим беремо їх наближені 
значення з побудованої моделі 4

aδ  [Fys, 2016]: 
Поверхневі степеневі моменти п’ятого та 

шостого порядку визначаємо з системи рівнянь, 
отриманими в роботі [Fys, 2016], яку в 
матричному вигляді можна представити так 

,i iC Aσ=   (1) 

де C – вектор-стовпець із коефіцієнтами  
* *, ,nk nk nk nk nk nkC c C S s S= − = −  

,nk nkc s  – дані спостережень та 

* *4 41 1,
a a

i i
nk nk nk nkn n
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C u d S v d
x xMa Maτ τ

δ δ
τ τ

∂ ∂
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∂ ∂∫ ∫ . А 

матриці iA  та величини iσ  визначаються для 
кожної групи з урахуванням тотожностей: 

2 2 2 ,p qs pqs pq s pqsσ σ σ σ+ + ++ + =  

Елементи співвідношення (1) для всіх блоків 
рівнянь запишуться 
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*
30 30

*
30 30

*
30 30

*
32 32

*
32 32

*
32 32

001

C C

C C

C C

b C C

C C

C C

σ

 −
 
 −
 
 −
 
 = −
 
 −
 
 − 
 
 

, 

005

203

023

401

221

141

.x

σ
σ
σ
σ
σ
σ

 
 
 
 

=  
 
 
  
 

 

Тоді 

005 203 023 401 221 041 0012 2 2 ,σ σ σ σ σ σ σ+ + + + + =

( )2 2 2
31 3 1 1 1 23

1 1 ,
4e

C x x x x x d
Ma τ

δ τ = − + 
 ∫  

2 2
33 1 1 23

1 1 ,
3e

C x x x d
Ma τ

δ τ
  = −  

  
∫  

2

16 12 12 0 0 0
0 24 0 3 6 0
0 0 48 0 12 4
0 16 48 0 0 0
0 0 0 4

1
48

48 96 9

24 0
0 0 0 0 16 16

48 9 46 6 8

A

 
 
 
 
 

=  
 
 
 
 


− −
− −

− −



−
−

−

, 
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 30 

( )
( )
( )
( )
( )
( )

*
31 31

*
31 31

*
31 31

*
33 33

*
33 33

*
33 33

010

C C

C C

C C

b C C

C C

C C

σ

 −
 
 −
 
 −
 
 = −
 
 −
 
 − 
 
 

, 

104

302

122

500

320

140

x

σ
σ
σ
σ
σ
σ

 
 
 
 

=  
 
 
  
 

, 

Також, 

500 320 302 140 122 104 1002 2 2 ,σ σ σ σ σ σ σ+ + + + + =

( )2 2 2
31 3 2 2 1 23

1 1 ,
4e

S x x x x x d
Ma τ

δ τ = − + 
 ∫

2 2
33 2 1 23

1 1 ,
3e

S x x x d
Ma τ

δ τ
  = −  

  
∫  

2

16 12 12 0 0 0
0 48 0 4 12 0
0 0 24 0 6 3
0 48 16 0 0 0
0 0 0 16 16 0

48 96 96 48 96 48
0 0

1 ,
48

0 0 24 4

A

 
 
 
 
 

=  
 


− −
− −

− −
−

−

−


 
 
 

 

( )
( )
( )
( )
( )
( )

*
31 31

*
31 31

*
31 31

*
33 33

*
33 33

*
33 33

S S

S S

S S
b

S S

S S

S S

 −
 
 −
 
 −
 =
 −
 
 − 
 − 

, 

014

212

032

410

230

050

x

σ
σ
σ
σ
σ
σ

 
 
 
 

=  
 
 
  
 

, 

де 32 1 2 33

1 .
2 e

S x x x d
Ma τ

δ τ= ∫  

Безпосереднє використання тотожності (2) з 
[Fys, 2016] в останній формулі дає 

1 2 3
311 32 011 131 32 101 113 32 110

2 2 22 , 2 , 2 .
7 7 7

S a S a S aσ σ σ= − = − = −  

Продовжуючи розгортати формули для 
стоксових постійних четвертого порядку, 
отримаємо: 

( ) ( )

( ) ( )

( )

24 2 2 2 2 2
40 3 3 1 2 1 24

2 2 2 4 4
42 3 1 2 2 14

4 4 2 2
44 1 2 1 24

1 3
3 ,

8

1 3 1 ,
2 4

1 6 ,
32

e

e

e

C x x x x x x d
Ma

C x x x x x d
Ma

C x x x x d
Ma

τ

τ

τ

δ τ

δ τ

δ τ

 = − + + + 
 

 = − + − 
 

= + −

∫

∫

∫

 

де
 

5

32 160 160 60 120 60 0 0 0 0
0 160 0 160 480 0 12 40 60 0
0 0 160 0 480 160 0 60 40 12
0 80 80 40 0 40 0 0 0 0
0 0 0 80 240 0 8 0 40 0
0 0 0 0 240 80 0 40 0 8
0 0 0 5 30 5 0 0 0 0

160 480 480 480 960 480 160 480 480 160
0 0 0 0 0 0 1 10 5 0
0 0 0 0 0 0 0 5 10 1

1
160

A

− −
− −

− −
− −

− −
− −

−

−
−








=









,
















  

та 

006

204

024

402

2221
5

042

600

420

240

060

,

σ
σ
σ
σ
σ

σ
σ
σ
σ
σ
σ

 
 
 
 
 
 
 
 =
 
 
 
 
 
 
 
 

 

*
40 40

*
40 40

*
40 40

*
42 42

*
42 422

5 *
42 42

*
44 44

*
44 44

*
44 44

000

.

C С
C С
C С
C С
C С
C С
C С
C С
C С

σ

σ

 −
 

− 
 −
 

− 
 − =

− 
 − 
 −
 

− 
 
 

 

Так само, 

006 204 024 402 042 420 240 222 600 060 0003( ) 6 .σ σ σ σ σ σ σ σ σ σ σ+ + + + + + + + =

( )

( )( )

3 2 2
41 3 1 3 1 1 24

2 2
43 1 3 1 24

1 3
,

4

1 3 ,
6

e

e

C x x x x x x d
Ma

C x x x x d
Ma

τ

τ

δ τ

δ τ

 = − + 
 

= −

∫

∫
 

де 

6

12 18 18 0 0 0
0 24 0 9 18 0
0 0 48 0 36 12

,0 4 12 0 0 0
0 0 0 2 12 0

48 96 96 48 96 48
0 0

1
48

0 0 8 8

A

 
 
 
 
 

=  


−

− −
− −

−
−

− 
 
 
 
 − 

 

105

303

1231
6

501

321

141

,

σ
σ
σ

σ
σ
σ
σ

 
 
 
 

=  
 
 
  
 

 

*
41 41

*
41 41

*
41 41

*
43 436

*
43 43

*
43 43

101

.

C C
C C
C C
C CC
C C
C C
σ

 −
 

− 
 −
 

−=  
 − 
 −
  
 

 

Маємо 

303 123 105 501 321 141 1012 2 2σ σ σ σ σ σ σ+ + + + + =  
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( )

( )( )

3 2 2
41 3 2 3 2 1 24

2 2
43 2 3 1 24

1 3
,

4

1 3 ,
6

e

e

S x x x x x x d
Ma

S x x x x d
Ma

τ

τ

δ τ

δ τ

 = − + 
 

= −

∫

∫
 

 

7

12 18 18 0 0 0
0 48 0 12 36 0
0 0 24 0 18 9
0 24 4 0 0 0
0 0 0 8 8 0

48 96 96 48 96 48
0 0

1 ,
48

0 0 12 2

A

 
 
 
 
 

=  
 


− −
− −

− −
−


 

 − 

−
 

015

213

0331
7

411

231

051

,

σ
σ
σ

σ
σ
σ
σ

 
 
 
 

=  
 
 
  
 

 

*
41 41

*
41 41

*
41 41

*
43 437

*
43 43

*
43 43

011

.

S S
S S
S S
S SC
S S
S S
σ

 −
 

− 
 −
 

−=  
 − 
 −
  
 

 

 

Крім цього, 

213 033 015 411 231 051 0112 2 2σ σ σ σ σ σ σ+ + + + + =  
 

( ) ( )2 2 2 2 2
42 3 1 2 1 2 1 2 2 14

1 13 ,
2e

S x x x x x x x x x d
Ma τ

δ τ = − − + 
 ∫  

( )2 2
44 1 2 1 24

1 .
8 e

S x x x x d
Ma τ

δ τ= −∫  

8

32 16 16 0 0 0
0 54 0 4 8 0
0 0 54 0 8 4

,0 4 4 0 0 0
0 0 0 1 2 0

32 64 64 32 64 32
0 0

1
32

0 0 2 1

A

 
 
 
 
 

=  


−

− −
− −

−
−

− 
 
 
 
 − 

 

114

312

1321
8

510

330

150

,

σ
σ
σ

σ
σ
σ
σ

 
 
 
 

=  
 
 
  
 

 

*
42 42

*
42 42

*
42 42

*
44 448

*
44 44

*
44 44

110

.

S S
S S
S S
S SC
S S
S S
σ

 −
 

− 
 −
 

−=  
 − 
 −
  
 

 

А також 

312 132 114 510 330 150 1102 2 2 .σ σ σ σ σ σ σ+ + + + + =  

Обчислення, проведені згідно з цією мето-
дикою, показують, що системи рівнянь, прону-
меровані відповідно номером N мають єдиний 
розв’язок для 2,3, 4,6,7,8.N =  Якщо ж 5,N =  то 
система є неоднозначна, і для однозначності 
розв’язку необхідно долучати додаткові умови. 
Тому цю частину вкладу не враховують у 
подальших дослідженнях та побудові наступного 
наближення густини mδ  ( 5,6)m = та її аномалій 

s
m m mδ δ δ∆ = − , де s

mδ – усереднене по «сфері» 
значення густини. Результати числових експери-
ментів відображені відповідними рисунками в 
двох варіантах: у вигляді картосхем та через 
об’ємні зображення. У дослідженні наведено 
найбільш інформаційно насичені рисунки. 

 
Обґрунтування та інтерпретація отриманих результатів 

 
Рис. 1а                                                                        Рис. 1б 

Рис. 1(а-б). Карта розподілу аномалій густини надр Землі 6δ∆   
на глибині 5150 км згідно з моделлю 2δ  та описаним у роботі методом 



Геодинаміка 2(25)/2018 
 

 32 

 
Рис. 2а                                                                                  Рис. 2б 

Рис. 2(а–б). Карта аномалій густини надр Землі 6δ∆   
на глибині 2891 км згідно з моделлю 2δ  та описаним у роботі методом. 

 
Рис. 3а                                                                                  Рис. 3б 

Рис. 3(а–б). Карта аномалій густини надр Землі 6δ∆   
на її поверхні згідно з моделлю 2δ  та описаним у роботі методом 

 
Рис. 4а                                             Рис. 4б                                              Рис. 4в 

Рис. 4(а–в). Карта складових аномалій градієнта густини надр Землі 6δ∆   
на глибині 5150 км 

  
Рис. 5а                                              Рис. 5б                                            Рис. 5в 

Рис. 5(а–в). Карта складових аномалій градієнта  
густини надр Землі 6δ∆  на глибині 2891 км 



Геодезія 
 

 33 

  
     Рис. 6а                                                   Рис. 6б                                                     Рис. 6в 

Рис. 6(а–в). Карта складових аномалій градієнта  
густини надр Землі 6δ∆  на поверхні 

Побудована тривимірна модель густини, 
зберігає всі основні властивості референцної 
моделі PREM: величини стрибків та глибину 
їхнього залягання, а також характер зміни густини 
по радіусу. При цьому, на відміну від моделі 2δ  
(рис. 1а, 2а, 3а), карти аномалій густини mδ∆  (рис. 
1б, 2б, 3б) є більш структуровані, тобто дають 
більш детальну картину розміщення мас усередині 
Землі. Так, на різних глибинах спостерігається 
перерозподіл мас, проте характерним для всіх 
випадків є ущільнення в екваторіальних областях і 
дефіцит мас при наближенні до полюсів. Таке 
переміщення мас може бути зв’язане з обертовим 
рухом планети. Треба зауважити, що не завжди 
екстремальні значення корелюють із піками 
аномалій геоїда. Так, на карті на поверхні попри 
збіг деяких аномалій густини та геоїда , наприк-
лад, ( )90 , 300 ,θ λ≈ ≈o o  для інших притаманна 

протилежна залежність ( 90 ,θ ≈ o 250 ).λ ≈ o  Те 
саме стосується й інших глибин (радіусів). Тому 
використання наведених результатів необхідно 
підходити з обережністю, враховуючи їхній 
наближений характер. 

Важливішим аспектом у цій методиці є 
одержання та інтерпретація поведінки 
компонентів градієнта аномалій густини, а особ-

ливо його третьої компоненти 
3

.
x
δ ∂

 ∂ 
 Як видно з 

рисунків 4в, 5в, 6в характерним для них є додатне 
значення, якщо 0 90θ≤ ≤ o та від’ємне, коли 
90 180 .θ≤ ≤o o Це означає, що напрям вектора 
градієнта напрямлений до центра мас. 

Отже, на основі цієї інформації одержуємо 
модель густини, яка дає детальнішу картину 
розподілу мас усередині планети. 

Горизонтальні компоненти градієнта 
1

,
x
δ∂

∂ 2x
δ∂

∂
 

на різних глибинах ведуть себе по-різному та 
можуть бути додатковим інструментом при 
перерозподілі мас. В ідеальному випадку напро-
шується побудова об’ємних карт зі зображенням 
величини та напрямку векторів градієнта густини, 
що б значно спростило інтерпретацію отриманих 

результатів. На жаль, поки що не вдається цього 
зробити. 

Висновки 

1. Запропонований метод наближеної побудови 
розподілу мас еліпсоїдальної Землі, не суттєво 
відрізняється від аналогічного для сферично-
симетричної планети та дає можливість більш 
повно використати інформацію про гравіта-
ційне поле планети. 

2. До певного порядку ( 5)N <  наближений 
спосіб визначення густини та її похідних, дає 
змогу контролювати процес обчислень і 
орієнтуватись у достовірності такої побудови. 

3. Побудовані картосхеми ліній постійної густи-
ни дають можливість аналізувати розміщення 
аномальних мас та їх можливе   переміщення 
за рахунок обертової складової сили тяжіння. 

4. Представлені карти компонент вектора 
градієнта густини дають додаткові можливості 
в інтерпретації ймовірних перерозподілів мас 
Землі. 

5. Для всіх поданих карт напрям третьої складо-

вої 
3x

δ ∂
 ∂ 

 напрямлений у сторону центра мас, 

тобто підтримується властивість радіального 
розподілу зростання функції густини з 
глибиною. 
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МЕТОД ПРИБЛИЖЕННОГО ПОСТРОЕНИЯ ГРАДИЕНТА ФУНКЦИИ ТРЕХМЕРНОГО 
РАСПРЕДЕЛЕНИЯ МАС НЕДР ЭЛЛИПСОИДАЛЬНОЙ ПЛАНЕТЫ С ИСПОЛЬЗОВАНИЕМ 

ПАРАМЕТРОВ ВНЕШНЕГО ГРАВИТАЦИОННОГО ПОЛЯ  

Цель. Исследовать методику построения трехмерной функции распределения масс недр внутри 
Земли и ее производных, согласованную с параметрами гравитационного поля планеты к четвертому 
порядку включительно. По построенной таким способом функцией распределения масс осуществить 
интерпретацию особенностей внутреннего строения эллипсоидальной планеты. Методика.  На основе 
созданного начального приближения функции, включающего референцную модель плотности, 
выстраиваются дальнейшие уточнения. Используя Стокса постоянные до второго порядка включительно, 
даем следующее приближение, которое в дальнейшем принимаем как нулевое. При этом использование 
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стоксовых постоянных до четвертого порядка включительно приводит к решению систем уравнений. 
Установлено, что присоединение одного тождества приводит к однозначности решения. Исключением 
является одна система с стоксовыми постоянными 40 42 44, , .c c c  Заметим, что процесс вычислений 
является контролируемым, так как степенные моменты производных плотности сводятся к величинам, 
которые учитывают значение плотности на поверхности эллипсоида. Результаты. В отличие от модели 
второго порядка, описывающей грубые глобальные неоднородности, полученная функция распределения 
дает подробную картину размещения аномалий плотности (отклонение трехмерной функции от 
усредненной по сфере – “изоденс”). Анализ карт на разных глубинах 2891 км (ядро-мантия), 5150 км 
(внутреннее-внешнее ядро) позволяет сделать предварительные выводы о глобальном 
перераспределении масс за счет вращающейся составляющей силы тяжести по всему радиусу, а также за 
счет горизонтальных компонент градиента плотности. Этот факт особенно заметен для экваториальных 
областей. Напротив, в полярных частях Земли наблюдается минимум такого отклонения, что также 
имеет свое объяснение: величина силы вращения уменьшается при смещении к полюсу. Построена с 
помощью предложенного метода функция распределения масс более подробно описывает картину 
распределения масс. Особый интерес представляют картосхемы компонентов градиента функции 
аномалий плотности, а именно компонента, что совпадает с осью Oz - для верхней части оболочки она 
отрицательная, для нижней положительная. Это значит, что вектор градиента направлен в сторону 
центра масс. Характер значений для двух других компонент разный как по знаку, так и по величине и 
зависит от точки размещения. Совокупное рассмотрение и учет всех величин дает возможность более 
полной интерпретации процессов внутри Земли. Научная новизна. В отличие от традиционного 
подхода изменения для производных плотности одной переменной (глубины), полученных из уравнения 
Адамса-Уильямса, в данной работе сделана попытка получить производные по декартовым координатам. 
Использование в описанном методе параметров гравитационного поля до четвертого порядка 
включительно увеличивает порядок аппроксимации функции распределения масс трех переменных с 
двух до шести, а ее производных – до пяти. При этом, в отличие от традиционной методики, 
определяющим здесь является построение производных, из которых воспроизводится функция 
распределения масс и использования геофизической информации, аккумулированная в реферецной 
модели PREM.  Практическая значимость. Полученная функция распределения масс Земли может 
быть использована как следующее приближение при использовании стоксовых постоянных высших 
порядков в представленном алгоритме. Ее применение дает возможность интерпретировать глобальные 
аномалии гравитационного поля и изучать глубинные геодинамические процессы внутри Земли. 

Ключевые слова: потенциал, гармоническая функция, модель распределения масс, стоксовые 
постоянные, градиент плотности. 
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METHOD FOR APPROXIMATE CONSTRUCTION OF THREE-DIMENSIONAL MASS DISTRIBUTION 
FUNCTION AND GRADIENT OF AN ELIPSOIDAL PLANET BASED ON EXTERNAL GRAVITATIONAL 

FIELD PARAMETERS 

Purpose. To investigate the technique for constructing a three-dimensional distribution function for the 
masses of the interior of the Earth and its derivatives, coordinated with the parameters of the planet's 
gravitational field to fourth order inclusive. By using the mass distribution function constructed, to make an 
interpretation of the features of the internal structure of an ellipsoidal planet. Methodology. Based on the created 
initial approximation of the function, which includes a reference density model, further refinements are built. 
Using Stokes constants up to the second order inclusive, we give the following approximation, which we 
subsequently take as zero. In this case, the use of Stokes constants up to the fourth order inclusive leads to the 
solution of systems of equations. It is established that the addition of one identity leads to uniqueness of the 
solution. One system with Stokes constants 40 42 44, , .c c c  is an exception. It is necessary to note that the 
computation process is controllable, since the power moments of the density derivatives are reduced to quantities 
that take into account the value of the density on the surface of the ellipsoid. Results. In contrast to the second-
order model describing gross global inhomogeneities, the obtained distribution function gives a detailed picture 
of the location of the density anomalies (the deviation of the three-dimensional function from the averaged over 
the sphere is “isodense”) Analysis of maps at different depths 2891 km (core-mantle), 5150 km (internal-external 
core) allows us to draw preliminary conclusions about the global mass redistribution due to the rotating 
component of the force of gravity over the entire radius, as well as due to the horizontal components of the 
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density gradient. On the contrary, the minimum of such a deviation is observed in the polar parts of the Earth, 
which also has its explanation: the magnitude of the rotational force decreases when approaching the pole. The 
mass distribution function is constructed using the proposed method to describe in more detail the picture of the 
mass distribution. Of particular interest are sketch maps of the components of the density anomaly function 
gradient, namely the component which coincides with the axis Oz  – for the upper part of the shell which is 
negative, and for the lower part it is positive. This means that the gradient vector is directed toward the centre of 
mass. The nature of the values for other two components is different both in sign and in magnitude and depends 
on the placement point. The cumulative consideration and consideration of all the quantities makes possible a 
more complete interpretation of the processes inside the Earth. Originality.  In contrast to the traditional 
approach, the changes for the density derivatives of one variable (depth), obtained from the Adams-Williams 
equation, in this paper made an attempt to obtain derivatives with Cartesian coordinates. Used in the described 
method, the parameters of the gravitational field up to the fourth order inclusively increases the order of 
approximation of the mass distribution function of three variables from two to six, and its derivatives up to five. 
In this case, unlike the traditional method, the defining here is the construction of the derivatives, from which the 
mass distribution function and the use of geophysical information accumulated in the referential PREM model 
are reproduced. Practical significance. The resulting mass distribution function of the Earth can be used as the 
next approximation when using Stokes constants of higher orders in the presented algorithm. Its application 
makes it possible to interpret global anomalies of the gravitational field and to study geodynamic processes 
deeply inside the Earth. 

Key words: potential, harmonic function,  the mass distribution model, Stoke’s constants, density gradient. 
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