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Abstract: A RISC microprocessor architecture that realizes 
a specific method of parallelism including the instruction level 
parallelism has been considered. The processor has been 
provided for 4-bit data type tag in each register of the register 
file. There are 14 data type tag values. The zero data type tag 
indicates that the register is free, otherwise it is busy. The 
destination register inherits the data type tag from the first 
source register. After an operation the data type tags in the 
source registers may be either zeroed, or may remain 
unchanged for further usage. All machine operations are 
classified into computational operations (about 40), and 
auxiliary operations (about 35-45). The computational 
operations include integer, unsigned, floating point, logical, 
string, and conversion operations. The processor has specific 
instruction formats in which there are 6-bit fields both for the 
operation code and the computational code. A single primary 
computational instruction having zero in the operation code 
field, and a meaningful code in the computational code field is 
enough to express all computational operations. A compiler 
generates groups of instructions to perform in parallel, the 
reordering of instructions may take place. There are several 
clones of the primary computational instruction with 
operation codes differing from zero. A clone computational 
instruction with a certain operation code is placed as a header 
instruction for the instruction group pointing out a certain 
number of instructions in the group to issue in parallel. The 
primary instructions may be placed inside the groups. The 
concept of flux is introduced as a composite of stream of 
instructions and a flow of processed data maintained by the 
flux hardware. Fluxes improve the usage of multiple functional 
units, and may be used for further parallelization. 

Index Terms: microprocessor, RISC, instruction set 
architecture, instruction level parallelism, flux, register 
tags. 

I. INTRODUCTION 

Parallelization is the mainstream in the con-
temporary microprocessor architecture, and is imple-
menting both within a single processor (uniprocessor or 
core), and in multicore processors in which several or 
several dozens of uniprocessors are arranged on one die 
and are connected with very fast interconnects. 

Other trends in parallelization are systems of 
massively-parallel computing. First of all, these are 
Graphical Processing Units (GPUs), containing hundreds 
and thousands of relatively simple processors (cores) on 
one die, also they are called manycore processors. They 
perform not only graphical, but a wide spectre of other 

computations. Also there are spatially distributed 
systems of computers, which perform deeply parallelized 
problems (cloud computing). Supercomputers are 
systems of thousands, or tens of thousands both usual 
CPUs, and GPUs with very fast interconnects. Therefore, 
the supercomputer is a massively parallel system. 
Servers in data centers consist of several tens of poweful 
microprocessors.  

There are many monographs and manuals on these 
vast topics, e. g. [1, 2, 3, 4, 5, 6, 7].  

The principal ways of hardware parallelization in the 
traditional microprocessors are the following: 

1.  Multiple functional deployment units (multiunit 
architecture) on one die. Availability of multiple 
functional units is a mandatory condition for 
parallelization, otherwise the parallelization is not 
possible, though the data exchange between registers of 
CPU and the main computer memory may be performed 
in parallel with a computational operation.  

2. Superscalar architecture, i. e hardware-based 
parallelization of instruction stream onto multiple 
functional units. Superscalar parallelization emerged in 
the mid of sixties or earlier. It is effective if the 
processor has at least two functional units. The 
superscalar approach does not demand any special 
efforts from the programmer to take into account, 
whereas the programming for multicore processors is 
more complicated and depends on the number of 
processor cores.  

3. Speculative execution is used for instructions 
performing branch and conditional transfer of control, 
thus, enabling to economize one or more machine cycles. 

4. Out-of-order execution is a transposition of 
instructions performed by hardware in a buffer which 
accumulates a score or more of instructions. The 
experience shows that such reordering of instructions 
substantially increases the efficacy of computations. 

5. Simultaneous multithreading (SMT) is the main 
contemporary concept of parallelization for unipro-
cessors, invented in the nineties of the past century [8]. 
The SMT actually absorbs superscalarness, however the 
SMT processor may be called the superscalar one. The 
threads are named logical processors. They are formed 
by the hardware means, and this hardware is rather 
complex. It is better for transistors for the SMT hardware 
to be used for an additional functional unit. Really, the 
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most important characteristic of the SMT uniprocessor is 
the number of functional units. A significant feature of 
the SMT is the fact that each thread has its hardware 
context: register file, program counter, stack and register 
with the stack address, and the program status word or 
record (PSR) with various bit flags. The overwhelming 
majority of the contemporary SMT microprocessors has 
two threads, but each core of the newest IBM Power9 
microprocessor has 8 threads. 

Pipelining in functional units may be considered a 
specific parallelization in which instructions are issued 
with a shift on one machine cycle. It is a well mastered 
technology.  

The present author proposed also a method of 
parallelization on the instruction level parallelism (ILP) 
for RISC processors via a special non-pipelined 
parallelizing instruction [9]. 

A separate case of uniprocessor architecture is a 
very long instruction word (VLIW) architecture. The 
VLIW architecture has been successful for the 
specialized processors for image and graphical data 
processing etc., but failed as the general purpose 
processor. 

The proposed method of parallelizing, stated in the 
paper, is based, firstly, on the notion of the instruction 
group to issue in parallel, and secondly, on the idea of the 
tagged registers of the register file [10, 11]. The tagging 
permits to form a specific instruction format, so that the 
first instruction of an instruction group (a header 
instruction) points out the number of instructions in the 
group simultaneously. The instruction groups are created 
by the smart compiler. The proposed approach secures 
much more complete extraction of the ILP for ordinary 
programs, though, due to the usage of smart compilers. 
Also, the hardware is substantially simpler. Distantly, the 
proposed approach resembles a peculiar VLIW processor 
with variable number, one to four, of operative fields [12]. 

The subsequent material is stated on the exemplary 
32-register file with 64-bit registers. The data of the 
floating point type may embrace 1, or 2 64-bit registers. 
The data of the bit, byte, and double byte types may 
embrace 1, 2, or 4 64-bit registers. Groups of instructions 
are assumed to contain maximally up to 10–15 ins-
tructions to issue in parallel. The instructions are 32-bit. 

II. DATA TYPE REGISTER TAGS 

The notion of the data tag was used as a data 
identification prefix in some computer architectures of 
the past. An American inventor J. K. Iliffe pioneered the 
usage of tags to mark data in the main computer 
memory, specifically to mark machine words [13]. The 
stack computers of the Burroughs Corporation in the 
early sixties had 3-bit tag to mark the data type of the  
48-bit machine word [14]. The Soviet Elbrus-1 and 
Elbrus-2 stack computers (multiprocessor computing 
complexes) in the seventies were provided with the 8-bit 
tag that pointed the data type and the data access rules 
for the 64-bit machine word [7]. The tags were 
considered as some extension of machine words in the 

main computer memory. These computers had register 
stacks, not the register files. In both mentioned 
computers after the data (with tags) have been loaded 
into a stack, an executable instruction explores the tag to 
decide what further action to perform if data types were 
not adequate to the instruction. 

History of computer science has shown that tagging 
data in the main memory was a fallacy, this idea 
revealed itself nonproductive. Some improvement in 
reliability due to tagging demanded large overhead for 
additional memory and did not justify tagging in the 
main computer memory at all. In the sixties (Burroughs) 
and in seventies (Elbrus) the main computer memory 
was very expensive, and to spend 6.25 and 12.5 percent 
of it was impractical. 

The proposed microprocessor architecture has 4-bit 
data type tag in each register of the register file. The 
code in a register tag defines the data type. There are 14 
values of the data type tag. The zero data type tag 
indicates that the register is free, otherwise it is busy. In 
the most of machine operations the destination register 
inherits the data type tag from the first source register. 
After an operation the data type tags in the source 
registers may be either zeroed, or may remain unchanged 
for the usage in other operations. On the micro-
architectural level the tags may be placed separately 
from the register file. The idea of the data type tag as an 
extension of register considerably reduces the number of 
machine operations, simultaneously increasing their 
multiplicity [10, 11]. 

Table 1 

Tag table with data type tags 
 

Data type 
code 

Short 
notation Data type description 

'0000'b = 0  Register is free for writing 

'0001'b = 1 i8, or i 64-bit integer 

'0010'b = 2 u8, or u 64-bit unsigned 

'0011'b = 3 a8, or a 64-bit unsigned for addresses 
in the main computer memory 

'0100'b = 4 f8, or f 64-bit floating point 

'0101'b = 5 f16 128-bit floating point in 2 registers 

'0110'b = 6 t1, or t Bit string in 1 register 

'0111'b = 7 b1, or b Byte string in 1 register 

'1000'b = 8 d1, or d Double-byte string in 1 register 

'1001'b = 9 t2, or t Bit string in 2 registers 

'1010'b = 10 b2, or b Byte string in 2 registers 

'1011'b = 11 d2, or d Double-byte string in 2 registers 

'1100'b = 12 t4, or t Bit string in 4 registers 

'1101'b = 13 b4, or b Byte string in 4 registers 

'1110'b = 14 d4, or d Double-byte string in 4 registers 

'1111'b = 15  Writing operation in register failed 
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The hardware tag table sets the correspondence 
between the tag and the register contents (Table 1). On 
the micro-architectural level the tag table may also 
contain the information about the kind of the functional 
unit to use. The tagged registers are well suited for the 

RISC processors, and are hardly suitable for the CISC 
processors. Actually, the data type tag may be 
considered as a continuation of the operation code at 
register to inform the executable instruction which the 
data type register contains. 

Table 2 

List of computational operations 
 

Computational 
Operation 
Code 

Computational Operation Description  Computational 
Operation Code Computational Operation Description 

'000000'b = 0 No operation is supported  '011000'b = 24 Logical multiplication AND 

'000001'b = 1 Addition  '011001'b = 25 Logical exclusive OR (XOR) 

'000010'b = 2 Subtraction  '011010'b = 26 Logical inversion LINV 

'000011'b = 3 Multiplication  '011011'b = 27 Logical shift right LSR 

'000100'b = 4 Division  '010111'b = 23 Logical addition OR 

'000101'b = 5 Integer division with remainder  '011000'b = 24 Logical multiplication AND 

'000110'b = 6 Combined “multiply” and “add”  '011001'b = 25 Logical exclusive OR (XOR) 

'000111'b = 7 Addition of the constant to the register  '011010'b = 26 Logical inversion LINV 

'001000'b = 8 Subtraction of the constant from the register  '011011'b = 27 Logical shift right LSR 

'001001'b = 9 Subtraction of the register from the constant  '011100'b = 28 Logical shift left LSL 

'001010'b = 10 Multiplication of the constant by the register  '011101'b = 29 Logical rotate right LRR 

'001011'b = 11 Constant is assigned to the register with the same 
sign  '011110'b = 30 Logical rotate left LRL 

'001100'b = 12 Constant is assigned to the register with the 
opposite sign  '011111'b = 31 Substitution of the part of string by sub-

string 

'001101'b = 13 Two sequential arithmetic operations 
r4d = (r3s + r2s) * r1s  '100000'b = 32 Search sub-string inside string in the 

forward direction 

'001110'b = 14 Two sequential arithmetic operations 
r4d = (r3s – r2s) * r1s  '100001'b = 33 Search sub-string inside string in the 

backward direction 

'001111'b = 15 Two sequential arithmetic operations 
r4d = r3s * r2s + r1s  '100010'b = 34 Copy a part of string 

'010000'b = 16 Two sequential arithmetic operations 
r4d = r3s * r2s – r1s  '100011'b = 35 Delete a part of string 

'010001'b = 17 Two sequential arithmetic operations 
r4d = r3s + r2s + r1s  '100100'b = 36 Relocate a part of the string in the same 

string 

'010010'b = 18 Two sequential arithmetic operations 
r4d = r3s + r2s – r1s  '100101'b = 37 Concatenation of two strings 

'010011'b = 19 Two sequential arithmetic operations 
r4d = r3s – r2s + r1s  '100110'b = 38 Test for coincidence of strings 

'010100'b = 20 Two sequential arithmetic operations 
r4d = r3s – r2s – r1s  '101111'b = 39 Calculation of address index for array 

element 

'010101'b = 21 Two sequential arithmetic operations 
r4d = r3s * r2s * r1s  40 … 63 Reserve 

'010110'b = 22 Conversion    
 

Normally, all data type tags in registers should be 
non-zeroes. The hardware checks the correspondence 
between the data type tags in source registers with     
their adequacy to the prescribed  data  type  fixed  in  the  

 
destination register. If these conditions are not complied, 
the “tag” error occurs, the data type tag gets value 
'1111'b, and the current value of the program counter is 
copied in the destination register for further analysis. 
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III. SET OF THE COMPUTATIONAL OPERATIONS 

All machine operations are classified into two 
general classes: (1) computational machine operations; 
and (2) auxiliary machine operations (they are described 
in the next section). The computational operations 
include integer, unsigned, floating point, logical, string, 
and conversion operations, i. e. those that perform 
processing of the loaded data making useful work. There 
is a set of about 40 computational operations, and a set 
of about 35–45 auxiliary operations. This classification 
is conditional, to some extent. The list of computational 
operations is shown in Table 2 

IV. INSTRUCTION FORMATS 

Taking into account the classification of the machine 
operations into the computational and auxiliary one, the 
instructions are classified into (1) computational 
instructions including a single primary computational 
instruction with a collection of its clone computational 
instructions; and (2) auxiliary instructions. 

The computational instructions should have the 
obligatory destination register. These instructions, both 
primary and clone ones, have two 6-bit operand fields, 
the first for the operation code (OC), and the second for 
the computational code (CC). The operation code for the 
primary computational instruction is zero, as all 
computational machine operations are ensured by the 
computational code. One primary instruction induces a 
collection of clone instructions; each is intended to 
embrace the defined number of instructions in the 
instruction group. Details about usage of clone 
computational instructions for parallelization are in the 
next section. 

The auxiliary instructions contain operation code in 
the corresponding 6-bit field in the range 1 to 30–40. It is 
enough to express all auxiliary operations. They include 
instructions for various settings, the transfer of control, 
load/store operations, copy register to register, move 
register into other register, swap of two registers, push 
register into memory, and pull register from memory, 
and comparison of two magnitudes. The auxiliary 
instructions perform some necessary ancillary work to 
secure the processing of data. 

Table 3 gives a representation of the operation and 
computational codes (OC and CC) in different 
instruction formats (the quantity n is the necessary 
number of clones). 

Table 3 

Table of computational operations 
 

Operation Operation Code Computational 
Code 

Primary 
computational 

0 

Clone computational 64 - n … 63 
0 … 63 

Auxiliary 1 … 63 - n 0 

The structures of the load/store and the 
computational instructions are shown in Fig. 1 and Fig. 2 
respectively (digits in the second rows are the lengths of 
the operand fields in bits). The formats for the other 
auxiliary instructions are not considered. 

 
OC Q DTT ST IR BR DR 

6 2 4 5 5 5 5 

Fig. 1. Format of the load/store instructions 

 
OC CC SR1 SR2 SR3 DR 

6 6 5 5 5 5 

Fig. 2. Format of the computational instruction 

Denotations for operands for the load and 
computational instructions are the following: (1) operand 
OC (Operation Code) is the 6-bit operation code; (2) Q is 
the 2-bit Qualifier that may detail the machine operation 
having the same operation code, e. g. to point out 
whether or not to zero register data tags after instruction 
is performed; (3) operand DTT (Data Type Tag) is the  
4-bit data type tag that is fixed by the programmer, and 
then assigned to the hardware register tag, and in the 
case of the store instruction the DTT is compared with 
the hardware register tag for strong verification of the 
store operation; (4) operand ST contains the 
increment/decrement step (register, or an integer 
constant) in machine words that is added to the index 
register IR after the load/store operation; (5) operand IR 
is the index register which is fixed by the programmer 
before a series of the load/store operations, then it is 
incremented/decremented with the ST operand upon 
completion of each load/store operation; (6) operand BR 
is the base register containing the base address (data type 
is unsigned for the addresses in the main computer 
memory) for multiple usage of the load/store operations, 
and the BR is relatively permanent; (7) operand DR is 
the destination register being loaded, the data type 
register tag is taken from the DTT operand.  

And these are specifically designations for operands 
for the computational instructions: (8) operand CC is the 
6-bit computational code; (9) operands SR1, SR2, and 
SR3 contain the source data to process. Also the source 
operands may contain an immediate constant, or 
constants, in such a case some source operand fields are 
merged. 

The load instruction loads a single or concatenated 
registers, and also the proper register data type tag is 
filled in how the programmer specifies it. The store 
instruction is analogous to the load instruction, the 
operand DTT is used to check the correctness of the data 
storing. The computational instructions process data in 
the registers. An example of designation of the 
computational instruction is as following 

madd sr2,sr3,dr 
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The instruction realizes the formula 
dr = dr + sr2 * sr3. The denotation madd means the 
multiply-and-add machine operation; registers sr2 and 
sr3 contain the source operands; register dr contains the 
destination operand. This instruction does not use the 
register field sr1. 

V. PARALLELIZATION BY USAGE  
OF CLONE INSTRUCTION 

The set of computational instructions makes up a 
collection consisting of a single primary computational 
instruction and several clone computational instructions. 
Each clone instruction is intended to embrace the defined 
number of instructions in the instruction group. The 
clone instructions coincide with a primary one 
inherently, but have other operation codes. The operation 
codes for the clone instructions are placed in the upper 
part of the 6-bit operand field for the operation code. For 
instance, a collection of 9 clone instructions has 
operation codes '111111'b to '110111'b (63 to 55). The 
clone computational instruction is used in the capacity of 
the header instruction in the instruction group to issue it 
in parallel. Groups consisting of a lone instruction are 
possible (one-instruction groups). Any other primary 
computational instruction does not take part in control of 
the parallel group, it is a usual member of an instruction 
group together with auxiliary instructions. 

In assembler language the denotation for the primary 
computational instruction, e. g. for multiplication, might 
have the appearance mul 0, sr2, sr3, dr where zero 
means the operation code. This zero may be omitted for 
shortening: mul sr2, sr3, dr. The denotation for the clone 
computational instruction should contain nonzero 
operation code with digits 2 to, e. g. 7, pointing out the 
number of instructions in the group including the header 
instruction. Thus, a clone computational instruction for 
the group of 7 instructions has the demotation mul 7, sr2, 
sr3, dr. 
 

Instructions Explanation 

Previous group  

mul 6, r1, r2, r3 
 
load f8, r4, r5, r6, r7 
load t1, r8, r9,r10,r11 
sub r12, r13, r14 
madd r15, r16, r17 
 
cmp r18,r19 
jump -250 

multiplication 
    (header for 6 instructions) 
load floating point number 
load bit string 
subtraction of two numbers 
computation on formula 
    r17 = r17 + r15 * r16 
comparison of two 
magnitudes 
jump on 250 bytes in 
backward 
    direction 

Next group  

Fig. 3. Example of instruction group 
 to issue in parallel 

The instruction groups are generated by the smart 
compiler, and for better efficacy the reordering of 

instructions should take place. The smart compiler is 
able to investigate large fragments of the source code, 
even the whole procedure or function, and extract all 
possible static parallelism. The smart text source editor 
shows instruction groups due to the feedback between 
the compiler and the editor enclosing the formed 
instruction groups in parentheses. An example of group 
of six instructions to issue in parallel is shown in Fig. 3. 
The proposed parallelization is maintained by the 
hardware. The actual efficacy of parallelization depends 
upon the availability of multiple functional units. Thus, 
in the case of shortage of functional units the dispatch of 
a parallel group may be done on two or more machine 
cycles. 

VI. CONCEPT OF FLUX 

The flux is defined as a composite that includes the 
software and hardware components within the scope of 
uniprocessor. From the program point of view, the flux 
is a stream of instructions and the corresponding flow of 
processed data. These streams and flows are maintained 
by the flux hardware that includes register file, program 
counter, stack and register with the stack address, the 
program status word or record (PSR) with various states 
and interrupts bit flags, and other control information 
fields. Also, the flux contains the special flux instruction 
buffer (described below). The main computer memory 
and pipelined functional units are reckoned as a common 
resource for all fluxes, and are used on request. Fluxes 
may have either individual L1 instruction caches, or a 
common L1 instruction cache. The same is true for the 
data caches. A flux looks like a partial processor. Also, a 
flux may be looked upon as a channel, window, or 
medium in which a program executes, using its register 
file and PSR, and borrowing the required functional 
units from their totality or pool. 

For effective work the uniprocessor should be multi-
flux one, i. e. should have at least two fluxes. The 
maximal number of fluxes in uniprocessor is 2 to 4 – the 
effective width of data paths between a flux and 
functional units is a limiting factor. The hardware 
discerns fluxes through their n-bit flux distinctive labels, 
e. g. for the four-flux processor it is the 2-bit labels. The 
functional units remember from which flux the data to 
process are received, and to which flux the results should 
be returned. A flux maintains either a single program 
process or a number of processes in the time-sharing 
mode. Also, the parts of a properly designed program 
may execute in different fluxes in parallel, interacting 
between each other. This is projected by the 
programmer, and is maintained by the operation system. 
The certain instruction set architecture must contain an 
instruction which informs the programmer the number of 
fluxes the concrete microprocessor contains. 

Each flux is provided with the flux instruction buffer 
as a small and very fast intermediate storage where the 
instruction groups are accumulated to process them 
further in parallel. The buffer has at least two buffer 
sections (two-section buffer), each section accumulates 
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an instruction group. The accepted number of 
instructions in the section predetermines the maximal 
number of the computational clone instructions plus one 
supported by the concrete microprocessor. It is better to 
have several buffers to avoid latencies and increase 
performance.  

The flux control unit fills in the first section, and 
simultaneously passes the instruction group from another 
section for the further processing and, eventually onto 
the functional units. The empty section is free to be filled 
with the next instruction group. Instructions came into 
the flux buffer in a sequential stream as some input 
groups, but issue of instructions is performed in the form 
of compiled groups. The hardware controls the 
completeness of formed instruction groups. In the 
contemporal RISC microprocessors up to 8 instructions 
may be fetched simultaneously during one machine 
cycle, and they are loaded in a separate primary 
instruction buffer which should be located before the 
flux buffer, and both buffers make up the unified buffer. 

Each instruction occupies a “slot” in the section. 
There are 1-bit hardware labels that mark slots: when a 
slot is occupied it is marked with '1'b, otherwise with 
'0'b. When all labels in a section have the '0'b value then 
the section is considered free, and is ready to be filled in 
with the next instruction group. The information about 
the number of instructions in the group is important, and 
is being passed further. 

The concept of the flux only remotely resembles the 
concept of SMT, and is characterized by the following 
features: 1. Structurally, the binary code in the proposed 
architecture consists of the instruction groups, and 
transfer of control is made to the header instruction of 
the group, whereas instructions in the SMT are not 
connected with each other, and are not grouped. 2. In the 
scope of one flux the groups of instructions, formed by 
the compiler, are dispatched for execution from the 
special flux buffer, whereas  in  the  scope  of  one  SMT  

thread a single instruction is only executed. 3. Program 
counter changes its value on the length of the instruction 
group (in bytes, or in the number of instructions), not on 
the length of the separate instruction. 4. The flux 
instruction buffer has quite different and simple 
hardware compared with the hardware that forms the 
SMT threads and provides for superscalarness. 

VII. THE WORK OF MICROPROCESSOR 
REALIZING PARALLELIZATION 

There are four modes of interactions between the 
hardware units and data paths for different kinds of 
instructions, maintainig the formation and passing fur-
ther parallel groups of instructions. These modes are for: 

(1) load/store instructions; (2) computational 
instructions; (3) comparison and branch instruction; 
(4) jump instruction. The modes for load/store and 
computational instructions are shown in Fig. 4 and Fig. 5 
as examples.  

The handling of instructions is fulfilled on stages 
which are maintained by a certain hardware. For the 
proposed microprocessor architecture this hardware 
includes: program counter with its controller; fetch unit 
with combined instruction buffer; decoder unit; dispatch 
unit; tag analyzer; integer-and-logical, floating point, and 
other functional units. The sequentiality of actions the 
microprocessor with the described architecture fulfills on 
different stages, which are as follows: 

1. The fetch unit reads the address of next instruction 
group from the program counter. The unit partly decodes 
operation code of the header instruction of the 
instruction group to ascertain the number of instructions 
in the group. Then, the unit fetches the rest of 
instructions and fills in a section in the flux instruction 
buffer with the fetched group. Until a group is  
fetched the program counter is not permitted to change 
its value.  

 
Program 

Counter Fetch 

 Unit 

Instruction 

Buffer 

Dispatch 

Unit 

Main Computer Memory 

Load  

Unit 
Store 

Unit 

Register File 

Stream of instruction addresses 

Stream of instructions  
Flow of data 

 
Fig. 4. Units and data paths for load/store instructions
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FPUs 

Register File 

Program 
Counter Fetch 

Unit 

Instruction 
Buffer 

Dispatch 
Unit 

Main Computer Memory 

ILUs 

Stream of instructions 

Stream of instruction addresses  

Flow of processed data 

Flow of information from tags 

Decoder 
Unit 

Tag 
Analyzer 

 

Fig. 5. Units and datapaths for the computational instructions (ILU is Integer-and-Logical Unit, FPU is Floating Point Unit) 

 
2. The decoder unit makes the rest of the decoding 

work. It fully decodes all auxiliary instructions. The 
decoding of the computational instructions is fulfilled 
partly, as on this stage it is impossible to ascertain the 
required functional units. 

3. The dispatch unit receives fully decoded 
instructions in the instruction groups, and issues the 
formed groups onto the required pipelined functional 
units, group by group on each machine cycle. In the case 
of the computational instruction the dispatch unit passes it 
to the tag analyser (unit) which explores the register tag of 
the first source register ascertaining the data type, and, 
therefore, the kind of the required functional unit. If in a 
concrete microprocessor the number of the functional 
units, or the number of specific kinds of the units is 
insufficient, the rest of instructions of the instruction 
group may be issued on the next machine cycles. 

4. The multiple pipelined functional units work on 
traditional scheme. The loading/storing unit loads the 
data from the main computer memory to the registers 
with the help of the load instruction. The functional units 
execute the necessary operation, taking into account the 
data type tags in the source and destination registers, the 
result of the operation being written in the destination 
register together with the tag. At last, the loading/storing 
unit stores the data from the destination register to the 
main computer memory with the help of the store 
instruction. The necessary ancillary instructions are 
executed as well. 

VIII. CONCLUSIONS 

There are three main advantages of the proposed 
microprocessor architecture.  

Firstly, a method of parallelization has been 
considered. It is able to extract all possible parallelism 
covering the large source instruction window, though 
depending on the perfection of the compiler. Even in 
static mode the compiler is able to extract more 
parallelism than the two-threaded SMT hardware. Thus, 
the proposed microprocessor will show higher 
productivity than the processor with the SMT. The 
proposed method is based considerably on the idea of 
data type tags at registers of the register file, and 
demands small amount of hardware. 

Secondly, a great advantage of the proposed 
architecture is a possibility to diversify operations due to 
the data type tags, and simultaneously at lesser number 
of instructions. Instructions are generalized, e. g. one 
instruction for multiplicaion is applicable to different 
data types defined by the data type tags. The architecture 
simplifies the processor design due to small number of 
instructions. The architecture improves the reliability of 
computations on the stages of development of the source 
code, compilation, and execution due to the data type 
tags. 

Thirdly, the concept of the flux is introduced 
permitting to use functional units more efficiently, and to 
organize execution of parts of a program in parallel in 
different fluxes interacting between each other, further 
widening of parallelization may be realized by using 
multiple cores. In evaluation of the microprocessor 
productivity it does not matter what architecture is 
implemented, dynamic, or static, what matters is the 
number of issued instructions per machine cycle. The 
concept of flux supercedes the SMT architecture and 
may substitute it at less hardware.  
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