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DIAGNOSTICS OF THE HIGH-PRECISE BALLISTIC MEASURED GRAVITY
ACCELERATION BY METHODS OF NON-CLASSICAL ERRORS THEORY

The purpose of the investigation is to show the necessity of using modern ideas about the law of error
distribution for observations involved in the categories of the “Non-classical error theory of measurements”
(NETM) in the process of performing high-precision ballistic definitions of gravitational acceleration. These
definitions are characterized by large volumes, which according to the H. Jeffreys’ theory, professor at the
University of Cambridge, automatically takes them beyond the bounds of the classical concepts about the errors
of measurements law. These outdated views about the distribution law of errors of large volume measurements
are the main obstacles to improve the methodology of these highly precise and important definitions. The
research methodology is provided by the NETM-procedures that was designed to control the probabilistic from
of the statistical distribution of absolute high-precise ballistic measurements g with large sample volumes based
on H. Jeffreys’ recommendations and on the principles of hypothesis testing theory. The main result of the
research is to carry out NETM-diagnostics of a metrological situation with the ballistic gravimeter FG-5 after
some improvements of the program of the observation. This method of diagnostics is based on the use
confidence intervals to the estimates of asymmetry and kurtosis of the obtained samples of measurements g with
the following application of the Pearson’s y2-test to determine the significance of the deviations of its
distribution from the established norms. In accordance with the categories of the NETM, such norms are the
Gauss’s and Person-Jeffreys’s laws, since only they ensure the non-singularity of the weight function of the
sample, and therefore the possibility of obtaining non generate estimates g during the mathematical processing of
measurements. Scientific novelty: using the possibilities of the new important tool in the field “Data analysis”
using the NETM to improve the technique of the high-precise measurements g, which are performed in a
complicated metrological situation with the necessity of taking into account a number of non-stationary sources
of systematic errors. The practical significance of the research is in use of NETM-diagnostics of the
probabilistic form of the distribution of measurements g in order to improve the methodology of these highly
precise determinations. The investigation seeks reasons for the deviations of errors distributions from established
norms providing metrological literacy of the high-precise large-scale measurements.

Key words: laws of errors Gauss and Pearson-Jeffreys, absolute measurements gravity acceleration, non-
classical errors theory.

Introduction accordance with classical notions, then this is a proof

of the uncorrelatedness of the measurement results,

Absolute, high-precise ballistic measurements of
g are performed in a complicated metrological
situation, which is constantly changing under the
influence of various factors. Such measurement
conditions cause the need to perform statistical
control of the metrological situation after the ending
of the observations. Method of such control is the
analysis of the general form of the obtained error
distribution of measurements, which was also
recommended by Pearson [Pearson, 1902].

If the form of the distribution of these errors is
insignificantly different from the Gauss’ law, now in
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that is, the errors are purely random and do not
contain any information. However, if the form of the
distribution of the measurement was significantly
different from the Gauss’ law, then it was a mark of
instrumental disruption or the effect of unaccounted
systematic errors. The introduction of such ap-
proaches, was initiated by academician A. N. Kol-
mogorov and first carried out by N. A. Borodachev
[Borodachev, 1950].

Over time, the classical ideas about the law of
errors have undergone evolution, the main stages of
which we are going to consider later in the process of
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justifying the NETM procedures. However, the main
stimulus of this evolution was the action of Hampel-
paradox [Hampel et al., 1986], or, which is the same v
the Elyasberg-Hampel paradox [Dzhun, 2012],
according to which any hypothesis about the type of
probability distribution will be rejected for a
sufficiently large number of members of the statistical
series. Since the considered measurements g require
the generation of large samples, usually with volumes
n > 500, then, in accordance with H. Jeffreys'
conclusions, the normality hypothesis in this case is
usually untenable [Jeffreys, 1938, 1939, 1998].
According to Jeffreys, completely random errors
follow the Pearson distribution of type VII with a
diagonal information matrix and exponent m within
the bounds: 3 < m < 5, if there no any systematic
influences. Then we will consider in detail how these
bounds were obtained. Now, finishing the
introduction, we will form the main concept that
follows from the principles of the NETM: the
Gaussian character of the errors of multiple high-
precise measurements g with n > 500 is evidence of
non-excluded systematic errors.

Purpose of the study

Our main goal is to justify the practicability of
using modern ideas for the error distribution of
multiple large-scale observations, outlined in the
NETM, in the process of conducting high-precise g
definitions. According to the Jeffreys’ theory
[Jeffreys, 1998], samples of volume n > 500 are not
Gaussian, even if measurements are performed under
homogeneous measurement conditions. The assum-
ption that such measurements should follow the
normal law is the main obstacle to improving the
program of highly precise g measurement. The fact
that these measurements are performed in a
complicated metrological situation that is non-
stationary and continuously violated, according to
Jeffreys, should cause significant positive excesses of
errors, but not their normality in any way, if only the
systematic influences are correctly eliminated. The
gravimeter with such high measurement accuracy is
fed completely unperceived by the observer effects:
microseisms, tides, gravitational effects of the
atmosphere and other factors. Therefore, the main
task of our research is to develop such a method for
diagnosing the probabilistic form of measurement
errors g on the basis of the NETM concepts, which
would indicate that these errors are completely
random without any systematic influences.

Methodology for the study of distributions

In general, this methodology is provided by the
NETM procedures that were designed to control the
probabilistic form of the distribution of high-precision
measurements g with large volumes of data based on
the principles of the Neumann-Pearson hypothesis
testing theory.

The problem of improving the methods of
observation is one of the most important and includes
two aspects:

— sufficiently complete elimination of systematic
errors from measurement results;

—g lead to the errors distribution of measu-
rements to such norms that are advanced by the non-
classical errors theory measurements.

The success in solving the problem of eliminating
systematic errors from the results of observations
depends on the degree of development of the theory
of the measured phenomenon and the completeness of
the gravimeter's study.

As for the requirements of the error theory, they
were first formulated in the classical version by
K. F. Gauss in his famous treatises [Gauss, 1809,
1823]. This requirement in the first of them was
somewhat veiled and was reduced to the observance
of the condition for the weight functions:
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where f(x) — probability density of measurement
errors x. It is easy to prove that the requirement (1)
means that f(x) is normality of distribution [Dvulit &
Dzhun, 2017].

The measurements only with the errors normality
have the same weights 2 and we can calculate the
arithmetic mean from the results of measurements.
We find the lower bounds for the dispersions ¢ and
o2 of the effective estimates of the parameters a and o
of the function f(x) using the Rao-Cramer inequality
(otherwise the information inequality of G. Darmais
and M. Frechet), well-known formulas:

2 2
o= 02=2, @
We should note, that expressions (2) can be used
only under the normal error law.
A fundamental expression for the weight func-
tion of measurement errors
Substituting into formula (1), the differential form
of the family of the Pearson’s curves [Bolshev &
Smirnov, 1983]:
fx) _ X+Cy
flx) - cotcyx+cyx?’
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we obtain the main relation of the theory of weight
functions of the measurement results:
P(X) — f'(x) _ X+Cy

xxf(x) x(co+cix+cyx2)

(4)
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where the start point for x is the mean and the
constants are:

o = E2(4b2 - 3b1)J/b;

¢ = [s/by (05 +3))/b; ®)

¢y =(2b, -3b; - 6)/b;
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b=2(5b, - 6b, - 9); S % =my;
by =mZ/m3; b2:m4/m22; (6)
|
my =o|2xrf(x)dx; r=234,..;
2

mp=L m=a=0; X=J; ()
the values I;, I — bounds of the natural range of
density variation f(x).

The classical error theory is based on the law of
normal distribution with the additional assumption of
the absence of systematic errors in the results of
measurements [Gauss, 1823].

Evolution of the concept of error distribution

The methods of the classical error theory of
measurements (CETM) have been massively and
successfully applied for more than two hundred years
and up to the present. Many researchers believe: if
these methods have been proving themselves so well
for such a long time, then it is the uncontested
evidence of the correctness and inviolability of those
laws (axioms) that are based on them. There was the
illusion that we do not have to check the adequacy of
these laws, if they are confirmed by so many years of
practice. The view about the universality of the
Gauss’ law as a “law of errors” began to change only
in 1886, when a famous mathematician and
astronomer S. Newcomb [Newcomb, 1886] first
encroached on the monopoly of the normal distri-
bution on the basis of an analysis of astronomical
observation errors. [Ogorodnikov, 1928]. He
proposed real non-Gaussian errors as a “mixture” of
several normal distributions with a common center,
but with different variances. However, when the work
[Hulme & Syms, 1939] performed by astronomers in
Greenwich was published, only then, it became
obvious, that it is necessary to change the
fundamental concept of the error distribution.
H. R. Hulme and L. S. T. Syms analyzed two series of
observations of latitude in Greenwich in the period
1927-1931 and 1932-1936, which have volumes of
4540 and 4982. The number of errors e > 3¢ in the
first row was 357 (7.86 %), that is in 30 times more
than it should be by Gauss, and the second row had
already 453 (9.09 %), which is 35 times more than it
would be expected by Gauss. The non-Gaussian
character of the errors was demonstrated in the works
of other well-known researchers [Eddington, 1933;
Doolittle, 1910, 1912; Student, 1927; Tukey, 1960,
1962]. However, the author of a new fundamental
concept of the law of distribution of random errors of
observations was H. Jeffreys [Jeffreys, 1938]. He
does not completely abandon the Gauss’ concept. In
85.7 of the work [Jeffreys, 1998], he states:
“... usually the distribution of observation errors
follows the normal law quite closely”. But the merit
of Jeffreys is precisely that he first answered the
question: when “usually” and when *“closely”.
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“Usually” and “closely” when there are no more than
500 observations. Having analyzed the Pearson's data
[Pearson, 1902], he showed in the work [Jeffreys,
1939], that the normal law becomes practically and
theoretically baseless with a sample volume n > 500.
In this case, he suggests using the Pearson distribution
of type VII, but not its classical form. The form
transformed by him, has a diagonal information
matrix, since it is known that the independence of
estimates of mathematical expectation and dispersion
occurs only for a normal population [Geary, 1947;
Lucacs, 1942]. The classical Pearson’s curve of type
VIl does not have this property. We will call the
Jeffreys’ form of the Pearson’s curve with a diagonal
information matrix as the Pearson-Jeffreys dist-
ribution (law), abbreviated PJVII-distribution with the
purpose to avoid confusion, and it has the form
[Jeffreys, 1938]:
c 0,5 (x—A 2™
F@ =<1+2 (=] ®)
r(m+1)
\/2r(m-0,5)T(m+0,5)’

where c=

I'(m) — gama — function;

M=(m-05m?; 2,
o — respectively, the parameters of position and
scattering; m — a key parameter of the distribution (8)
depending on the kurtosis and, thus, shows the degree
of deviation of the PJVII-distribution from the Gauss’
law.

In fact, the form (8) is a generalization of the
Gauss and Student distributions: with m =« (8) itis a
normal law and with m < o (8) - a t-distribution for
discrete values of the degrees of freedom v = 2m — 1.
Jeffreys suggesting using the form (8) for n > 500 in
the work [Jeffreys, 1938], subjected this proposal to
such a deep mathematical analysis, that it actually
made it possible to put it into the foundation of the
NETM. The concept of Jeffreys’ errors (8) turned out
to be as perfect mathematically as the concept of
Gauss' normality, but unlike the latter, it is
substantially more adequate to the real form of error
distributions in large samples of n > 500. Jeffreys in
the work [Jeffreys, 1939] illustrates the method of
constructing effective estimates of the parameters of
the PJVII-distribution and for the first time made it
for the example of the analysis of latitude
observations in Greenwich. In the same paper,
Jeffreys analyzes six series of approximately 500
observations found by Pearson [Pearson, 1902],
which were obtained under controlled homogeneous
observation conditions. Jeffreys, by adjusting the
PJVII-distribution to these data, found that the four
series have longer “tails” and two series — more short
than the normal distribution. Jeffreys, also as Pearson
did, discovered significant serial data correlations for
the series with short “tails”. He found for these six
series of Pearson, see Table 1, such relationships
between the exponent u = m~1 of VII and Il types of
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symmetric Pearson’s curves and the coefficient of
serial correlation of these observations.

The value u < 0 corresponds to the exponent of the
Pearson’s curve of type Il. Assuming the dependence
of x on r in the form: 4 = a + br, Jeffreys finds the
solution: a = 0.273 £ 0.093; b = 0.62 + 0.22. If there

is an absence of a serial correlation of errors (r = 0),
then we have m = 3.66 with such limits according to
the standard 2.73-5.56. Jeffreys, according to these
data, concludes that truly independent errors under
homogeneous observation conditions should follow
the PJVII-distribution with 3 <m <5,

Table 1
Jeffreys analyzes six series of approximately 500 observations by Pearson

Mn= m? r Mealculated 0-C

+0.230 +0.16 +0.173 +0.057
+0.163 +0.24 +0.123 +0.040
+0.111 +0.23 +0.129 -0.018
+0.040 +0.57 -0.083 -0.063
-0.080 +0.32 -0.073 -0.053
-0.225 +0.72 -0.018 -0.049

Jeffreys' conclusions were at variance with the
existing ideas about the law of error distribution of
observations. This was illustrated with a fundamental
test. It was implemented in the Academy of Sciences
of Ukraine on the initiative of Academician E. P. Fe-
dorov, a world-famous specialist in celestial
mechanics and the movement of the Earth's poles
[Fedorov, 1963]. The series of high precision
observations of the highest quality, beginning with the
historical series of F. W. Bessel and ending with
modern astronomical, space, gravimetric and other
observations in various branches of science were used
during the test. There were considered 69 series with
a total number of observations of 190178. The results
of this test are shown in the figure, where the graph is
used as the working field with the purpose to identify
the types of Pearson distributions [Bolshev &
Smirnov, 1983]. Fig. 1 shows that each empirical
distribution is characterized by three coordinates:
kurtosis e, squared asymmetry and sample volume n
in thousands of vertical direction. A single point e the
coordinate origin corresponds to normal distribution
on this field. It can be seen from the Fig. that only a
small part of the series of errors, mostly of small
volume, is grouped around zero. The main mass of
error series is shifted to the right from zero and has
significant excesses e > 0. The extent of the excesses
is from -0.20 to + 6.0; the excesses e < 0 turned out to
be insignificant. As a result, one can draw such an
important conclusion: the most characteristic feature
of the errors of observations of a large volume is
their zero asymmetry and a positive kurtosis of high
significance.

The Russian scientist N. I. Idelson in 1947 wrote:
“As far as we know, there were no series of errors
with negative kurtosis” [ldelson, 1947]. However,
neither experts in the field of the error theory, nor
mathematics attached special significance to this
conclusion.

Basic principles of the NETM and their
importance for improving the method of highly-
precise measurements g

The results obtained in [Dzhun, 1992] allowed to
start the development of the NETM, which was
completed in 2015 [Dzhun, 2015]. We will outline the
fundamental categories of this theory, because our
further conclusions are based on them.

Let’s formulate the first fundamental principle of
the NETM, which is essentially the proposal of
H. Jeffreys formulated in [Jeffreys, 1939]:

for a large number of multiple observations
(n > 500), their random independent errors follow
the Pearson-Jeffreys law of type VII with an expo-
nent m within the limits:

3<m<5h )]
that corresponds to the excess:
6>e =12 (10)

or to such degrees of freedom v of t-distribution:
5<v<9 (11)

None of the researchers who use non-Gaussian
distributions, besides H. Jeffreys, considered that it
was necessary to check their information matrices for
diagonality. At the same time, exact independence of
the distribution parameters provided the greatest
simplicity of obtaining their estimates. Therefore, the
use of the law (8) in the error theory had no
alternative.

Assuming the distribution (8) as the non-classical
error law, we violate condition (1), which takes place
only for the Gauss’ law. It becomes necessary to
generalize condition (1), which leads to the definition
of the second fundamental principle of the NETM:

individual weights of observations that obey the
Pearson-Jeffreys distribution of type VII are
characterized by their weight function adapted to
this distribution.
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Differentiating the formula (8) and using
expression (1), we obtain the weight function of the
Pearson-Jeffreys error law:

where the error of observation e = x — 1, 4, 6, m —
estimates of the parameters of the probability density
law (8), which are determined by the method of

P(x)=¢ s?+2 (12)  maximum likelihood (MML) from the measurement
g m 2myg results.
n
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Fig. 1. Location of empirical error distributions of astronomical,
space, gravimetric, geodetic, economic series (Domain E) on the graph
for determining the type of the Pearson’s curve as a function of A% and e.
The axis n indicates the sample objects in thousands. The Pearson distribution
of type VII corresponds to a line with excess: 0 <e < 1.5

The physical meaning of P(x) is the follows: the
weight P(x) is the inverse dispersion of the ob-
servation x, which has the error e = x — . Thus, the
formula (12) allows m to determine the weight of each
individual gravimetric observation, even anomalous.
Naturally, the weight of the latter will be very small,
because it is inversely proportional to the square of
the error e. It is also easy to see that for m = «
(Gauss’ law) P(x) = 0~2 = const.

Since the PJVII-distribution satisfies all the
conditions for the existence of the bounds of the Rao-
Cramer inequality (also obtained by G. Darmais and
M. Frechet and called the information inequality), the
lower bounds for the variances o7, 02, a2 of effec-
tive estimates of its parameters A, o, m, will be as
follows [Dzhun, 1992]

s 2 (m—0.5)2(m+1)_ 2
T g3 Sg

s? (m+1) .

3 - -
S Zn (m=05)

(13)

251
Sm3_|_

é m+1 L‘Jlil_1
Ay i(m-05) -y tm)-———iv , (14
ng_y(m 0.5) -y {(m) 2 (m-05) (14)

-’

where y¢m-05), y¢m) are trigamma functions from

m.

The bounds of the Rao-Cramer inequality (13) for
the Gauss’ law (m = o) are identical to the relations
(2).

Analyzing the weight function (4), we see that
with a significant asymmetry of the error distribution
(c1#0) and with x = 0, and also with e < 0, it acquires
a degenerate (singular) character. Consequently, the
only evaluation area in which (4) is nonsingular,
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corresponds to the Jeffreys’ errors of the form (11)
with the excesses 0 < e < co.

Since the Jeffreys’ errors are completely random,
without any systematic influence, they follow the law
(8) with the value m within (9), then it is possible to
formulate the third fundamental principle of the
NETM, which is also the criterion for the absence of a
significant effect of systematic errors:

the influence of weak, non-excluded, correlated
errors in the results of observations can be neglected
only when the weight function of the error
distribution of measurements is nonsingular, and m
is within the bounds 3 <m <5.

Criteria for nonsingular weight function
It is reasonable to use estimates of asymmetry and
kurtosis as criteria for the nonsingularity of the weight
function, because they exactly determine its character.
They can be obtained on the basis of unbiased
moment estimates [Cramer, 1946]:

Az./n(n—l) m

n- 2 rnz-l.S ! (15)
(P23 My 3(n-12n-3) 3
B O A GOl (16)

where m, — sampling central moments of order r
calculated by the results of measurements x;:

m=n"Q(x-%; x=n'8x; X=0. (17)
The standard errors for 4 and e are obtained from

the formulas [Cramer, 1946]:
[4m22mG ~12m,m,mg - 24m;m, +9m;m, +35m;m; +36m; - (18)

S, = \
4mn
2
s = [m2m, —4m,m,m, —8mm,m, +4m? —mZm? +16m,m?m, +16mim’ | (19)
* Ty mn

where m, — central moments of order r.
The moments m. in (18)—(19) with the values

n>500, can be replaced by the sampling moments m,
calculated by the formula (17), and, in this case, the
displacement of the moments m, with such volumes of
samples does not particularly affect the estimates o4
and oe.

Having obtained the values 4, e, o4, ge by the
formulas (15)-(19), we determine the confidential
intervals for 4 and e:

Axt xs,; ext xS, (20)

where t, — quantile, determined by the Laplace

function for the significance level @ ; S, and S, are

calculated by the formulas (18-19).

In accordance with the theory of testing hy-
pothesis of Neumann-Pearson, if the confidential
intervals (20) cover zero, it is a necessary and, as a
rule, a sufficient sign of the normality of measurement
errors. If even one confidential interval does not cover
zero, then we turn to Table 1. with a purpose to solve
the problem of nonsingularity or singularity of the
weight function, remembering that only the laws of
Gauss and Pearson-Jeffreys provide the possibility of

10

obtaining nondegenerate estimates in mathematical
data processing. Table 1. is a program for metro-
logical diagnostics of highly precise measurements g.

Results

We used the results of absolute gravimetric
measurements at the points: Borowa Gora, Jose-
foslaw, Ksiaz with a purpose to implement the
algorithm of metrological diagnostics of high
precision g-definitions considered in Table 2 given to
us Marcin Barlik from Politechnika Warshawska. The
numerical characteristics of these measurements and
their histograms are given in Table 3 and Table 4.

Now, let’s consider these measurements from two
points of view, one of which will be based on the
principles of the CETM, the second on the NETM
positions.

If we consider these measurements from the point
of view of the CETM, we should say that they have
been performed well: the asymmetry in all cases is
insignificant, since the confidential intervals for A
cover zero and within & =10 %, @« =5 % (lines 5 and
6 of the Table 3). According to the kurtosis, the most
favorable situation is observed at the points Borowa
Gora and Josefoslaw, and the worst, but admissible
situation is at the point Ksiag, (lines 8 and 9 of the
Table 3). The normality testing of these measu-
rements also showed good results: the probability P,
of the fact, that the measurements at the points
Borowa Gora, Josefoslaw and Ksiaq are samples from
the normal general complex, that, respectively, are
equal to 15.22 %; 49.17 %; 20.00 %, that is, they are
far from their critical bounds (the top row of the Table
4, besides the probabilities P,z, shows the number of
degrees of freedom for r of the y2-criterion). It means
that the measurement system on this gravimeter was
worked out by the creators of this tool in good faith,
but within the framework of outdated classical ideas
about the law of error distribution of measurements of
a larger volume.

Now consider the results of observations at the same
points from the outlook of the NETM requirements.

We see that Ksiag has the best metrological
situation (line 3, Table 3): the accuracy of
measurements at this point is significantly higher than
at other points. In addition, the left bound of the
confidential interval for e on Ksiagq with a risk level
a = 10 % covers zero, and is so close to it that it
practically confirms its positive significance. The
error distribution at this point deviates from the
normality in a good direction, e < 0 namely, it is the
closest to the perfect form of Jeffreys’ errors (8).

The confidential interval for e at the Borowa
Gora, Ksiaqg, Josefoslaw (Table 3, lines 8, 9) cover
zero. According to the concepts of the NETM, the
asymmetry is insignificant for this point, we can make
the conclusion, about the correctness of the classical
data processing method applied at this point taking
into account, the data in Table 3.
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Table 2

Diagnostics of results of gravimetric measurements based
on the construction of confidential zones for asymmetry and kurtosis

Results

Diagnostics of results

Confidential intervals for asymmetry A and
excess ¢ cover zero, that means the
confirmation of hypotheses:

A=0; ¢=0

The weight function is in the nonsingular domain of classical
estimation. The obtained results should be considered as final.
Although, the distribution of errors is not ideal, that’s why,
there is no need to apply the NETM

The confidential interval for A covers zero,
and for ¢ — covers or touches the most
favorable zone (10) for excess, that means
the confirmation of hypotheses:
A=0;12£e£6

Every experimenter should dream about such case: the weight
function is not only nonsingular, but also provides an effective
estimation in the next necessary approximation, realized by
methods of the NETM

The confidential interval for A covers zero,
for ¢ — is inside the zone (10), without
touching its edges, that means the
confirmation of hypotheses:
A4=0;0<e<1.2

The weight function is non-singular, i.e. the estimation is
permissible, but the distribution of errors is not ideal, because
the action of weak, not excluded systematic errors is confirmed.
To improve the quality of estimates, the following
approximation is necessary in order to estimate the parameters
of a mathematical model using the methods of the NETM.

The confidential interval for A covers zero,
and the whole confidential interval for ¢ is
in the negative domain, that means the
confirmation of the hypotheses: 4 = 0;
e<0

The weight function of distribution of errors is singular in this
case, but the estimation is possible if none of the errors is equal

or greater than the value [2m2b2 /|e |]0'5 . If this condition is

met, then with the purpose of more objective estimation, which
does not exaggerate reliability, the following approximation,
after applying classical methods, is necessary to evaluate the
parameters of the mathematical model of the NETM using the
weight function of the Pearson-Jeffreys distribution of type II.
[Dzhun, 2015]

The confirmation of the hypotheses:
1)4<0;¢=0.
2)A>0;¢=0.
3)A<0;e<0.
4)A>0;¢>0.
5)A>0;¢<0.
6)A<0;e>0

These are pathological cases of evaluation. In all these cases,
the weight function is singular, falling into inadmissible
domains of estimation, that is impossible due to the irregularity
of the weight function

Table 3

Characteristics of samples of 111 series absolute ballistic measurements of Galilean acceleration at points:
Borowa Gora, Josefoslaw, Ksiag.

. Points of observations
No. | Sample characteristics _
Borowa Gora Josefoslaw Ksiaq
1 2 3 4 5
The measurement
1 result and its standard: 981250155.20+0.17 981213788.32+0.47 981056794.22+0.17
g £ gy, date 15.08.2016. 21:57:24 01.11.2011. 14:05:02 17.04.2008. 17:51:15
2 Volume of sample n 1083 516 822
Root mean square error
3 of measurement and its 5.68+0.12 10.79+0.34 4.86+0.12
standard: ¢ * o,
4 Asymmetry and its 0.016+0.076 -0.018+0.118 -0.039+0.097
standard:4 + o4

11
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Continued of Table 3

1 2 3 4 5
5 Confidential interval
for A, -0.109+0.141 -0.112+0.176 -0.199+0.121
a=10%
6 a=5% -0.133+0.165 -0.249+0.213 -0.223+0.145
Kurtosis and its
7 standard: o + o¢ -0.002+0.151 +0.020+0.241 +0.240+0.167
Confidential interval
8 for ¢, -0.250+0.246 -0.376+0.411 -0.035+0.515
a=10%
9 a=5% -0.298+0.294 -0.452+0.492 -0.087+0.567
Sampling
moment
10 m; 32.222 116.383 23.60
11 m3 2.853 -22.232 -4.42
12 My 3112.982 41 147.381 1811.30
13 Ms 603.675 -128 8514.322 -1667.56
14 Me 509 897.214 26 008 872.567 240 843.45
15 Mg 117 241 423.602 23 426 330 151.996 43989 697.36
Table 4
Histograms of the 111 series errors of the absolute ballistic measurements
of Galilean acceleration at the points: Borowa Gora, Josefoslav and Ksiaz.
Borowa Gora, P, =15.22% Josefoslaw, P, =4917% Ksiaq, P, =20.00%
r=12 r=8 r=11
e Gau- Gau- Gau-
Fre- | ssian fre- Fre- | ssian fre Fre- | Sssian fre-
Intervals [9Y""| quen- |ni- nf| Intervals |quency| auen- | ni- Intervals  |quen-| quen- |
cy cies n cies | nf cyni | cies | M nf
" nf nf nf
1| 37.1-394 5 2.16 +2.84 | 49.300-55.305 2 } 776.80-779.04| 2 }
2| 394417 5 6.51 -1.51 | 55.305-61.293 3 3.08 |+1.92|779.04-781.26| 1 3.00 0.00
3| 417440 | 14 16.83 | -2.83 | 61.293-67.280 5 10.04 | -5.04 | 781.26-783.48| 10 798 | +2.02
4| 440463 | 38 37.03 | +0.97 | 67.280-73.268 | 28 28.85 | -0.85 | 783.48-785.69| 22 21.39 | +0.61
5| 46.3-486 | 68 69.28 | -1.28 | 73.268-79.255 64 61.34 | +2.66 | 785.69-787.91| 38 4721 | 921
6 | 48.6-509 | 99 110.59 |-11.59|79.255-85.242 | 107 96.68 |+10.32| 787.91-790.13| 80 8460 | -4.60
7| 50.9-532 | 169 | 149.34 [+19.66|85.242-91.230| 100 | 112.80 | -12.8 | 790.13-792.35| 141 12348 |+17.52
8| 53.2-555 | 179 | 17189 |+7.11|91.230-97.217 96 97.47 | -1.47 | 792.35-794.56| 133 146.14 |-13.14
9| 555578 | 151 | 168.29 |-17.29 797.217- 67 62.38 | +4.62 | 794.56-796.78 | 148 14221 | +5.79
10| 57.8-60.1 | 136 | 140.15 | -4.15 803.205 30 2959 |+0.41| 796.78-799.00| 122 | 112.24 | +9.76
11| 60.1-624 | 102 99.28 | +2.72|03.205-09.192 | 10 10.38 | -0.38 | 799.00-801.21| 66 7191 | -5.91
12| 624-64.7 | 64 59.93 | +4.07 | 09.192-15.180 4 270 |+1.30| 801.21-803.43| 39 3789 | +111
13| 64.7-670 | 40 3050 |+9.50|15.180-21.167 803.43-805.65| 9 16.17 | -7.17
14| 67.0-69.3 7 1343 | -6.43 805.65-807.86| 7 6.81 +0.19
15| 69.3-716 2 807.86-810.08| 4 1.60 +2.4
16| 71.6-739 3} 6.92 -0.92
17| 73.9-76.2 1

The worst metrological situation occurred at

Josefoslaw, since here is observe the most ¢ = 10,79 n

Gal (Table 3, line 3).

Table 3 shows the

Gora
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, Jozefoslaw and Ksiaz.

results of the NETM
diagnostics of the 3 observations series at Borowa

The NETM diagnostics of the 1st series from our

observations showed a significant negative excess in

Borowa Gora at risk of « = 10 %, and a practically

distributions.

significant asymmetry in Ksiaz. Therefore, the results
of this diagnosis were not published due to the
singularity of the weight function for these two



Ieonesis

The NETM diagnostics of the 2nd series of
measurements g on the same three points was
published in the work [Dvulit & Dzhun; 2017]. It
showed an improvement in the shape of
distributions and the fact that their processing can

be carried out using the CETM methods. It is
interesting to compare the results of the x? -test of
the normalization hypothesis in the work [Dvulit &
Dzhun; 2017] to Table 4 of this paper (see
Table 5).

Table 5
The comparison of the results of the normalization hypothesis
for the 11 and 111 series of observations g using x? - criterion of Pearson
No. series / The probability of a normalization hypothesis P2 .
Name of the point Borowa Gora Jozefoslaw Ksiaz
Il series 31.38% 79.36 % 52.80 %
I series 15.23 % 49.17 % 20.00 %

According to the CETM, observations of the Il
series are more perfect, since they have on an average

have about twice as much probability of PX 2. In the
NETM categories, the observations of the 1l series
are better because they are closer to the ideal form of
the non-gaussian, Jeffreys errors (8). But these
measurements are far to the norms (9-11).

There are rows of the highest quality in
gravimetry, the errors of which are close to the
Jeffreys’ norm (9). For example, the series obtained at
the International Gravimetric Station No. 5035,
performed by a GABL gravimeter (Moscow Region
Test Base IFZ AN SSSR) [Dzhun, at al., 1984]. For
this series m = 6.67 + 1.37. Confidence interval at
o =10 %: 4.42 < 6.67 < 8.92. Its right part m = 4.42
covers the interval (9), which confirms the
insignificance of the deviation of m = 6.67 from the

Jeffreys” norm. Let Pg and P; — X2 — are the
probabilities that the series in Ledovo is a sample of
Gaussian and Jeffreys general sets. Then Pg = 1.5 %,
Py = 46.6 % [Dzhun, at al., 1984], that is, e P; > Pg is
31 times, which is natural since m = 6.67 is
significantly less than m = oo, that is typical for the
Gauss law.

The fact that high quality observations on the
GABL have been confirmed by the International
Bureau of Measures and Weights (IBMW, Paris,
Sevr), where there is one of the most accurate
stationary for measuring units g [Sakuma, 1973] and
as a result of its comparison with the gravimeter of
the National Bureau of Standards USA [Hammond &
Faller, 1971; Arnautov et al., 1982]. In the upper part
of the measurement distributions g in Jozefoslaw and
Ksiaz, instead of the distribution peak, a platform is
observed. This is evidence of the lack of proper
protection of the FG-5 gravity meter from the effects
of microseisms, as evidenced in the work [Arnautov,
etal., 1982, p. 18, Fig. 5].

Thus, due to the NETM, the results of
measurements at all three points are still far from
perfect and should cause serious suspicion with regard
to the effect of non-excluded systematic errors.
Exactly these errors keep error distributions on these
points in the grip of normality. Completely random

measurement errors with n > 500 should have the
form of Jeffreys’ errors (8) with norms (9-11).

Scientific novelty and practical importance
of the research

In the conducted research, the methods of the
NETM are used to improve the technique of mea-
surements g which are performed in a complicated
metrological environment with the need to take into
account a number of non-stationary sources of
systematic errors.

The practical significance of the research is the
development of an algorithm for controlling the
probabilistic form of the distribution of samples of
measurements g (Table 2) in order to improve their
methodology. The study of the reasons for the
deviations of error distributions from established
norms has long been a necessary element of the
theory of production accuracy [Borodachev, 1950],
the process of monitoring the normative operation of
aggregates and measuring instruments. Imple-
mentation of such approaches which were involved by
Kolmogorov and his school for the first time and then
realised in the NETM, has long been the main
strategy that provides metrological literacy for large-
scale measurements.

Conclusions

1. In accordance with the principles of the CETM,
the results of absolute high-precise measurements g at
Borowa Gora, Josefoslaw and Ksizgq, should be
classified as effective and consistent estimates. It
should always be remembered that any measurement
experiment is in the domain of acceptable estimation
only in the case when the confidential interval for
asymmetry covers zero, and the confidenctial interval
for the kurtosis also covers zero or is in the positive
region.

2. The point Ksiagq has the lowest value of the
P2 — probability, which is 20.00 %, but it does not
mean that these observations are that bad. On the
contrary, the distribution of errors at this point
deviates from the Gauss’ law, according to the

13
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principles of the NETM and in a good direction: it has
a positive and almost significant excess, it means, that
it is the closest to Jeffreys’ errors of the form (8). The
best metrological situation has been achieved at Ksiaq
point and the evidence of this fact is that the standard
measurement error is substantially less than at the
remaining points and is 4.86 + 0.12 (Table 3). The
weight of one measurement at the points Josefoslaw
and Borowa Gora in 1.4 times less.

3. According to the NETM categories, the
proximity to the normality of the measurement error
distributions for sample sizes n > 500 is an outdated
expediency far from the ideal (8) with the norms
(9-11). In other words, the normality of errors with
n > 500 is only half way towards the above-mentioned
Jeffreys’ standards. The essence of the strategy of
continuous improvement of high-precise definitions g
is to bring the distribution of their errors to the
ideal (8) with the norm (9). In addition, the errors of
measurements of the absolute gravimeter GABL
created by the Institute of Automation and
Electrometry of the Siberian Branch of the Russian
Academy of Sciences correspond to the Pearson-
Jeffreys law (8) with m = 6.67 + 1.37 [Dzhun, 1983;
Dzhun at al., 1984], that is, it almost reaches the norm
9).

4. The normality of errors of high-precision
measurements g with n > 500 means only that the
weight function (4) of such observations allows
estimation, leaving the errors correlated (non-
random). This correlation can be attributed to the
noise field (ignore it) only when the measurement
errors follow form (8) with the norms (9-11). It is
achieved through a deeper study of the sources of
systematic errors with subsequent exclusion from the
results of observations. It should always be re-
membered that the normality of measurement errors
with n > 500 is not the norm, but a reason for serious
concern regarding to the non-excluded systematic
influences. Exactly they rigidly hold the empirical
distribution of errors in the embrace of normality. The
causes of systematic errors include the influence of
the Moon, the trends of energy and frequency of
microseisms, the gravitational influence of the
atmosphere, its pressure, temperature, and the
peculiarities of the place of observation. Gravimetrists
await ahead of purposeful work in order to relieve the
definitions g from systematic errors and lead their
distributions to the ideal (8), and the kurtosis to the
norm (10). The successes of this work will facilitate
the acquaintance with the fundamental works of
H. Jeffreys [Jeffreys, 1938, 1939, 1998], as well as
with the works [Dzhun, 1983; Dzhun at al., 1984;
Dzhun, 1992, 2015, 2017].

5. Is it possible not to respond to modern
developments in the field of the error theory and data
analysis, ignore the conclusions of H. Jeffreys and the
concept of the NETM? There is, however, a huge risk
to remain forever in the arms of routine obscurantism,
thus, closing the prospects for qualitative changes in
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the way of improving observations when studying one
of the main mysteries of modern science - the
mysteries of the gravity. Also, it should be
remembered that the NETM does not disprove the
Gaussian CETM, it retains it as its necessary element
and stands on its shoulders, overcoming the
Elyasberg-Hampel paradox with n > 500. The CETM
methods are always implemented before the NETM
procedures are applied, since there is nothing like
them in their simplicity and clarity.
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IIATHOCTHKA BUCOKOTOYHUX BAJIICTUYHUX BUMIPIB I'PABITALIIMHOI'O [TPUCKOPEHHS
METOJIAMU HEKJIACUYHOI TEOPII IOXUBOK

Merta XOCHiIKeHHsI: TOKa3aTH HEOOXIMHICTh BUKOPHUCTAHHS CYYaCHHUX YSBJICHb MPO 3aKOH PO3MOILTY
NOXHUOOK CIOCTEPE)KEeHb, 3aisHUX B Kareropisx “Hekmacuunoi teopii Bumipis” (HTIIB) mpu mposemeHHi
BHUCOKOTOYHUX OaNiCTUYHMX BH3HAYEHb TIpaBiTallifHOro mpuckopeHHs. lli BHU3HAYeHHS XapaKTEpU3YIOTHCS
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BEIIMKUMHU OOCsTaMH, 110, BiAMOBiAHO 10 Teopii mpodecopa KemOpumkcrkoro yniBepcutety I'. Jbxeddpica,
ABTOMATHYHO BUBOJMTH IX 3a MEXI Aii KIIACHYHUX YsIBJIEHb PO 3aKOH MOXHOOK BuMipiB. Lli 3acTapini ysaBiIeHHS
PO 3aKOH PO3NOALTY MOXMOOK BUMIpIB BEIMKOTO 0OCATY € TOJIOBHOIO IIEPEIIKOIOI0 Ha MUISXY BIOCKOHAICHHS
METOAMKH INX TyXE¢ BAXIMBUX BH3HAYCHb. MeTOAHKA HOCTiMKeHHH 3a0e3neuyeThes mporenypamu HTIIB,
SAKi pO3pOoONICHI 3 METOK KOHTPOIO WMOBIpHICHOT (OPMH CTATUCTHYHHUX PO3MOALTIB BHUCOKOTOYHHX
a0CONOTHUX OaTiCTUYHUX BHMIpIB i3 BEIMKUMH 00csraMu BHOIpOK Ha OCHOBI pekomeHaanit I'. [xeddpica i Ha
NpUHIOUIAX Teopii mepeBipku rinore3. OCHOBHMM Ppe3yJbTaTOM JOCHDKeHHA € mpoBeneHns HTIIB-
JarHOCTUKH METPOJIOTIYHOI CHTYyaIlii BUCOKOTOYHHX BUMIpiB OamictmaHuM TpaBimerpoM FG-5, BukoHaHmX
HICIIs ACSKUX YIOCKOHAJIEHb NPOTpaMH CIIOCTEepexeHb. Lleli MeTo MiarHOCTUKHU IPYHTYEThCS HA BUKOPUCTAHHI
JOBIpUMX IHTEpBaNiB IUIi OIIHOK acuUMeTpii i ekcrmecy oTpuMaHOi BHOIPKM BHMIpiB § 3 HACTYIHHM
3acTocyBaHHAM y2-Tecty IlipcoHa Juis BM3HAYEHHs 3HAYMMOCTI BiIXMIEHb iX PO3MOJLIIB BijJl BCTAHOBIEHHX
HOopM. Y BigmoBigHocTi 3 kateropissmu HTIIB Ttakumu HOpmamu € 3akoHu [ayca i Ilipcona-IIxeddpica,
OCKIJIbKM caMe BOHHM 3a0e3IeuyloTh HECHHIYISIPHICTh BaroBol (yHKHii BHOIPKM 1 MOMIHMBICTH OTPUMAaHHSI
HEBUPOJUKEHUX OIIIHOK J NMpH MaTeMaTH4Hii 00poOiii Bumipis. HaykoBa HOBU3HA: 3a/1isiHI MOXKJIMBOCTiI HOBOTO
iHcTpymenTa B ob6macti “Data Analysis” — HTIIB 3 MeTor0 BIOCKOHAICHHS! METOIHKH BHCOKOTOYHHX BHMIpIB (,
SKi BHKOHYIOTBCS B CKJIAIHIM METpOJIOTidHIH cuTyamii i HEOOXiJHICTIO BpaxyBaHHS pALy HeCTaI[lOHApHUX
JUKEpeN CUCTeMaTHYHHX MoXuOoK. IIpakTHyHa 3HAYYIIICTH TOCTIKEeHHs moisrae B 3acrocyBanHi HTIIB —
JarHOCTUKHU HMOBIipHiICHOT (pOpMH PO3MOIUTY BIMIPIiB § 3 METOIO BIOCKOHAJICHHS METOUKH IIMX BUCOKOTOYHUX
BHU3HAYCHb. JIOCHi/PKEHHS TPUYHAH BiOXWICHb PO3IMOMALTIB MOXMOOK BiJl BCTAHOBIICHHX HOPM 3a0e3medye
METPOJIOTIYHY TPAaMOTHICTh IPOBEICHHS BUCOKOTOYHHX BUMIPIB BEIMKOTO 00CSATY.

Knouosi cnosa: 3akonm moxubox: [ayca, Ilipcona—/[xeddpica; abcomoTHi BHMipH TpaBiTaliifHOro
MPUCKOPEHHS; HEKJIACHYHA TeOPist MOXHOOK BHMIpiB.
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