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The new non-Markovian diffusion equations of ions in spatially heterogeneous environ-
ment with fractal structure and generalized Cattaneo-Maxwell diffusion equation with
taking into account the space-time nonlocality are obtained. Dispersion relations for the
Cattaneo-Maxwell-type diffusion equation with taking into account the space-time non-
locality in fractional derivatives are found. The frequency spectrum, phase and group
velocities are calculated. It is shown that it has a wave behavior with discontinuities,
which are also manifested in behavior of the phase velocity.
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1. Introduction

Fractional integrals and derivatives [1-5] are actively used in researches of anomalous diffusion in
porous media [5-16], disordered systems [17-30], plasma physics [31-36|, turbulent [37-39], kinetic and
reaction-diffusion processes [39-48], biological systems [49-51], etc. [5,52,53]. An actual problem for
description of nonequilibrium processes in complex systems is construction of generalized diffusion and
wave equations [54,55| using fractional integrals and derivatives. The dispersion of heat waves in a
dissipative environment using the Cattaneo—-Maxwell heat diffusion equation with fractional derivatives
has breen investigated in Ref. [56]. On the basis of this equation, the frequency spectrum, phase and
group velocities of propagation of heat waves in a dissipative environment have been investigated.

In Refs. [30,57-60], the statistical approach has been developed for obtaining the space-time nonlo-
cal transport equations with fractional derivatives using the Zubarev nonequilibrium statistical operator
method [61-64] and the Liouville equation with fractional derivatives, proposed by Tarasov [40].

In the second section, based on the statistical approach within the Renyi statistics, we have obtained
a generalized diffusion equation with fractional derivatives for the nonequilibrium average value of the
number density of particles. This equation is nonlocal in space and time. In the third section, within
the Gibbs statistics and approximation of constant diffusion coefficient, the frequency spectrum of
the Cattaneo-Maxwell-type diffusion equation for the nonequilibrium average value of the number
density of particles has been obtained. The frequency spectrum, phase and group velocities have been
calculated, depending on order of the fractional derivative, characteristic relaxation time and value of
the diffusion coefficient.

2. Generalized diffusion equations with fractional derivatives
To describe the diffusion processes of particle in heterogeneous environments with fractal structure,

one of main parameters of the reduced description is the nonequilibrium density of particle numbers
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n(r;t) = (A(r))L, where n(r) = Zﬁvzl d(r — 7;) is the microscopic density of the particle. The
corresponding generalized diffusion equation for n(r;t) can be obtained on the base of approach [57],
by using the Zubarev nonequilibrium statistical operator method within the Renyi statistics for solution
of the Liouville equations with fractional derivatives,

9 . a ! e(t'— a . ¥
g 0 =DF - [dua) [ 0Dy (st ) DB o' 1)

Dy(r, 75 t,t) = (&(r)T(t, )0 ()., (2)

is the generalized coefficient of particle diffusion within the Renyi statistics, averaging of which is
performed with a power-law Renyi distribution,

pratt) = i (1= 25 (1= [ dpatr) sty ) . 3)

Zr(t) =1%(1,...,N)T(1,...,N) (1 — %5 (H - /dﬂa(r) y*(r;t)ﬁ(r))) w (4)

where

is the partition function of the relevant distribution function, H is a Hamiltonian of system, 0 < ¢ < 1,
q is the Renyi parameter;

3t
V*(T7t) = q—1 V(T’ ) ~ t
1+ 2= [dpa(r)v(r;t) (i(r),
T(t,t') = exp, < ft’ P (t"))iLg, dt”) is the evolution operator in time containing the projection;

exp, is the ordered exponentia, P, (t") is the generalized Kawasaki-Gunton projection operator de-
pended on a structure of the relevant statistical operator (distribution function), pe;(z™;t). iL, is
the Liouville operator for a system of particles in heterogeneous environment with fractal structure.
Parameter v(r;t) is the chemical potential of particle, which is determined from the self-consistency

condition, . .

<7’L(7’)>a = <n(r)>a7rel : (5)
B = 1/kpT, kp is the Boltzmann constant, 7" is the equilibrium value of temperature; v(r) =
Z;V:l v;6(r—r; ) is microscopic flux density of the particle. The average values in Eq. (2) are calculated

by (see Ref. [57]) . N
(Mo =101 N (L, N )pralas ),
where I *(1,...,N) for system of N particles has the form

and defines the integration operation,

|z[*

I(a)

/ f(@) dpa(z),  dpa(z) =

The operator T(1,...,N) =T(1)...T(N) defines the operation

N —

T(x])f(x]) = (f(...,a:;-—a:j,...)+f(...,a:;-+a:j,...)).

In the generalized diffusion equation (1), d* is a fractional differential [65] that is defined by
Z D x)(dxj)*,
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where

1 r () (4
D3 f(x) = T'(n—a) /0 (x f 2)((14-)1—nd2 (7)

is the Caputo fractional derivative [1,2,66,67], n —1 < a <n, f™(z) = Ci'lz—nnf(z) with the properties
Dg1=0and Dg 2 =0, (j #1).

At ¢ = 1, the generalized diffusion equation within the Renyi statistics goes into the generalized
diffusion equation within the Gibbs statistics with fractional derivatives. If ¢ = 1 and a = 1, we
obtain the generalized diffusion equation within the Gibbs statistics. In the Markov approximation,
the generalized coefficient of mutual diffusion in time and space has the form D (r,7';t,t") =~ D, 6(t —
t")o(r — 7'), by excluding the parameter v*(r';¢') via the self-consistency condition, we obtain the
diffusion equation with fractional derivatives from Eq. (1)

(), = DyDEw (i) 0

The generalized diffusion equation takes into account spatial fractality of system and memory
effects in the generalized coefficient of particle diffusion D, (7, r’;¢,¢") within the Renyi statistics. Ob-
viously, spatial fractality of system influences on particle transport processes that may manifest as
multifractal time with characteristic relaxation times. It is known that the nonequilibrium correlation
functions D, (r,7';t,t") can not be exactly calculated, therefore the some approximations based on
physical reasons are used. In the time interval —oco + ¢, ion transport processes in spatially hetero-
geneous system can be characterized by a set of relaxation times that are associated with the nature
of interaction between of the particle and particles of environment with fractal structure. For ope-
ning of multifractal time in the generalized diffusion equation, we use the following approach for the
generalized coefficient of the particle diffusion

Dy(r,7';t,t") = W(t,t') Dy(r,r'), )

where W (¢,t') can be defined as the time memory function. In view of this, Eq. (1) can be represented
as

t
ot = [ SO vt ar, (10)
where
W(rit) = [dua(r)DF - Dyrr')- D6 (3¢, (11)

Further we apply the Fourier transform to Eq. (10), and as a result we get in frequency represen-
tation

iwn(r;w) = W(w) ¥(r;w). (12)
We can represent frequency dependence of the memory function in the following form
(iw)'=¢
Ww)=—F"——, 0 <1, 13
@) = Tyre 0<¢ (13)

where the introduced relaxation time 7 characterizes of the particle transport processes in system.
Then Eq. (12) can be represented as

(14 (iwr)®)iwn(r;w) = (iw) U (r;w). (14)
Further we use the Fourier transform to fractional derivatives of functions,

LoD f(t)iw) = (iw) S L(f(t); ), (15)

where OD% =4 fit) = ﬁ% fg #cﬁ is the Riemann—Liouville fractional derivative. By using it, the
inverse transformation of Eq. (14) to time representation gives the Cattaneo-type generalized diffusion

equation with taking into account spatial fractality, in the expanded form
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oDEn(r;t)7€ + (Din(r;t) = / dppe (r) DS - Dy(r, ') - DS Bv*(r'; 1), (16)

is the new Cattaneo-type generalized equation within the Renyi statistics with time and spatial non-
locality. At ¢ = 1 from Eq. (16), we get the Cattaneo-type generalized equation within the Gibbs
statistics with time and spatial nonlocality.

Eq. (16) contains significant spatial heterogeneity in D,(r, 7). If we neglect spatial heterogeneity,

Eq(r, r') = ﬁqé(r -7, (17)

we get the Cattaneo-type diffusion equation with of space-time nonlocality and constant coefficients
of diffusion within the Renyi statistics

ODfén(r; 15)7'5 + ODfn(r; t) = Equo‘ﬁy*(r/; t), (18)
or in the expanded form
v(r;t)
+ I [dpa (v (r;t) (),

and at ¢ = 1 we get the Cattaneo-type diffusion equation with of space-time nonlocality and constant
coefficients of diffusion within the Gibbs statistics,

oD n(ri )7 + (Din(rit) = Dy Dy B (19)

oDEn(r;t)r¢ + (Dén(r;t) = DD>*Bu(r;t). (20)

3. Dispersion relations for the time-space-fractional Cattaneo—Maxwell diffusion
equation

Using the self-consistent condition (5) and the approved approximations, Eq. (20) can be written as
ODfén(r; )7 + ODfn(r; t) — D'D**n(r;t) = 0, (21)

where D’ is the renormalized diffusion coefficient. For simplicity, we consider the one-dimensional case
and a solution of Eq. (21) will be sought in the form of the plane wave,

’I’L(:E;t) ~ e—iwt—i—ikx’ (22)
then we get the corresponding frequency spectrum,
(75 (=iw)® + (—iw)®) — D'(ik)** = 0. (23)

It should be noted that the real part w,(k) of the frequency spectrum w(k) = w,(k) + iw;(k)
describes propagation of process, the imaginary part of w;(k) describes damping of process in time.
The real part k(w), of the wave spectrum k(w) = k(w), + ik(w); describes propagation of the process,
the imaginary part k(w); describes damping of the process in space. In addition, the real part of the
frequency spectrum determines the wave dependence of the phase and group velocities of process:

) = zenlk), 0g(h) = Aren(R),

and the real part of the wave spectrum determines the frequency dependence of the phase velocity of
process,
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First, let us consider the case @« = 1 and 0 < £ < 1. The similar problem is solved in Ref. [56]
at investigating dispersion relations for the Cattaneo-Maxwell heat transfer equation with fractional
derivatives. At o = 1, we get the equation

(7‘5(—2'(,0)25 + (—iw)g) +D'k? =0, (24)

the solution of which has the form:

 —1E+ V1 —4rEDk?

27€

(—iw)* (25)

or _
¢ ,§—1:|: 1 —47r¢D'k?
ws =1 .
27¢
Next we find imaginary and real parts of the frequency by putting w = |wle?, |w| > 0, -7 < 6 < 7,

then we get
feeies _ ge5 L V1~ 4D
27¢ '
The solution of Eq. (27) will be rewritten depending on a sign of expression under the root, B(k) =
1—475D'K2.
In the case of B(k) > 0 we have that

(26)

(27)

1
~14+ V1 - 47¢D'k2|¢

2

ol = (28)

™
==
, 5+

Then the real and imaginary parts of the frequency spectrum w(k) = w, (k) +iw;(k) will have the form:

1
1|—1++/1—4r6Dk2|* 1
wr(k) = |w|cosf = —— a sinz7 0<k < —, (29)
T 2 3 VAarED'k2
%
1|1+ V1 —47EDk? 1

wi(k) = |w|sinf = — T Ccos z, 0<k ——. (30)

T 2 § VATED'K?

According to definitions of the phases and group velocities:
wr (k) 0
o) = 0k = D), (31)
we obtain the following expressions for v, (k) and vy(k):
=3¢
1 [—14++V1—478D'k? 7T 1
=—— in — kLS —/——, 2
wlk) = =% 3 e OSES Yo (32
1-¢
2 DK 1+V1—47€D'k2 ° 1
g( ) & 1 — 47ED7k2 ( 2 ) Ar€ D' |2 ( )
In the case of B(k) < 0 we have that
. L1y /|1 — 47ED'R?|

|w|¢ei? = €2 . (34)

27¢
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It is convenient to submit the fraction in an exponential form:

—14iy /|1 — 47¢D'K?|

_ i
27¢ = Ke

where
—1+iy/|1 - 4r€D'k?|

| D'k2 =
K = =1/ ——, 1 = Farctan V4r¢D'k2 — 1.
T

27¢

Taking this into account, we get that

D'k2 T
it = 2, =T 1y

or

— €
D'k2 1 —
lw| = , 0= il T garctan VArED'E? — 1. (35)

7€ 2

Accordingly, for the real and imaginary parts of the frequency spectrum, we find that

1
— €
D'k? 1 =
wr(k) = |w[cosf =+ | /| — | sin <E arctan V 47 D'k? — 1) : (36)
T

1
— €
D'k? 1 —
wi(k) = |w|sinf = — | cos <E arctan V 478 D'k% — 1) : (37)
\

In this case, the phase and group velocities obtain the following form:

=

1 D'k? 1 =
vp(k) = iE —k sin (E arctan V478 D'k2 — 1) ; (38)

7€

=

1 D'k2
vy (k) = ig—k .

1 —
sin | = arctan V47€D'k2 — 1
7€ £

coS (% arctan /476 D'k2 — 1)
VAréD'k2 — 1 '

Using the analytic expressions for the frequency spectrum, phase and group velocities in the cases
B(k) > 0 and B(k) < 0, numerical calculations are carried out at two values of the relaxation time
7 =0.2, 0.5 and the diffusion coefficient D’ = 0.5 with different values of the order ¢ of the fractional
derivative £ = 0.3, 0.5, 0.8, 1. The results of the calculations are presented in Figs. 1-4. For £ = 1, we
have the usual Cattaneo—Maxwell equation with the corresponding behavior of the frequency spectrum.
From analysis of the frequency spectrum for & = 0.3, 0.5, 0.8, we see nonlinear wave behavior in
both the propagation and the damping of the diffusion process. In the behavior of w, (k) there are
discontinuities, which is also manifested in phase velocity, respectively. This may indicate a sharp
change in the nature of the diffusion wave process. The group velocity has A-like form with a sharp

+

(39)
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Fig.1. The frequency spectrum for 7 = 0.2, D’ = 0.5.
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Fig. 2. The frequency spectrum for 7 = 0.5, D’ = 0.5.
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Fig. 3. The phase and group velocities for 7 = 0.2, D’ = 0.5.

peak that, with increasing relaxation time, decreases. It is model research and it is obvious that features
of the frequency spectrum studies would be important and interesting in investigating diffusion wave
processes for specific real systems.
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Fig. 4. The phase and group velocities for 7 = 0.5, D’ = 0.5.
4. Conclusions

By using approach of Ref. [57,60], the new non-Markovian diffusion equations of particles in spatially
heterogeneous environment with fractal structure have been obtained. By using approaches for the
memory functions and fractional calculus [1-5], the generalized Cattaneo—Maxwell diffusion equations
with taking into account nonlocality of space-time have been obtained. Dispersion relations for the
Cattaneo—Maxwell-type diffusion equation are found, taking into account the time—spatial nonlocality
in fractional derivatives. The frequency spectrum, phase and group velocities of the particles have
been calculated for two values of the relaxation time 7 = 0.2, 0.5 and the diffusion coefficient D’ = 0.5
with the change in the value of the order of the fractional derivative & = 0.3, 0.5, 0.8, 1. It is shown
that the frequency spectrum of the diffusion process is of wave behavior with discontinuities, which

also manifests itself in the behavior of the phase velocity.
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V3aranbHeHe piBHaHHA audysii KettaHo—Makceenna y apobosunx

I'IOXI,EI,H nx. ,El,mcnepclel CI'IIBBIp,HOLLIEHHSI

Kocrpo6iit I1.1, Mapkosuu B.!, Bizuosuu O.!, Beminceka 1.1, Tokapuyx M.h2

! Haugonanrvruti ynisepcumem “JIvsiecvra noaimexrnixa”,
eyn. C. Bandepu, 12, JIvsis, 79013, Yxpaina
2 Incmumym. @izury xondencosarnux cucmem HAH Ypainu,
eyn. Ceenyiuvkozo, 1, Jveis, 79011, Yxpaina

OTpuMaHO HOBE HEMapKOBCBbKe DiBHSHHS udy3il YaCTHHOK y TPOCTOPOBO HEOHO-
pifHOMY cepeloBUINl 3 (PAKTAJTHHOK CTPYKTYPOIO Ta y3arajbHeHEe DIBHSHHS audys3il
Kerrano—MaxkcBesiia 3 ypaxyBaHHIM [IPOCTOPOBO-YACOBOI HEJIOKAJIHHOCTI. 3HAMIEHO JIHC-
nepciitai criBBigHOIEHHs A1 piBHsAHH audy3il Tuny Kerrano—Makcsesa 3 ypaxyBaH-
HSAM MPOCTOPOBO-YACOBOI HEJIOKAJIBLHOCTI y JIp0oOOBUX moXimHuX. Po3paxoBaHo dacTOTHHUI
cIeKkTp, Pas30By Ta IPYIIOBY MIBAIKOCTI i TOKA3aHO MO0 XBUJIBOBY MOBEIIHKY 31 CTPUOKO-
MOMIOHUMU PO3PUBAMU, SKi ITPOSIBJISIOTHCS TAKOXK Y 3MiHi (ha30BOI MIBUIKOCTI.
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