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The work suggests a modified three-layer neural network with architecture that has only
the diagonal synaptic connections between neurons; as a result we obtain the transformed
Hecht–Nielsen theorem. This architecture of a three-layer neural network (m = 2n+ 1 is
the number of neurons in the hidden layer of the neural network, n is the number of input
signals) allows us to approximate the function of n variables, with the given accuracy
ε > 0, using one aggregation operation, whereas a three-layer neural network that has
both diagonal and non-diagonal synaptic connections between neurons approximates the
function of n variables by means of two aggregation operations. In addition, the matrix
diagonalization of the synaptic connections leads to a decrease of computing resources and
reduces the time of adjustment of the weight coefficients during the training of a neural
network.
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1. Introduction

In 1900, D.Hilbert formulated a list of tasks, one of which was the problem of representing the function
of n variables in the form of a superposition of functions of a smaller number of variables. In 1956,
A.N.Kolmogorov [1, 2] showed that the continuous function of n variables can be represented as a
superposition of functions of one variable. Later, Vitushkin [3] showed that there is no such place in
the class of differentiated functions.

This question was also considered for discrete functions. In 1939, J. Slupecki [4] obtained a criterion
for the completeness of the system of functions of k-valued logic with respect to the superposition
operation.

The need for representations of functions of n variables in the form of superposition of functions of a
smaller number of variables arose with the development of the theory and practice of neural networks.
The emergence of neural networks is associated with the article of McCulloch and Pitts [5], which
describes the mathematical model of the neuron and neural network. It has been proved that Boolean
functions can be represented by neural networks. Later, F.Rosenblatt [6] proposed a model called
perceptron and the training algorithm for this model. It has been shown that perceptrons can solve
some tasks more efficiently than computers of traditional architecture. Later, a serious mathematical
analysis of perceptrons, carried out by M.Minsky and S. Pipert [7], revealed serious limitations in the
field of perceptron application. In particular, it has been shown that solving problems with perceptron
requires a significant amount of time or a large number of neurons.

In the future, the restrictions were relaxed by the way of replacing the threshold function of acti-
vating neurons to the sigmoid function. In particular, in 1989 G.Cybenko [8], K. Funahashi [9] and
K.Hornick [10] independently proved the following fact. Let ψ is a fixed sigmoidal function, and f is
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the continuous function on compactum K ⊂ R
n of n variables. Then f can be approximated in the

sense of uniform approximation of a four-layer network (with two hidden layers), with the activation
functions of the first and last layer linear, and for intermediate layers ψ.

Hecht–Nielsen [11] showed that the continuous function of many variables can be represented by a
three-layer neural network with n components of the input signal, 2n+1 components of a hidden layer
with sigmoid activation functions, and M components of the output layer with unknown activation
functions and represented by two aggregation operations. Thus, in a nonconstructive form, the solution
of the problem of representing a function of n variables by a neural network was proved.

In [12], it is shown that in the integral metric with the weight of Chebyshev–Hermite, the function
of n variables can be approximated by a three-layer neural network, with the activation functions of
the hidden layer can be given in advance, and the output is linear.

In this paper, we propose a modified three-layer neural network with architecture that has only
diagonal synaptic connections between neurons, as a result we obtain the transformed Hecht–Nielsen
theorem. Such an architecture of a three-layer neural network (m = 2n + 1 is the number of neurons
in the hidden layer of the neural network; n is the number of input signals) allows an approximation
of a function of n variables, with a given accuracy ε > 0, by means of one aggregation operation.

2. The Formulation of the transformed Hecht–Nielsen theorem

In recent years, there is a significant interest in the hypothesis of the quantum-statistical nature of
human consciousness [13]. Therefore, synaptic connections that are built between neurons in artificial
neural networks must be described by statistical laws. Weight coefficients of synaptic connections λik
should be described by average value λ̄ik = 〈λik〉 and dispersion λ̃ik =

〈

λ2ik
〉

− 〈λik〉2.
Let the random variables λik (weighted coefficients of synaptic bonds between i-th and k-th neurons)

do not depend on those connections that exist between other neurons λαβ. In this case, the statistical
properties λik are entirely determined by the distribution function f (λik) which is on the connection
between the i-th and k-th neurons. Assume that f (λik) is a Gaussian distribution function

f (λik) =
1

λ̃ik
√
2π

exp

(

− λ2ik
2λ̃2ik

)

, (1)

which is given by two parameters: average value λ̄ik = 〈λik〉 and dispersion λ̃ik =
〈

λ2ik
〉

− 〈λik〉2.
Kolmogorov’s theorem on the representation of a continuous function of n variables in the form of a

superposition m of continuous functions of one variable is considered to be a mathematical justification
for the use of an artificial neural network for approximating the function of many variables through a
linear combination of functions of one variable. For an artificial neural network with diagonal and non-
diagonal synaptic connections between neurons, this theorem was formulated by Hecht–Nielsen [11]:
For an arbitrary ε > 0 there is a three-layer neural network whose output functions for a hidden
layer are gj(V ), and the output functions (activation functions) for the input and output layers are
linear and have the function of input-output Fε(V1, V2, . . . , Vn) =

∑m
j=1Wj · gj [

∑n
i=1 λij(Vi)], such

that max
V ∈K

|F (V1, V2, . . . , Vn)− Fε(V1, V2, . . . , Vn)| < ε, where K is the compact subset (limited closed

subset) Rn, and F (V1, V2, . . . , Vn) is a real continuous function on K. That is, any continuous function
F (V ) from n variables V = (V1, V2, . . . , Vn) can be approximated with a given accuracy ε > 0 by
means of a three-layer neural network with one hidden layer, which is described by the equation
Fε(V1, V2, . . . , Vn) =

∑m
j=1Wj · gj [

∑n
i=1 λij(Vi)], for which it is enough to adjust the m = 2n + 1

transfer functions λij(Vi) of the neurons of the hidden layer; where λij(Vi) are sensory functions, and
gj are activation functions of the hidden layer neurons. As can be seen from the formulation of the
theorem for approximation of the function F (V ) of the n variables V = (V1, V2, . . . , Vn), a three-layer
neural network uses two aggregation operations

∑m
j=1 . . . ·

∑n
i=1 . . ..

We formulate the Hecht–Nielsen theorem for a modified three-layer artificial neural network with
diagonal synaptic connections between neurons.
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Proposition. For an arbitrary ε > 0 there is a three-layer neural network whose output functions
for a hidden layer are gj(V ), and the output functions (activation functions) for the input and output
layers are linear and have the function of input-output F̃ε(V1, V2, . . . , Vn) =

∑m
j=1Wj ·gj

[
∑n

i=1 λ̄ij(Vi)
]

,

such that max
V ∈K

|F (V1, V2, . . . , Vn)− F̃ε(V1, V2, . . . , Vn)| < ε. That is, any continuous function F̃ (V ) of

n variables V = (V1, V2, . . . , Vn) can be approximated with a given accuracy ε > 0 by means of a
three-layer neural network with one hidden layer and one aggregation operation, for which it is enough
to diagonalize the matrix of synaptic connections between the vector of input signals and the hidden

layer of nonlinear neurons and adjust the m = 2n + 1 transfer functions ˜̄λij(Vi) of the neurons of the
hidden layer.

F̃ε(V1, V2, . . . , Vn) =

m
∑

j=1

Wj · gj [βjVj + θj ] , (2)

where gj [βjVj + θj] is the activation function of the j-th neuron of the hidden layer; Wj are weight coef-
ficients of synaptic connections from the hidden layer to the output layer; θj is the additive component
of the input signal (threshold of excitation of a neuron).

Proof. Let us give the architecture of a classical artificial three-layer neural network (with one
hidden layer) (Fig. 1), by which it is possible with a given accuracy ε > 0 we can approximate the
continuous function V = (V1, V2, . . . , Vn) for which it is enough to adjust the m = 2n + 1 transfer
functions λ̄ij(Vi) of the neurons of the hidden layer

Fε(V1, V2, . . . , Vn) =

m
∑

j=1

Wj · gj
[

n
∑

i=1

λ̄ij (Vi)

]

, (3)

where λ̄ij(Vi) are sensory functions that establish a functional relationship between the input signal Vi
and the weight coefficients of the synaptic connections λ̄ij with the hidden layer neurons.

λ̄ij(Vi) ≡ λ̄ij · Vi + θj, (4)

where λ̄ij are weight coefficients of synaptic connections from the input to the hidden layer.
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Fig. 1. Schematic representation of a three-layer neural network with diagonal
and non-diagonal weighting coefficients of synaptic connections λ̄ij .

Mathematical Modeling and Computing, Vol. 6, No. 1, pp. 101–108 (2019)



104 Peleshchak R., LytvynV., Peleshchak I., DoroshenkoM., OlyvkoR.

In order to obtain the architecture of a modified artificial neural network with nonlinear oscillatory
neurons [14,15] from the architecture of the classical three-layer neural network (Fig. 1), it is necessary

to diagonalize [16] the matrix of synaptic connections ˆ̄λij between the input signals V = (V1, V2, . . . , Vn)
and the hidden layer. Such a modified artificial dynamic neural network will be called an artificial neural
network with diagonal synaptic connections.

3. Modified neural network with diagonalized synaptic connections

To diagonalize the matrix of synaptic connections and memorize the prototype of the input signal with
a three-layer neural network (Fig. 1), we write the input signal as a deterministic vector

V = (V1, V2, . . . , Vn), (5)

where Vi = eV is the projection of V on e, (e is i-th base vector of the coordinate system).
To memorize the prototype of the image (information signal) we impose restrictions on synaptic

connections λ̄ij (synaptic connections from sources V1, V2, . . . , Vn to neurons 1, 2, 3, . . . , N)

λ̄ij = Vi · Vj , λ̄ij 6= λ̄ji, when i 6= j,

and form matrix ˆ̄λij with deterministic matrix elements
〈

λ̄ij
〉

= 〈Vi〉 · 〈Vj〉 (6)

and bring it to a diagonal form with real own values

˜̄λij(V1, V2, . . . , Vn) = βi(V1, V2, . . . , Vn) · δij . (7)

To bring matrix ˆ̄λij to a diagonal [16] form, we reduce it to a symmetric shape and make a linear
transformation

ˆ̄̃
λ = Û−1 ˆ̄λÛ, (8)

where Û is the matrix consists of its own base vectors uj of the matrix uj, that is Û =
(u1,u2, . . . ,uj , . . . ,un);

ˆ̄λuj = βjuj . (9)

In the basis of eigenvectors uj the matrix of linear transformation
ˆ̄̃
λ has a diagonal form, with the main

diagonal there are real eigenvalues of ˜̄λij(V1, V2, . . . , Vn) = βi(V1, V2, . . . , Vn) · δij matrices
ˆ̄̃
λ; where δij

is the symbol of Kronecker; βi(V1, V2, . . . , Vn) are valid eigenvalues of the diagonal matrix of synaptic
connections.

Substituting in (3), taking into account the form (4), the diagonal elements of the matrix of synaptic
connections (7), we obtain the modified Hecht–Nielsen theorem (2). Which describes the architecture
of an artificial dynamic three-layer neural network with diagonal synaptic connections and with one
aggregation operation (Fig. 2).

It should be noted that diagonalized the matrix of synaptic connections leads to a decrease the
aggregation operations (A

m
j=1 =

∑m
j=1 and/or

∏m
j=1 . . .), which in turn reduces the computing resource

and reduces the time to adjust the weighting coefficients of synaptic connections in the neural network
during its learning through changing the network configuration by way of excluding non-diagonal
elements of synaptic connections between neurons (Figs. 1, 2), or between a vector of output signals of
neurons in a hidden layer with the neurons of the output layer.

To memorize N different image-standards (N various prototypes-images) the coefficients of synaptic
connections λ̄ij are selected in the form

λ̄ij =

N
∑

p=1

V
(p)
i · V (p)

j . (10)

The algorithm for bringing λ̄ij (10) to the diagonal form [16] is similar (6).
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Fig. 2. Schematic representation of a three-layer neural network after diago-
nalization of the matrix of weight coefficients of synaptic connections λ̄ij .

The diagonalization operation can be used to simplify the weighting of synaptic connections in the
neural network during process of its learning due to the change in network configuration by the way of
excluding some existing connections between neurons and reducing the elements of the communication
matrix between the vector of input signals and neurons (Fig. 2), or between a vector of output signals
of neurons in a hidden layer with the neurons of the output layer.

A comparative analysis of neural networks (Figs. 1, 2) shows that, before the diagonalization of the
weight of synaptic bonds, their number was N2, whereas after the diagonalization became N [17]. Such
a decrease in the number of weight coefficients of synaptic connections results in a seal information
which is fed from the input images to the neural network through the channels of the main elements
λ̄ii(i = 1, 2, . . . , N) of the matrix of synaptic connections between the neurons.

4. Results of numerical experiment

The test problem of the approximation of the function F of two variables V1, V2 that is F (V1, V2) =
V 2
1 − V 2

2 + V1V2, non-diagonalized and diagonalized three-layer neural networks, described by equa-

tions Fε(V1, V2) =
5
∑

j=1
Wj · tanh

[

2
∑

i=1
λ̄ij · Vi − θj

]

and F̃ε(V1, V2) = W̃1 tanh
(˜̄λ11

(

V 2
1 + V 2

2

)

− θ̃1
)

, is

considered. The task of approximating the equivalent of the task of teaching with a teacher.
The problem of approximation with non-diagonalized and diagonalized three-layer neural networks

is to adjust the weighted synaptic coefficients λij and Wj by the minimization criterion ε:

ε =
1

2

[

W 1 tanh
(

λ̄11V1 + λ̄12V2 − θ1
)

+W 2 tanh
(

λ̄21V1 + λ̄22V2 − θ2
)

+W 3 tanh
(

λ̄31V1 + λ̄32V2 − θ3
)

+W 4 tanh
(

λ̄41V1 + λ̄42V2 − θ4
)

+W 5 tanh
(

λ̄51V1 + λ̄52V2 − θ5
)

− V 2
1 − V 2

2 + V1V2

]2
→ min(λ̄ij ,Wi, θi),

where i = 1, 5; j = 1, 2.

ε =
1

2

[

W̃1 tanh
(

˜̄λij
(

V 2
1 + V 2

2

)

− θ̃1

)

− V 2
1 − V 2

2 + V1V2

]2
→ min(˜̄λij , W̃i, θ̃i),

where i = j = 1.
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Table 1. Fε(V1, V2) =
∑5

j=1
Wj tanh

[

∑2

i=1
λ̄ij · Vi − θj

]

.

N V1 V2 ε λ̄11 λ̄12 λ̄21
1 0.01 0.1 10−5 0.10038 0.10387 0.10038
2 0.01 0.3 10−5 0.10446 0.23395 0.10446
3 0.01 0.5 10−5 0.1042 0.31 0.1042
4 0.01 0.7 10−5 0.10387 0.37109 0.10387
5 0.01 0.9 10−5 0.10361 0.4251 0.10361
6 0.1 0.01 10−5 0.10387 0.10038 0.10387
7 0.5 0.01 10−5 0.31 0.1042 0.31
8 0.9 0.01 10−5 0.4251 0.10361 0.4251
9 0.9 0.1 10−5 0.39408 0.13267 0.39408
10 0.5 0.5 10−5 0.19412 0.19412 0.19412
11 0.5 0.9 10−5 0.20529 0.28953 0.20529
12 0.9 0.5 10−5 0.28953 0.20529 0.28953

Table 2.

Fε(V1, V2) =
∑5

j=1
Wj tanh

[

∑2

i=1
λ̄ij · Vi − θj

]

.

Table 3.

Fε(V1, V2) =
∑5

j=1
Wj tanh

[

∑2

i=1
λ̄ij · Vi − θj

]

.

N V1 V2 λ̄22 λ̄31 λ̄32 λ̄41
1 0.01 0.1 0.10387 0.10038 0.10387 0.10038
2 0.01 0.3 0.23395 0.10446 0.23395 0.10446
3 0.01 0.5 0.31 0.1042 0.31 0.1042
4 0.01 0.7 0.37109 0.10387 0.37109 0.10387
5 0.01 0.9 0.4251 0.10361 0.4251 0.10361
6 0.1 0.01 0.10038 0.10387 0.10038 0.10387
7 0.5 0.01 0.1042 0.31 0.1042 0.31
8 0.9 0.01 0.10361 0.4251 0.10361 0.4251
9 0.9 0.1 0.13267 0.39408 0.13267 0.39408
10 0.5 0.5 0.19412 0.19412 0.19412 0.19412
11 0.5 0.9 0.28953 0.20529 0.28953 0.20529
12 0.9 0.5 0.20529 0.28953 0.20529 0.28953

N V1 V2 λ̄42 λ̄51 λ̄52
1 0.01 0.1 0.10387 0.10038 0.10387
2 0.01 0.3 0.23395 0.10446 0.23395
3 0.01 0.5 0.31 0.1042 0.31
4 0.01 0.7 0.37109 0.10387 0.37109
5 0.01 0.9 0.4251 0.10361 0.4251
6 0.1 0.01 0.10038 0.10387 0.10038
7 0.5 0.01 0.1042 0.31 0.1042
8 0.9 0.01 0.10361 0.4251 0.10361
9 0.9 0.1 0.13267 0.39408 0.13267
10 0.5 0.5 0.19412 0.19412 0.19412
11 0.5 0.9 0.28953 0.20529 0.28953
12 0.9 0.5 0.20529 0.28953 0.20529

Table 4.

Fε(V1, V2) =
∑

5

j=1
Wj tanh

[

∑

2

i=1
λ̄ij · Vi − θj

]

.

Table 5.

F̃ε(V1, V2) = W̃1 tanh
(˜̄λ11(V

2
1 + V 2

2 )− θ̃1
)

.

N W1 W2 W3 W4 W5

1 0.10425 0.10425 0.10425 0.10425 0.10425
2 0.23609 0.23609 0.23609 0.23609 0.23609
3 0.31264 0.31264 0.31264 0.31264 0.31264
4 0.37635 0.37635 0.37635 0.37635 0.37635
5 0.43631 0.43631 0.43631 0.43631 0.43631
6 0.10425 0.10425 0.10425 0.10425 0.10425
7 0.31264 0.31264 0.31264 0.31264 0.31264
8 0.43631 0.43631 0.43631 0.43631 0.43631
9 0.41287 0.41287 0.41287 0.41287 0.41287
10 0.25752 0.25752 0.25752 0.25752 0.25752
11 0.34885 0.34885 0.34885 0.34885 0.34885
12 0.34885 0.34885 0.34885 0.34885 0.34885

N V1 V2 ε ˜̄λ11 W̃1

1 0.01 0.1 10−5 0.76674 0.76675
2 0.01 0.3 10−5 0.9658 0.96702
3 0.01 0.5 10−5 0.98844 0.99852
4 0.01 0.7 10−5 1.00808 1.04938
5 0.01 0.9 10−5 1.03788 1.16307
6 0.1 0.01 10−5 0.76674 0.76675
7 0.5 0.01 10−5 0.98844 0.99852
8 0.9 0.01 10−5 1.03788 1.16307
9 0.9 0.1 10−5 0.98185 1.09018
10 0.5 0.5 10−5 0.70973 0.72467
11 0.5 0.9 10−5 0.79113 0.88602
12 0.9 0.5 10−5 0.79113 0.88602

The optimization problem is solved by the gradient method with an error of (ε = 10−5). The results
of this test task are given in Tables 1–5.
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5. Conclusions

A transformed Hecht–Nielsen theorem is obtained based on a modified three-layer artificial neural
network with diagonalized synaptic connections between neurons. This theorem describes an algorithm
for approximating the function of n variables, with given accuracy ε > 0, by means of one aggregation
operation.

It is shown that the diagonalization of the matrix of synaptic connections in a three-layer neural
network leads to one aggregation operation, which, in turn, reduces the computing resource and the
time of adjustment of the weight coefficients of synaptic connections in the neural network during
its learning due to changing the network configuration by eliminating non-diagonal elements synaptic
connections between neurons.

The experiment has showen that for the same error of calculation (ε = 10−5) the test problem
of approximation of the function F that uses a three-layer diagonalized neural network requires less

synaptic connections (2 synaptic connections, namely ˜̄λ11 and W̃1) than a non-diagonalized three-layer
neural network (15 synaptic connections λ̄ij ,Wi, where i = 1, 5, j = 1; 2).
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Теорема Хехт–Нiльсена для модифiкованої нейронної мережi з
дiагональними синаптичними зв’язками

ПелещакР.1, ЛитвинВ.2, Пелещак I.2, ДорошенкоМ.1, ОливкоР.2
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У роботi запропоновано модифiковану тришарову нейронну мережу з архiтектурою,
яка має тiльки дiагональнi синаптичнi зв’язки мiж нейронами, внаслiдок чого от-
римано трансформовану теорему Хехт–Нiльсена. Така архiтектура тришарової ней-
ронної мережi (m = 2n + 1 — кiлькiсть нейронiв прихованого шару нейромережi,
n — кiлькiсть вхiдних образiв) дає змогу апроксимувати функцiю вiд n змiнних iз за-
даною точнiстю ε > 0 за допомогою однiєї операцiї агрегування. Тришарова нейронна
мережа, яка має як дiагональнi, так i недiагональнi синаптичнi зв’язки мiж нейро-
нами, апроксимує функцiю вiд n змiнних за допомогою двох операцiй агрегування.
Крiм цього, дiагоналiзацiя матрицi синаптичних зв’язкiв приводить до зменшення
обчислювального ресурсу i вiдповiдно до зменшення часу налаштування вагових ко-
ефiцiєнтiв синаптичних зв’язкiв пiд час навчання нейронної мережi.

Ключовi слова: нейронна мережа, дiагоналiзацiя матрицi, операцiя агрегування,

апроксимацiя функцiї.
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