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As an applied discipline, process mining emerged about two decades ago, and its
methods have been increasingly used in practice for recent few years. What differentiates
process mining from the conventional data mining is considering process nature of the
analyzed data. Rapid development of the process mining software market niche has risen
relevance of such task as scalability of process mining methods. Adaptation of the process
discovery method, called Fuzzy Miner, to distributed software systems with web interface has
been proposed by the authors. To address the scalability requirements, the calculation
procedures are implemented on different part of the system: the most computer resource
consuming algorithms are executed on the server side whilst less resource consuming
calculations are placed on the client side. In turns, the server-side components belong either to
the data layer or service layer. The data layer is accountable for storing event data in XES
format and measuring process metrics. Building a process graph and communication with the
client web application is the responsibility of the service layer. The purpose of the client-side
web application isto render a process graph generated in the server-side. The calculation logic
is covered with unit and integration tests so that its correctness is checked automatically. In
order to reduce total cost of ownership of the system, it is implemented with free software.
From the perfor med calculations and comparison of the outcomes with the results received by
means of the existing ProM 6.8 plugins (Fuzzy Miner and Alphat++ Miner), it can be concluded
that the proposed adaptation of the Fuzzy Miner method ensures representation of the
behavior seen in an event log (like the ProM 6.8 plugins successfully do). In turns, from the
software architecture standpoint, the proposed solution demonstrates better scalability
characteristics, i.e., ability to increase capacity in order to handle bigger amount of event data,
in comparison with the mentioned above ProM plugins.
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SIk mpukIagHA AUCHUILIIHA, MpPolec-MAHNUHT BUHUK JBAa NeCATHJITTA TOMY, i ympo-
JO0BK OCTAHHIX KiTbKOX POKIB i0ro MeTroam OTPUMYIOThL BCe IIHUPIIE 3aCTOCYBAHHSI HA
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npakTuli. O3HaKkow, fIKa BiApi3Hs€ mpouec-MAHMHI Bil KJACHUYHOrO AATA-MAWHUTY, €
(oxycyBaHHs Ha NpouecHiil mpupoai 00pod.IIOBaHNX JaHUX. AKTUBHUN PO3BUTOK Hillli pUHKY
NMPOrpaMHOro 3afe3neyeHHs MPouec-MaifHMHTY 3arOCTPUB AKTYAJIBHICTH 32124, OB’ I3aHMX i3
NiABUIIEHHSM MAacIITa00BAHOCTI HOro MeToiB. ABTOPH NMPONMOHYIOTh MOJAJIBIINNA PO3BUTOK
Merony Fuzzy Miner, mo po3miMpro€e ioro 3acTocyBaHHsI 0 PO3MOALIEHUX MPOrPaMHHX
cucremMax 3 web-intepgeiicom. s 3a0e3meveHHsi BUMOT MACHITAG0BAHOCTI PO3PaxyHKOBIi
NpoueIypPH Peai3oBaHo Yy Pi3HUX YACTHHAX CHCTEMHU: HAWOLILII pecypcoeEMHi ajaropuTMu
BHKOHYIOThCSI Ha CTOPOHi cepBepa, TOIi sIK MEHII PecypcoEMHi — Ha CTOpOHi Web-kJienTa.
CBo€10 4eproio, ceppepHi KOMIOHEHTH HAJIEKATH 0 OAHOIO i3 JIOriYHUX PiBHIB. JaHUX a00
ceppiciB. PiBenb nanux Biamomimae 3a 30epe:kenHs nanux y XES-gopmati Ta 30upanns
npouecanx Merpuk. Ilo0ynoBa rpady mpoumecy Ta B3aemMolisi 3 KJII€EHTCHKOI YaCTHHOIO
3a0e3meuyeThesi piBHeM cepBiciB. [Ipu3HaYeHHAM KIIiEHTCHKOI WED-iporpamu € BindopaskeHHsI
rpagy npouecy, sikuii Oyaye cepBep. ABTOMATHYHA MNepeBipka KOPEKTHOCTI peanizamii
PO3paxyHKOBOi JIOrikM 3a0e3ne4y€eTbcsl MOAYIbHUMHU Ta iHTerpauiiHumMu Tecramu. Pimenns,
peanizoBaHe aBTOpPaMHU, IPYHTY€TbCA HAa BiIKPUTHX NPOrPaMHUX NMPOAYKTAX, II0 AA€ 3MOTY
3HU3UTH CYMapHy BapTicTh nmporpamMuoi cucremu. Ha ocHOBi mOpiBHAHHA OTPUMAHUX 3HAYeHb
i3 pesyJbTaramu, ojep:KaHuMH 3a jonomorow ProM 6.8 (0y;no 3acrocoBano muarinm: Fuzzy
Miner and Alphat+ Miner), 3po6jieH0 BHCHOBOK, 110 3ampONOHOBAHA ANANTAIII METOAY
Fuzzy Miner 3a6e3neuye BinoOpakeHHs1 MOBEIiHKH, sIKa MPUCYTHS B event-qanux (110 TaKoXK
yemilmHO BHUKOHYIOTH BigmoBigHi ProM-maarinu). CBo€i0 4eprorw, 3 MOrJIsAy CHCTEMHOL
apXiTeKTypH 3alpoNOHOBaHe PpillleHHA [IeMOHCTPYE Kpalli XapaKTepHCTHKH MAaclTado-
BaHOCTi, TOOTO 3JaTHOCTI HAPOLIYBATH 00YHUC/JIIOBAIbHI MOTY/KHOCTI 3 METOI0 ONPALIOBAHHSA
OinbImMx o0cAriB event-ranux NopiBHAHO i3 3raganumu Buine ProM -nuarinamu.

Kirou4oBi ciioBa: npouec-maitHuur; event-gaui; goru; XES; ProM; Fuzzy Miner.

Introduction

The purpose of IT system of an organization is to automate operations which are done in order achieve
the organization's goals. If such operations are repeated many times and even become standardized, they are
usually called business processes. In current paper, the “business process’ term is understood in the same
meaning as in (Burattin, 2015). So, the main task of an IT system is to serve business needs of an organization
by automeating various kind of business process. In some cases, such business processes are well structured and
predefined by means of special technologies, for example, business process management systems. However, in
most cases the processes do not have predefined models, therefore, the sequence of activities is described as
textual instructions or even shared among the participants verbally. One of the first task, which appears during
analysis of those processes, is to visudize ther flow chart. In the process mining field (van der Adst e al,
2012), thistask was named process discovery.

During the last two decades, it was developed various process discovery methods. One of them is the
Fuzzy Mine (Giinther & van der Aalst, 2007). What differentiates Fuzzy Miner from the other methods is the
ability to deal with unstructured processes with many events and transitions providing the possibility to simplify
their representation for the end users employing the so-called road-map concept. One of the earliest versions of
Fuzzy Miner was implemented as a ProM plugin (“Fuzzy Mine”, 2009). Since ProM (Verbeek, Buijs, van
Dongen, & van der Adst, 2010) is a desktop tool mostly used by scientific researchers, a mgjor drawback of
that Fuzzy Mine implementation is its limited availability for the end users who do not have academic
background in process mining. Another disadvantage of the existing implementation is its insufficient
scalability, i.e, practical impossibility to deal with increasing amount of event data.

Current paper is devoted to further development of the Fuzzy Miner. The adaptation of the
method proposed by the authors addresses the mentioned above limitations of the existing
implementations. The applied approach allows to improve scalability of the software system since
significant part of the calculations can be done on the server side (which is not only much more
powerful than the end users’ machines but also allows to increase capacity by applying various
scalability techniques (van Steen & Tanenbaum, 2017)). Additionally, it was introduced some
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improvements of the process flow graph visualization, for example, it was added the start and end
events (which are not displayed by the Fuzzy Miner ProM plugin).

Therest of the paper is divided into the following sections: problem statement; brief overview of the
related works, description of the proposed method adaptation; software implementation of the method;
calculations with comparison the results; and concluding remarks.

Problem Statement

The task is to design and implement an adaptation of the Fuzzy Miner to a distributed software
system with web interface. Under the process discovery task, it is understood the general process discovery
problem stated in (van der Aalst, 2016), i.e., finding a method that maps event log to a process flow graph
so that the graph represents behavior seen in the event log. An important requirement, that differentiates
the proposed adaptation of Fuzzy Miner from its predecessors, is scalability, i.e, ability to increase
capacity in order to handle bigger amount of event data. It should be noted that the term “distributed
software system” is used in the meaning provided in (van Steen & Tanenbaum, 2017), i.e, it is a software
system which components are deployed on different network nodes and communicates with one another by
sending messages. In case of a distribute system with web interface, its components belong to either
server-side or client-side components.

Related Works

Fuzzy Miner was chosen as a basic process discovery technique for the solution represented in
current paper. The main concepts of Fuzzy Miner can be found in (Giinther & van der Aalst, 2007). One of
the earliest software implementations of Fuzzy Miner was a ProM plugin (“Fuzzy Miner”, 2009). Then,
Fuzzy Miner was successfully adopted by commercial products like Disco (Giinther & Rozinat, 2012).
Comprehensive overviews of existing process mining algorithms (van der Aalst, 2016; Turner, Tiwari,
Olaiya, & Xu, 2012) and also a pragmatic comparison of process discovery techniques (Rozinat, 2010)
shows that Fuzzy Miner is one of the methods that match requirements of processing real-life event logs.
Relevance of the task to design and implement a process discovery method for a distributed software
system is proved in the recent process mining software overviews (van der Aadst, 2016; Batyuk &
Voityshyn, 2018a).

Process Discovery Method

The key point of adapting the Fuzzy Miner to a distributed software system with web interface is to
decide which steps are performed on the server side, and which of them are executed on the client side.
The implemented process discovery method includes the following three steps (Fig. 1): (1) measuring
process metrics; (2) building the process flow graph; (3) visualization of the graph.

Server Side Process L Client Side

Metrics

Step 3

Visualize Flow
Process Graph
Flow Graph

Step 1 Step 2

Event Measure Build
' Data Process Process
Metrics Flow Graph

. Metrics |  Graph |
; Configuration : : Parameters !

Fig. 1. Steps of the process discovery method

On step 1, the process metrics (Giinther & van der Aalst, 2007; “Fuzzy Miner”, 2009) are measured
from the event data set. The measurement procedure is done according to set of configuration parameters
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like the described in (“ Fuzzy Miner”, 2009). Then, the collected metrics are used to build the process flow
graph on step 2. It should be noted that parameters necessary to build the graph are passed from the client
side (which allows to configure the graph according the end user’s needs). On the final step, the process
flow graph is visualized on the client web page.

Softwar e | mplementation of the M ethod

From the architecture perspective, the implemented software system consists of the three layers:
(1) data, (2) services, and (3) presentation. The components from the first two layers work on the server
side, the ones from the third layer belong to the client side. The components and connectors model (Bass,
Clements, & Kazman, 2012) of the software system is depicted in Fig. 2.

Event data is received from the external sources in XES format (IEEE Std 1849-2016, 2016) and
then persisted in the event data storage. In the simplest case the event data storage component can be a text
file (or acollection of text files) with XES-formatted data. In case of necessity to store big amount of event
data, a more advanced solution, like scalable non-relational database (e.g. Apache Cassandra), can be
implemented. From the stored event data, process metrics are calculated by a job implemented according to
the batch processing pattern. The process metrics job uses configuration parameters like the ones from
(“Fuzzy Miner”, 2009). The measured process metrics are stored in a non-relational storage: the simplest
approach can employ JSON-formatted text files and more advanced implementations can be based on a
NoSQL database, for example, MongoDB. It should be emphasized that one of the scalability options for
the data layer is to execute multiple process metrics jobs simultaneously.
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Fig. 2. Components and connectors model of the software implementation

Service layer includes a scalable RESTful service with the main responsibility to build a process
flow graph using the process metrics collected on the data layer. In comparison with the data layer, the
service layer requires less computational resources since it does not need to process event data items and
uses as the input process metrics measured on the data layer. In turns, the main responsibility of the
presentation layer is to visualize the process flow graph.

The technologies used by the authors to implement the described above software system arelisted in
Tablel. All the chosen technologies are open source (except MongoDB) and free to use for non-
commercial purposes.
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Table 1
Technologies used for the softwar e implementation

Component Technology Veson | Official web site
Web Client Angular 7 https.//angular.io
Graph Visudizer d3js 5.9.0 https.//d3js.org
Process How Graph Service, |Java/ Open JDK 12 http://openjdk.java.net
Graph Builder Spring Boot 213 http://spring.io
Event Data Storage Apache Cassandra 3.11.4 | http://cassandra.apache.org
: Java/ Open JDK 12 https.//mongodb.com
Process Metrics Job OpenXES - http://www.xes-standard.org/openxes/start
Process Metrics Storage MongoDB Community Server | 4.0.8 https.//www.mongodb.com

It should be noted that regardiess the introduced scalability enhancements, the solution designed for
the data layer can be further improved by adding streaming processing for the newly received event datain
order to avoid repeating batch processing of the entire data set by the process metrics job.

Calculations and Comparing the Results
With the purpose to test the implemented process discovery method, the Road traffic fine
management process public data set was used (de Leoni & Mannhardt, 2015). Characteristics of the chosen
data set arerepresented in Table 2.

Table 2
Characteristics of the Road tr affic fine management process data set
Metric Vaue
Number of processes 1
Number of processinstances 150370
Number of events 561470
Number of event classes (the start and end events are not included) 11
Start date 01 Jan 2000
End date 18 Jun 2013

The test was performed with the configuration listed below. On the data layer the following metrics
were collected: (1) frequency significance (unary), (2) routing significance, (3) frequency significance
(binary), (4) distance significance, (5) proximity correation, (6) endpoint correation, (7) originator
correlation, (8) data type corrdation, (9) data value corrdation. For each metric, the Weight attribute was
set up with “1.0” value, and the Invert attribute had “false” value; the n™-root attenuation factor with power
2.7 was chosen. Process graph parameters passed from the client side to the server side with a request to
build a process graph are listed in Table 3. The more details related to the applied configuration can be
found in (Giinther & van der Aalst, 2007; “Fuzzy Miner”, 2009).

Table 3
Process graph parameters
# Filter Parameter Vaue
1 Node filter Significance cut-off 0.416
2 Edgefilter Best edges/ Fuzzy edges Fuzzy edges
3 Significance/ Correation ratio 0.75
4 Edges cut-off 0.20
5 Ignore salf-loops Yes
6 Interpret absolute No
7 Concurrency filter Filter concurrency Yes
8 Preserve 0.60
9 Balance 0.70

Process graph built by the software implemented by the authors with the specified above
configuration is depicted in Fig. 3. Short explanation to the used notation: (1) the process start event is
represented with a completely painted circle; (2) the process end event is displayed as a painted circle with
awhite area insight; (3) the numbersin the I€ft top corner are unique identifiers of the activities.
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Fig. 3. Process graph visualized using the proposed software implementation
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To compare result of the performed test (Fig. 3) with existing process discovery methods, process
flow graph was built for the same data set using the Fuzzy Miner (“Fuzzy Miner”, 2009) and Alpha++
Miner (Wen, van der Aalst, Wang, & Sun, 2007) ProM 6.8 plugins. The received results are represented in
Fig. 4 and Fig. 5 respectively.
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Fig. 4. Process graph built using the Fuzzy Miner (ProM 6.8)
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Fig. 5. Process graph built using the Alpha++ Miner (ProM 6.8)

From visualization standpoint, the advantage of the process graph from Fig. 3, in comparison with
the one generated by means of Fuzzy Miner (Fig. 4), is the ability to display the start and end events. It
should be emphasized that from Fig. 4 it is not clear where the process starts and ends. Comparing the
graphs from Fig. 3 and Fig. 5, it can be concluded that the results received using the Alphat++ Miner is
more difficult to read (especially for the end users without academic background in process mining). On
one hand, the difficulty is caused by the Petri-net-based notation, which is completely correct from
theoretical standpoint but is not easy to understand for the end users. And, on the other hand, the graph
from Fig. 5 contains all the transition found in the event log, whilst the proposed implementation (like
Fuzzy Miner) displays only the most significant ones hiding those which are not so important according to
the collected process metrics. Also, it worth noting that it would be valuable for the graph from Fig. 3 to
highlight importance for the displayed transitions, like the Fuzzy Miner does.

Concluding Remarks

The method proposed in current paper is further development of the Fuzzy Miner with the purpose
to adapt it to distributed software systems with web interface. The enhancements introduced by the authors
allowed to improve scalability of the solution from the software architecture standpoint, in comparison
with the Fuzzy Miner ProM plugin.

From the business application point of view, the method can be an extension to a Bl (business
intelligence) solution used within an organization’s IT system. What differentiate such extension from a
conventional BI platform is the ability to visualize data, taking into account its process nature. Another
example of possible application of the described method can be the batch data processor for the real-time
business process monitoring platform (RTBMP) represented in (Batyuk & Voityshyn, 2018b).

The software implementation is based on open source software products (an exception is MongoDB)
which alow to reduce total cost of ownership of the system. The designhed architecture and chosen
technol ogies address the scalability requirements by separating calculations between different components
so that the most expensive calculations (collecting process metrics and building a process graph) are done
on the server side. Relevant server-side components can be clustered depending on amount of processed
event data and number of the end users.

It should be noted that the proposed solution has some limitations related to the taken approach for
handling event data: (1) necessity to scan the entire data set during each execution of the process metrics
job; (2) inability to react to recently received event data immediately. In case of applying the method for
implementing the batch data processor of RTBPM (Batyuk & Voityshyn, 2018b) or incorporating the
proposed method to the energy efficiency management system (Teslyuk, Tsmots, Teslyuk, Medykovskyy,
& Opotyak, 2017), it is worth to overcome the 1% of the known disadvantages allowing to reduce necessary
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computational resources and load on the event data storage. In current implementation it is assumed that all
the process instances in the event log have finished. However, one of the future improvements can be the
possibility to handle incomplete process instances (i.e. instances which are being executed at the moment
when the process metrics job runs). Forecasting of process events (including the end event) based on the
methods from (Mulesa, Geche, Batyuk, Buchok, 2018) is foreseen as a core of such improvement.
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