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New method for the description of mechanical equilibrium of stellar structure with axial
rotation was proposed. The self-consistent calculation is based on simultaneous use of
differential and integral forms of mechanical equilibrium equation, which allows us to cor-
rectly determine the integration constants. In the frame of polytropic model with indexes
n = 0 and 1 were first obtained the analytical solutions, for n = 2 and 3 numerically.
The geometrical parameters of stellar surface as well as mass, volume and moment of
inertia were calculated as the functions of angular velocity. It was found the maximal
value of angular velocity in which the stability is disturbed. Obtained results improve the
results of E. Milne, S. Chandrasekhar and R. James, obtained with help of the approximate
numerical integration of mechanical equilibrium equation.
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1. Introduction

In the late XIX-th – early XX-th centuries the works of H. Lane [1], K. Emden [2], R. Fowler [3],
A.Ritter [4], W.Kelvin [5], A. Eddington [6] and other researchers laid the foundations of the theory
of internal stellar structure. At the first stage it was only considered the mechanical equilibrium of
normal stars — the equilibrium of gravity and internal pressure of the spherical symmetry models
which did not take into account the energy sources of stars, unknown at that time. The result of this
stage was the K.Emden’s book [2] of 1907. In the late works of E.Milne [7], S. Chandrasekhar [8],
R. James [9] and other authors, which were published in the first half of the XX-th century, this
theory was generalized to the case of polytropic models with solid axial rotation. The discovery of
thermonuclear reactions solved the problem of stars energy sources. The modern theory of normal
stars generalizes the polytropic theory and is based on the system of the internal structure equations,
which take into account both the mechanical and thermal equilibrium of these objects.

However, the polytropic theory has not lost its significance now, because its mathematical apparatus
easily adapts for the description of internal structure of compact objects, in particular the degenerate
dwarfs. After all, the equation of state of electron-nuclear model with relativistic electron subsystem
has asymptotically (at high and low densities of matter) polytropic character. Because of that the
solutions of equilibrium equations for the polytropic stars (with or without rotation) play the role
of zero approximation for the solutions of equilibrium equation of degenerate dwarfs [10]. The axial
rotation of non-magnetic dwarfs is the only reason which causes an increase of their mass. Therefore,
one of the topical problems of degenerate dwarfs’ theory is the calculation of maximal mass and setting
the limit of stability with respect to the angular velocity. Although this problem was investigated both
through numerical integration of equilibrium equations and with help of the variational method [11],
still the problem is far from the final solution.
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In accordance with above said the actual task is to find the mechanical equilibrium solutions of
polytropic stars in wide range for the angular velocity and determining the limits of stability on this
basis. Usually one uses the differential equations of mechanical equilibrium. In our work they are
supplemented by the integral form of these equations, which makes it possible to strictly define the
integration constants. It also provides a direct way of finding the dependence of the equilibrium
equations and macroscopic characteristics of star on the angular velocity.

2. General relations

In the polytropic theory of stars the equation of state is modeled by the dependence [12]

P (r) = Kρν(r) ≡ Kρ1+1/n(r), (1)

where P (r) is the pressure in point with radius-vector r, ρ(r) is the local density of matter, K and ν
are the constants. In general case (in the presence of rotation) the equilibrium equation is rewritten
in non-inertial (rotating) coordinate system in the form

∇P (r) = −ρ(r) {∇Φgrav(r) +∇Φc(r)} , (2)

where

Φgrav(r) = −G
∫

dr′ρ(r′)

|r− r′| (3)

is the gravitational potential inside the star and Φc(r) is the centrifugal potential. If the axis Oz of
spherical coordinate system coincides with the axis of rotation then

Φc(r) = −1

2
ω2r2 sin2 θ. (4)

Here θ is the polar angle, ω is the angular velocity of reference frame, which is considered a constant.
Substituting the expressions (1), (3) and (4) in the equation (2) and using the identity

(

1 +
1

n

)

ρ1/n−1(r)∇ρ(r) = (1 + n)∇ρ1/n(r),

the equilibrium equation is obtained in the form of differential equation that determines the density
distribution,

K(1 + n)∆ρ1/n(r) = −4πGρ(r) +
1

2
ω2∆(r2 sin2 θ). (5)

In the presence of axial symmetry (ρ(r) = ρ(r, θ)) the Laplace operator is written in the form

∆ = ∆r +
1

r2
∆θ, ∆r =

1

r2
∂

∂r

(

r2
∂

∂r

)

, ∆θ =
∂

∂t
(1− t2)

∂

∂t

at t = cos θ, therefore ∆(r2 sin2 θ) = 4. Introducing the dimensionless radial coordinate ξ = r/λn, as
well as using the substitution

ρ(r, θ) = ρcY
n(ξ, θ), (6)

where ρc is the density of matter in stellar center, we transform the equation (5) to the dimensionless
form

∆(ξ, θ)Y (ξ, θ) = Ω2 − Y n(ξ, θ). (7)

Herewith the scale λn, dimensionless angular velocity Ω and Laplacian are determined by the relations

K(1 + n) = 4πGλ2nρ
1−1/n
c , Ω2 = ω2(2πGρc)

−1,
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∆(ξ, θ) = ∆ξ +
1

ξ2
∆θ, ∆ξ =

1

ξ2
∂

∂ξ

(

ξ2
∂

∂ξ

)

.

According to the definition (6) Y (0, θ) = 1 and the condition ∂Y (ξ, θ)/∂ξ = 0 at ξ = 0 corresponds
to the solutions, regular in the vicinity ξ = 0. At the large values Ω it is possible non-monotonic
dependence Y (ξ, θ) on the variable ξ in the equator region and leakage of matter. The stability
conditions of stars in the equator region

Y
(

ξ,
π

2

)

= 0,
∂

∂ξ
Y
(

ξ,
π

2

)

= 0 (8)

determine the maximal legitimate value of the parameter Ω
(n)
max and the corresponding value of the

equatorial radius ξmax
e (n). According to the definition (6), physical meaning only have the positive

solutions of equation (7), which is the two-dimensional differential equation of second order in partial
derivatives with two dimensionless parameters n, Ω > 0.

The equation (7) is similar to the Poisson equation, therefore it can formally be considered as
the equation for dimensionless gravitational potential, which is created by the dimensionless density
distribution (4π)−1 · {Ω2−Y n(ξ, θ)}. In this regard, this equation can be rewritten in the integral form

Y (ξ, θ) = 1 +

∞
∑

l=1

C2l ξ
2lP2l(t)−

1

4π

∫

{

Ω2 − Y n(ξ′, θ′)
}

Q(ξ, ξ′) dξ′, (9)

where C2l are the integration constants, P2l(t) is the Legendre’s polynomial of 2l-th order, the kernel
of the equation is

Q(ξ, ξ′) =
{

|ξ − ξ′|−1 − (ξ′)−1
}

,

and the integration is performed over the stellar volume. Taking into account the identity

∆(ξ, θ){ξl Pl(t)} = 0,

it is easy to verify that the equations (7) and (9) are equivalent.
The root of equation Y (ξ0(θ), θ) = 0 determines the equation of the second-order curve (which

is close to the ellipse), the rotation of which relative to the axis Oz is forms stellar surface. The
expressions for mass, volume and moment of inertia of a star are as follows:

M(n,Ω) = 2πλ3nρc

∫ π

0
sin θ dθ

∫ ξ0(θ)

0
ξ2Y n(ξ, θ) dξ, V (n,Ω) =

2π

3
λ3n

∫ π

0
sin θ ξ30(θ) dθ,

I(n,Ω) = 4πλ5nρc

∫ π

0
sin3 θ dθ

∫ ξ0(t)

0
ξ4Y n(ξ, θ) dξ.

(10)

At the arbitrary value of the polytropic index n the gravitational potential inside the star (3) is
related to dimensionless potential

Φn(ξ) = − 1

4π

∫

Y n(ξ′)

|ξ − ξ′| dξ
′

with such expression
Φgrav(r) = 4πGλ2nρcΦn(ξ).

Rewriting the equation (2) in dimensionless variables, we obtain the relation

∂

∂ξ

{

Φn(ξ, θ) + Y (ξ, θ)

}

=
Ω2

3
ξ

{

1− P2(t)

}

. (11)
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The equation (9) can be represented in terms Y (ξ, θ), Φn(ξ, θ), namely

Y (ξ, θ) + {Φn(ξ, θ)− Φn(0, 0)} = 1 +
∑

l=1

C2lξ
2lP2l(t) + Ω2

{

Φ0(ξ, θ)− Φ0(0, 0)

}

,

where Φ0(ξ, θ) is the dimensionless model potential with the constant density ρ0 = 1. This allows us
to convert the equation (11) to such form

∂

∂ξ

{

∑

l=1

C2lξ
2lP2l(t) + Ω2

[

Φ0(ξ, θ)− Φ0(0, 0)
]

}

= ξ
Ω2

3

(

1− P2(t)

)

. (12)

The difference of potentials Φ0(ξ, θ) − Φ0(0, 0) is easy to calculate using expansion in series of kernel
Q(ξ, ξ′) by Legendre polynomials and performing integration over the variable ξ′ within rotational
ellipsoid with eccentricity e and equatorial radius ξe, which we will define in a self-consistent manner
later. In this way we find that

Φ0(ξ, θ)− Φ0(0, 0) = − 1

4π

∫

dξ′Q(ξ, ξ′) =
ξ2

6
− ξ2

2
P2(t)

∫ +1

−1
dt′ P2(t

′)

∫ ξ0(t′)

ξ

dξ′

ξ′
,

where

ξ0(t
′) = ξe

{

1 + (t′)2
e2

1− e2

}−1/2

. (13)

Integrating over the variables ξ′ and t′ we obtain the final expression (see [11]):

Φ0(ξ, θ)− Φ0(0, 0) =
ξ2

6
+
ξ2

2
P2(t) I(e),

I(e) =
2

3
+

1− e2

e2
− (1− e2)1/2

e3
arcsin e.

(14)

Varying the eccentricity in the limits 0 6 e 6 1 the function I(e) changes in the region 2e2/15 6

I(e) 6 2/3. Substituting the expression (14) in the equation (12) we get the equality

∑

l=1

C2l 2l ξ
2l−2P2l(t) = −Ω2

3
P2(t)

(

1 + 3I(e)

)

.

According to the orthogonality of the Legendre’s polynomials it follows that

C2 = −Ω2

6
(1 + 3I(e)),

and all others constants C2l = 0.
Therefore, equation (9) for arbitrary values of the polytropic index n can be written in the form

Y (ξ, θ) = 1 +
Ω2ξ2

6
(1− P2(t)) +

1

4π

∫

Y n(ξ′, θ′)Q(ξ, ξ′) dξ′. (15)

3. The Emden’s equation

The partial case Ω = 0 corresponds to the polytropic star with spherical symmetry and the equation (7)
becomes the one-dimensional one-parametric equation

∆ξy(ξ) = −yn(ξ) (16)
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with the boundary conditions y(0) = 1, dy/dξ = 0 at ξ = 0, as well as the physical condition y(ξ) > 0.
The dimensionless stellar radius ξ1 is a smaller root of the equation y(ξ) = 0. All stellar characteristics
are determined by the polytropic index n > 0. The value n = 5 is critical: at n < 5 the solutions
of equation (16) are the alternating-sign functions of ξ, and at n > 5 they are positive in all range
0 6 ξ 6 ∞ and the boundary condition on the stellar surface is not fulfilled (ξ1(5) = ∞, that
corresponds to a star without external border). Henceforward we only consider the models with n 6 5
(ν > 6/5). After integration over kernel angular variables Q(ξ, ξ′) the equation (9) takes the form

y(ξ) = 1 +

∫ ξ

0

{

(ξ′)2

ξ
− ξ′

}

yn(ξ′) dξ′. (17)

The characteristic features of solutions for equations (16), (17) are well known [12]. They are illustrated
by the accurate analytical solutions at n = 0; 1; 5, namely

y0(ξ) = 1− ξ2/6; ξ1(0) =
√
6; y1(ξ) =

1

ξ
sin ξ; ξ1(1) = π;

y5(ξ) = {1 + ξ2/3}−1/2; ξ1(5) = ∞.

(18)

For other values of index n we can get the solution through numerical integration of the equation (16)
or (17). In the range of small values ξ the Emden’s functions have such series expansion [12]:

yn(ξ) = 1− 1

3!
ξ2 +

n

5!
ξ4 − n(8n− 5)

3 · 7! ξ6 + . . .

In the case n > 1 the equation (16) can be “linearized”, neglecting the term ynn(ξ) in the surface stellar
region. The solution of equation ∆ξyn(ξ) = 0 is the function

yn(ξ) = β2(n)

(

1

ξ
− 1

ξ1(n)

)

≃ β2(n)

ξ21(n)
(ξ1(n)− ξ),

.0

yn(ξ)

ξ

n = 0 1.0 2.0

1

1

0.8

0.6

0.4

0.2

0

0

−0.2

−0.4

2

3
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Fig. 1. The solutions of Emden’s equation for the
polytropic index 0 6 n 6 3.0.

which determines the asymptotic of solution in the
vicinity ξ1(n). Herewith

β2(n) =

∫ ξ1(n)

0
ξ2ynn(ξ) dξ = ξ21(n)

∣

∣

∣

∣

dyn
dξ

∣

∣

∣

∣

ξ1(n)

is characteristic parameter of the polytropic model,
that determines its mass and energy. The impor-
tant feature of the solutions of equilibrium equa-
tion at n 6= 0 are the presence of the inflection
point ξ2(n), where d2yn/dξ

2 = 0. This point di-
vides the range of variable ξ with different value of
second derivative: at ξ < ξ2(n) the curve yn(ξ) is
convex and in the region ξ > ξ2(n) is concave. In
the first region the expansion in series by powers
of ξ2 is applicable and in the second one — series
of type

yn(ξ) =

∞
∑

m=1

an,m (ξ1(n)− ξ)m.

This series are also valid in the region ξ > ξ1(n) and can be used when describing the stars with axial
rotation. The nature of the solutions of equations (16), (17) are illustrated in Fig. 1.
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The dependencies of the values ξ1(n), ξ2(n), β2(n) and β4(n) on polytropic index are shown in the
Table 1.

Table 1. The parameters of Emden’s polytropic models.

n 0 0.25 0.5 1.0 1.5 2.0 2.5 3.0

ξ1(n) 2.4495 2.5921 2.7527 3.1416 3.6538 4.3529 5.3553 6.8969
ξ2(n) − 2.4780 2.3470 2.0810 1.8780 1.7210 1.5970 1.4960
β2(n) 4.8990 4.2579 3.7887 3.1416 2.7141 2.4111 2.1872 2.0182
β4(n) 17.6371 15.5178 14.0352 12.1567 11.1197 10.6110 10.5197 10.8516

As can be seen from the formulae (18), the function y1(ξ) coincides with the spherical Bessel function
of first kind j0(ξ) [14]. The functions yn(ξ) at n > 1 in the asymptotic ξ ≪ 1 also coincide with the
function j0(ξ). The solutions of equation (16) was shown in Fig. 1, these solutions are changeable
functions ξ: if n is even, then the equation yn(ξ) = 0 has a single root ξ1(n), in the case of odd n this
equation has many roots ξm(n) and the functions yn(ξ) are oscillating. In general the functions yn(ξ)
in the region of ξ 6 ξ1(n) are analogues of the function j0(ξ).

According to the formulae (10) the mass, volume and moment of inertia of the polytropic star
without rotation are determined by expressions:

M(n, 0) = 4πρcλ
3
n

∫ ξ1(n)

0
ξ2ynn(ξ) dξ = 4πρcλ

3
nβ2(n); V (n, 0) =

4π

3

(

λnξ1(n)

)3

;

I(n, 0) =
8

3
πλ5nρc

∫ ξ1(n)

0
ξ4ynn(ξ) dξ =

8

3
πλ5nρcβ4(n).

4. The models with axial rotation. Linear equations

To reveal the basic differences of the solutions of equations (7) and (15) on the Emden’s functions, we
consider partial cases n = 0 and n = 1, when these equations are linear and allow the solutions in
analytical form, unlike the works [7, 8]. Note, that the case n = 0 in these works was not considered.

4.1. Polytrope n = 0

This simple model with constant density (ρ(r) = ρc) corresponds to incompressible fluid and the
solution of equilibrium equation only determines shape and size of the object. It is used in the theory
of homogeneous rotational spheroids and ellipsoids [13]. We consider dimensionless angular velocity
(but not eccentricity) as the independent parameter and we determine mass and shape of model surface
in the region of valid values of angular velocity.

According to the formulae (14), (15) at the solution of equilibrium equation takes the form

Y0(ξ, θ) = y0(ξ) +
ξ2

6
Ω2

(

1− P2(t)

)

− ξ2

2
P2(t) I(e), (19)

where y0(ξ) is the Emden’s function with polytropic index n = 0. From the condition Y0(ξ, θ) = 0 we
find the surface equation

ξ0(θ) =
√
6
{

1−Ω2(1− P2(t)) + 3P2(t) I(e)
}−1/2

. (20)

Having determined from that formula polar and equatorial radii and taking advantage of the ratio
1− e2 = ξ2p/ξ

2
e we obtain the equation

e2 +

(

3e2 − 9

2

)

I(e) =
3

2
Ω2, (21)
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which defines the relation of eccentricity with angular velocity. In the approximation e2 ≪ 1

I(e) =
2

15
e2 +

8

105
e4 + . . . , e2 =

15

4
Ω2 − 225

112
Ω4 + . . . , I(e) =

1

2
Ω2 − 2

15
Ω4 + . . . . (22)

In this approximation

ξ0(θ) =
√
6

{

1− Ω2 +
5

2
P2(t)

[

Ω2 − 4

25
Ω4

]

+ . . .

}−1/2

=
√
6

{

1 +
Ω2

2

[

1− 5

2
P2(t)

]

+
3

8
Ω4

[

1− 67

15
P2(t) +

25

4
P 2
2 (t)

]

+ . . .

}

,

in connection with that

ξp ≃
√
6

{

1− 3

4
Ω2 +

167

160
Ω4 + . . .

}

, ξe ≃
√
6

{

1 +
9

8
Ω2 +

1151

640
Ω4 + . . .

}

.

It follows also, that mass and volume of the polytropic star with index n = 0 are determined by the
expression

M(0,Ω) =M(0, 0)f(Ω), V (0,Ω) = V (0, 0)f(Ω), f(Ω) ∼= 1 +
3

2
Ω2 +

11

2
Ω4 + . . . , (23)

where M(0, 0) and V (0, 0) are mass and volume without rotation.
To investigate the dependence of stellar characteristics on rotation velocity in large range, we found

the solution of equation (21) regarding to the eccentricity by the numerical method. It turns out that
the real solutions exist only in the range 0 6 Ω 6 Ωmax = 0.47399 . . . and the eccentricity is an
ambiguous function of velocity (Fig. 2). The value Ωmax corresponds to the e(Ωmax) = 0.92995 . . ..

e(Ω)

Ω

Ωmax = 0.47399, e(Ωmax) = 0.92995

0

0

0.1 0.2

0.2

0.3 0.4

0.4

0.5 0.6

0.6

0.8

1
I(Ω)

Ω

0

0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

Fig. 2. Dependence of the eccentricity e(Ω) on the
angular velocity Ω.

Fig. 3. Dependence of the function I(Ω) on angular
velocity Ω. Dashed-dot curve corresponds to small
velocity (small value of the eccentricity), dashed —

small velocity at large values of the eccentricity.

The configurations which belong to the region 0 < e 6 e(Ωmax) are the typical ellipsoidal structures,
and those which belong to the range e(Ωmax) < e 6 1.0 are similar to disk structures. This confirm the
existence of a point of bifurcation in the equation (7) relative to the angular velocity (see [13]). The
dependence I(Ω) ≡ I(e(Ω)) on rotational velocity is shown in Fig. 3. Herewith I(e(Ωmax)) = 0.27698.
The solid curve in Fig. 3 corresponds to dependence, which was depicted in Fig. 2, and dashed —
approximation of small velocities (form. (22)).
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The dimensionless equatorial and polar radii are determined from the ratio (20)

ξe(Ω) =
√
6

{

1− 3

2
[Ω2 + I(Ω)]

}−1/2

, ξp(Ω) =
√
6

{

1 + 3I(Ω)

}−1/2

(24)

are shown in Fig. 4. The solid curves correspond to the numerical calculations in region 0 6 e 6 e(Ωmax)

ξ(Ω)

ξ1

Ω

ξe(Ω)

ξp(Ω)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Ω

M(0,Ω)/M(0, 0)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

1

1.5

2

2.5

3

Fig. 4. Dependencies of equatorial ξe(Ω) and polar
ξp(Ω) radii on angular velocity Ω (dashed-dot curves

corresponds to small velocity).

Fig. 5. Dependence of stellar polytropic mass on the
rotational velocity Ω (dashed-dot curve corresponds

to the formula (23)).

and dashed-dot curves — approximation of small velocities. As was shown from figure, approximation
of small velocities is applicable in the range Ω 6 0.5Ωmax.

Dependence of stellar mass on rotational velocity

M(0,Ω) =M(0, 0) ξ2e (Ω) ξp(Ω) ξ
−3
1 (0)

is shown in Fig. 5. Herewith dashed-dot curve corresponds to small velocity according to the for-
mula (23).

In the range e(Ωmax) 6 e 6 1

I(Ω) ≈ 2

3
− Ω2 − Ω4 + . . . ,

which is shown with dashed curve in Fig. 3. Therefore according to the formulae (24) in region of large
values of the eccentricity and small values of rotational velocity

ξe(Ω) ⇒
2

Ω2
+ . . . , ξp(Ω) ⇒

√
2,

which corresponds to the disk of constant thickness and large radius.

4.2. Polytrope n = 1

In this case we use both differential and integral form of the mechanical equilibrium equation. It is
convenient to rewrite the equation (7) in the form of such inhomogeneous equation

∆(ξ, θ)ϕ(ξ, θ) + ϕ(ξ, θ) = −Ω2

4
ξ2 sin2 θ,

ϕ(ξ, θ) = Y1(ξ, θ)−
Ω2

4
ξ2 sin2 θ.

(25)
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In the corresponding homogeneous equation the variables are separated and its general solution

ϕ(ξ, θ) =

∞
∑

l=0

B2l j2l(ξ)P2l(t),

where j2l(ξ) is the spherical Bessel function of first kind [14], B2l are the integration constants. The
substitution ϕ(ξ, θ) = Ω2ϕ̃(ξ, θ) allows to get rid of the parameter Ω2 in the equation (25):

∆(ξ, θ)ϕ̃(ξ, θ) + ϕ̃(ξ, θ) = −ξ
2

4
sin2 θ.

We find the partial solution of this equation in the form

ϕ̃(ξ, θ) =
∞
∑

l=2

b2l
[

ξ sin θ
]2l
.

Using the equality
∆(ξ, θ) {ξ sin θ}2l = (2l)2{ξ sin θ}2l−2,

we find, that
b2l = (−1)l−12−2l(l!)−2,

therefore
1

4
ξ2 sin2 θ + ϕ̃(ξ, θ) = 1− J0(ξ sin θ),

where J0(z) is the Bessel function of the zero kind [14]. From the differential equation for the function
Y1(ξ, θ) it follows the asymptotic behavior

Y1(ξ, θ) ⇒ 1− ξ2

6
+

Ω2ξ2

4
sin2 θ + . . .

at ξ → 0, therefore the general solution is such:

Y1(ξ, θ) = y1(ξ) + Ω2

{

1− J0(ξ sin θ)

}

+

∞
∑

l=1

B2l j2l(ξ)P2l(t),

where y1(ξ) = j0(ξ) is the Emden’s function for the polytrope with index n = 1.
It is easy to see that the function J0(ξ sin θ) has the same expansion for the Legendre polynomials

(t = cos θ) and spherical Bessel functions:

J0(ξ sin θ) =

∞
∑

l=0

D2l j2l(ξ)P2l(t);

D0 = 1; D2 =
5

2
; D4 =

27

8
; . . . .

In this regard the solution can be represented in equivalent form, namely

Y1(ξ, θ) = y1(ξ) + Ω2(1− y1(ξ)) +

∞
∑

l=1

A2l j2l(ξ)P2l(t), (26)

where new constants A2l = B2l − Ω2D2l is introduced. From the other side, according to the equa-
tion (15)

Y1(ξ, θ) = 1 +
Ω2ξ2

6

(

1− P2(t)

)

+
1

4π

∫

Y1(ξ
′, θ′)Q(ξ, ξ′) dξ′. (27)
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The equation (27) is non-homogeneous, therefore it can be used to find the integration constants A2l.
Substituting in it the expression (26), we get the expression

∞
∑

l=1

A2l j2l(ξ)P2l(t) = −P2(t)
Ω2

6
ξ2
{

1 + 3I(e)

}

+
1

4π

∞
∑

l=1

A2l

∫

j2l(ξ
′)P2l(t

′)Q(ξ, ξ′) dξ′. (28)

We will perform integration over variables ξ′, t′, ϕ′ in the form of the rotational ellipsoid model with
the eccentricity e and the equatorial radius ξe, as in the case n = 0, expanding the kernel Q(ξ, ξ′) in
series of Legendre polynomials:

1

4π

∞
∑

l=1

A2l

∫

j2l(ξ
′)P2(t

′)Q(ξ, ξ′) dξ′ =

∞
∑

l=1

A2l

4l + 1

P2l(t)

ξ1+2l

∫ ξ

0
(ξ′)2+2lj2l(ξ

′) dξ′

+
1

2

∞
∑

l=1

A2l P2l(t) ξ
2l

∫ +1

−1
P 2
2l(t

′) dt′
∫ ξ0(t′)

ξ
j2l(ξ

′)(ξ′)1−2l dξ′

+
1

2

∞
∑

l,m=1

A2lP2m(t)ξ2m(1− δm,l)

∫ +1

−1
P2l(t

′)P2m(t′) dt′
∫ ξ0(t′)

ξ
j2l(ξ

′)(ξ′)1−2m dξ′,

where δn,l is the Kronecker symbol and ξ0(t
′

) is determined by formula (13).
Integration over the variable ξ

′

is performed in analytical form using the equation for the function
j2l(ξ), as well as recurrence formulae

(4l + 1)j2l(ξ) = ξ{j2l+1(ξ) + j2l−1(ξ)};
d

dξ
jl(ξ) = jl−1(ξ)−

l + 1

ξ
jl(ξ); l > 1.

Equating the coefficients at the same factors ξ2lP2l(t) in left and right sides of the expression (28), we
obtain the system of linear equations for the constants A2l:

A2S2,2 +A4S2,4 +A6S2,6 + . . . = −Ω2

6

(

1 + 3I(e)

)

;

A2B4,2 +A4S4,4 +A6B4,6 + . . . = 0;

A2C6,2 +A4C6,4 +A6S6,6 + . . . = 0; . . . .

(29)

The coefficients S2l,2l, S2l,2n, B2n,2l, C2n,2l, . . . are functions of the parameters e, ξe and determined by
such expressions:

S2l,2l =

∫ 1

0
P 2
2l(t) ξ

1−2l
0 j2l−1(ξ0) dt; S2,4 =

∫ 1

0
P2(t)P4(t) ξ

−1
0 {j3(ξ0) + 2ξ−1

0 j2(ξ0)} dt;

S2,6 =

∫ 1

0
P2(t)P6(t) ξ

−1
0 {j5(ξ0) + 4ξ−1

0 j4(ξ0) + 8ξ−2
0 j3(ξ0)} dt;

B4,2 = −
∫ 1

0
P4(t)P2(t)

{
∫ ξ0

ξ1(n)
j2(ξ

′)(ξ′)−3 dξ′
}

dt; B4,6 =

∫ 1

0
P4(t)P6(t) ξ

−3
0 {j5(ξ0) + 2ξ−1

0 j4(ξ0)} dt;

C6,2 = −
∫ 1

0
P6(t)P2(t)

{
∫ ξ0

ξ1(n)
j2(ξ

′)(ξ′)−5dξ′
}

dt;

C6,4 = −
∫ 1

0
P6(t)P4(t)

{
∫ ξ0

ξ1(n)
j4(ξ

′)(ξ′)−5dξ′
}

dt . . . .

(30)
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As was shown from the expressions (30),

S2l,2l ≈ S̃2l,2l = (4l + 1)−1ξ−1
1 j2l−1(ξ1), (31)

where ξ1 = π is the dimensionless radius in the Emden’s approximation. Non-diagonal coefficients (30)
are the small values which are proportional to the degrees of squared eccentricity (to Ω2). The appro-
ximation of E.Milne–S.Chandrasekhar [7, 8] corresponds to

Ã2 = −Ω2

6

{

S̃2,2
}−1

, Ã4 = Ã6 = . . . = 0,

that mean full neglect of stellar surface variation because of of rotation while determining of con-
stants A2l.

The coefficients A2l are the functions of angular velocity, as well as the eccentricity e and the
equatorial radius ξe, which are the same functions of angular velocity. Therefore the problem arises of
self-consistent determining of geometrical parameters of rotational ellipsoid. From the condition

Ω2 + (1− Ω2) y1 (ξ0(t)) +

∞
∑

l=1

A2l j2l(ξ0(t))P2l(t) = 0 (32)

we will find the equation of stellar surface at a fixed value of the angular velocity ξ0(t) ≡ ξ0(t|Ω). The
root of equation at t = 1 determines the polar radius ξp(Ω) ≡ ξ0(1|Ω) and the root at t = 0 takes the
equatorial radius ξe(Ω) ≡ ξ0(0|Ω) at 0 6 Ω 6 Ωmax. The equation

e2(Ω) = 1−
[

ξ0(1|Ω)
ξ0(0|Ω)

]2

(33)

determines the dependence of eccentricity e(Ω) on angular velocity. The system of equations (29),
(32), (33), in which Ω is an independent parameter, determines the dependence e(Ω), ξe(Ω), ξp(Ω) and
A2l(Ω)(1 6 l 6 3) on angular velocity. The system solves numerically by the method of successive
approximations. The algorithm of successive iterations are as follows. At the initial value Ω1 ≪ 1 in
zero approximation values of ξe(Ω) = ξp(Ω) we determine from the equation (32) at A2l = 0. Next
we find the values S2l,2l, S2,4, . . . , C6,4 and solve the system of equations (29). In the next iteration
we find ξp(Ω) and ξe(Ω) from the equation (32) with help of found coefficients A2l and calculate the
eccentricity e(Ω). We calculate again S2l,2l, . . . , C6,4 and etc. The final values A2l(Ω1) are used as
the zero successive approximation for the calculation of the characteristics at Ω2 = Ω1 +∆Ω and etc.
Obtained in this way integration constants and ellipsoid’s characteristics are shown in Table 2.

The maximal value of angular velocity determines from condition of the disappearance of solution
of the equation (32) at t = 0: at the value Ωmax the equatorial radius becomes infinite and the polar
remains finite. This is an instability point, at which the leakage of the material occurs from the vicinity
of the equator according to the condition (8). In the approximation A2l = 0 at l > 2 we find that
Ωmax = 0.29770 . . .. Considering A2(Ω), A4(Ω), A6(Ω) we get the value Ωmax = 0.24607 . . . .

Dependence of values e(Ω), ξe(Ω), ξp(Ω), A2(Ω)−A6(Ω), as well as the factor

η(1,Ω) =M(1,Ω)/M(1, 0)

on the angular velocity is shown in the Tab. 2. Here M(1,Ω) denotes the mass of the rotational
ellipsoid in the approximation A2l = 0 at l > 4 and M(1, 0) is the mass of polytropic star without
rotation. Also the dependence on angular velocity of the dimensionless moment of inertia is

ζ(1,Ω) = I(1,Ω)/I(1, 0),

where I(1, 0) = 8π2λ5ρc(π
2 − 6)/3 is the moment of inertia in the Emden’s model.
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Table 2. Dependence of the model characteristics with index n = 1 on angular velocity.

Ω e(Ω) ξp(Ω) ξe(Ω) A2(Ω) A4(Ω) A6(Ω) η(n,Ω) ζ(n,Ω)

0.01000 0.02739 3.14112 3.14230 −0.00082 6.10775 · 10−7 −8.02713 · 10−10 1.00023 1.00062
0.02000 0.05478 3.13971 3.14443 −0.00329 9.796 · 10−6 −5.15628 · 10−8 1.00092 1.00249
0.03000 0.08219 3.13734 3.14799 −0.00743 4.97925 · 10−5 −5.91249 · 10−7 1.00207 1.00563
0.04000 0.10961 3.13402 3.15302 −0.01324 0.000158264 −3.3532 · 10−6 1.00369 1.01006
0.05000 0.13706 3.12973 3.15955 −0.02076 0.000389238 −1.2947 · 10−5 1.00580 1.01583
0.06000 0.16455 3.12447 3.16765 −0.03003 0.000814471 −3.92393 · 10−5 1.00839 1.02298
0.07000 0.19208 3.11820 3.17737 −0.04109 0.00152534 −0.00010072 1.01150 1.03158
0.08000 0.21967 3.11092 3.18880 −0.05399 0.00263535 −0.000229121 1.01513 1.04172
0.09000 0.24733 3.10259 3.20205 −0.06881 0.00428336 −0.000475679 1.01933 1.05351
0.10000 0.27507 3.09318 3.21725 −0.08564 0.00663789 −0.000919578 1.02410 1.06707
0.11000 0.30291 3.08266 3.23456 −0.10456 0.00990262 −0.00167936 1.02951 1.08256
0.12000 0.33087 3.07097 3.25416 −0.12569 0.0143237 −0.00292837 1.03557 1.10016
0.13000 0.35900 3.05807 3.27632 −0.14919 0.0201994 −0.00491599 1.04237 1.12011
0.14000 0.38731 3.04388 3.30131 −0.17521 0.0278935 −0.00799698 1.04994 1.14270
0.15000 0.41586 3.02832 3.32953 −0.20397 0.0378538 −0.0126729 1.05839 1.16830
0.16000 0.44471 3.01127 3.36147 −0.23574 0.0506373 −0.0196514 1.06782 1.19736
0.17000 0.47394 2.99259 3.39779 −0.27082 0.0669518 −0.0299343 1.07834 1.23047
0.18000 0.50367 2.97208 3.43938 −0.30965 0.0877136 −0.0449518 1.09014 1.26843
0.19000 0.53407 2.94946 3.48752 −0.35278 0.11415 −0.0667796 1.10343 1.31232
0.20000 0.56538 2.92430 3.54414 −0.40103 0.147978 −0.0985096 1.11855 1.36371
0.21000 0.59802 2.89594 3.61237 −0.45558 0.191751 −0.14496 1.13597 1.42496
0.22000 0.63273 2.86321 3.69793 −0.51842 0.249659 −0.21424 1.15648 1.50007
0.23000 0.67114 2.82368 3.81334 −0.59350 0.329832 −0.322202 1.18158 1.59696
0.24000 0.71852 2.77019 4.00008 −0.69231 0.455201 −0.513924 1.21544 1.73805
0.24100 0.72446 2.76320 4.02826 −0.70491 0.472987 −0.543279 1.21980 1.75727
0.24200 0.73086 2.75562 4.06018 −0.71850 0.492654 −0.576426 1.22449 1.77830
0.24300 0.73793 2.74724 4.09737 −0.73341 0.514881 −0.614842 1.22964 1.80179
0.24400 0.74604 2.73767 4.14281 −0.75034 0.54095 −0.661368 1.23546 1.82894
0.24500 0.75612 2.72593 4.20403 −0.77099 0.574031 −0.723247 1.24249 1.86270
0.24600 0.77450 2.70593 4.33124 −0.80636 0.634619 −0.849421 1.25413 1.92196
0.24601 0.77507 2.70536 4.33555 −0.80739 0.63648 −0.85372 1.25445 1.92369
0.24602 0.77563 2.70481 4.33977 −0.80839 0.638275 −0.857875 1.25477 1.92537
0.24603 0.77626 2.70418 4.34461 −0.80951 0.640319 −0.862636 1.25512 1.92728
0.24604 0.77702 2.70344 4.35043 −0.81086 0.64275 −0.86836 1.25554 1.92955
0.24605 0.77800 2.70249 4.35808 −0.81259 0.645908 −0.875871 1.25608 1.93248
0.24606 0.77959 2.70100 4.37053 −0.81535 0.650937 −0.888039 1.25693 1.93714
0.24607 0.78685 2.69478 4.42985 −0.82731 0.672619 −0.94297 1.26065 1.95773
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Fig. 6. Dependence of the equatorial radius ξe(Ω) on
rotation velocity Ω in different approximations. Curve
1 built on the results of works [7,8], curves 2 and 3 cor-
respond to the formula (26): curve 2 corresponds to
the approximation A2l = 0 (l > 2), curve 3 — corre-
sponds to inclusion the terms A6. Curve 4 built on the

results of work [9].

Fig. 7. Dependence of the polar radius ξp(Ω) on ro-
tation velocity Ω in different approximations. Curve
1 built on the results of works [7, 8], curves 2 and 3
correspond to the formula (26): curve 2 corresponds
to the approximation A2l = 0 (l > 2), curve 3 — cor-
responds to inclusion the terms A6. Curve 4 built on

the results of work [9].
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The dependence of equatorial radius on the axial velocity in different approximations is illustrated
in Fig. 6. Similarly, the dependence of polar radius on the axial velocity in the same approximations
is given in Fig. 7.

z
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Fig. 8. Fragment of rotational ellipsoid section in the
vicinity of the equator at Ω = 0.2. Curve 1 depicts
the section of the ellipsoid surface in the approximation
A2l (l > 2), curve 2 corresponds to the approximation
A2l (l > 4), curve 3 — part of the ellipse, constructed
according to the formula (13), in which ξe(Ω) and e(Ω)

are used from Table 2.

Moreover, the cross section of polytropic
star according to the formula (32), as well as the
ellipsoid surface according to the formula (13)
at Ω = 0.2 are given in Fig. 8 with help of e(Ω)
and ξe(Ω) from Table 2. As we can see, there
exists a slight deviation of stellar form from the
exact rotational ellipsoid.

As was shown from Table 2, integration con-
stants A2(Ω), A4(Ω), A6(Ω), . . . make alterna-
ting-sign series, moreover |A2l(Ω)| ∼ Ω2l. The
relative contributions of expansion terms (26)
are illustrated in Figs. 6–8. The series (26) has
a good convergence and sufficient number of
terms of series provides more accurate values of
the characteristics. In this sense the precision of
numerical calculations in the work [9] is approxi-
mately of the same order that gives term A2(Ω)
with not very accurate calculation of constants
of integration. In general, it is more impor-
tant the precision of calculation of A2(Ω), than
taking into account terms with A4(Ω), A6(Ω).

5. Nonlinear equilibrium equations

From the formulae (19) and (26) it follows the way of approximate solution of equilibrium equations at
n > 1, namely linearization of these equations, that in the case of small angular velocities was proposed
in the work [7]. As was shown from the section 4 at the transition of polytrope with index n = 0 to the
polytrope with n = 1 the maximal value of angular velocity decreases approximately in 1.9 times. From
the calculation of polar and equatorial radii in the work [9] we can conclude that the approximation
expression Ωmax(n) ≈ 21−nΩmax(1) is fulfilled, where Ωmax(n) is the maximal value of angular velocity
for the polytrope with index n. That is a reason for the linearization of the equation (7) limiting the
terms linear at Ω2 and using the substitution

Yn(ξ, θ) = yn(ξ) + Ω2Ψn(ξ, θ). (34)

Here yn(ξ) is the Emden’s function for the polytrope with index n and Ψn(ξ, θ) is the unknown function
which satisfies the linear equation

∆(ξ, θ)Ψn(ξ, θ) = 1− n · yn−1
n (ξ)Ψn(ξ, θ). (35)

For the function Ψn(ξ, θ) it is used the substitution, which follows from the character of the solu-
tion (26):

Ψn(ξ, θ) = ψn,0(ξ) +
∞
∑

l=1

α2l ψn,2l(ξ)P2l(t), (36)

where α2l are the integration constants. Approximation of work [8] corresponds to the condition
α2l = 0 at l > 2. Substituting the expression (36) in the equation (35), we get the independent linear
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equations for the variable ξ:

∆(ξ)ψn,0(ξ) = 1− n · yn−1
n (ξ)ψn,0(ξ),

∆(ξ)ψn,2l(ξ) =

{

2l(2l + 1)

ξ2
− n yn−1

n (ξ)

}

ψn,2l(ξ); l > 1.
(37)

According to the asymptotic of Emden’s function yn(ξ), expansion in series (34) and the substitu-
tion (36), the functions ψn,0(ξ) and ψn,2l(ξ) satisfy zero limit conditions: ψn,0(0) = ψn,2l(0) = 0,
∂ψn,0(ξ)/∂ξ = ∂ψn,2l(ξ)/∂ξ = 0 at ξ → 0. The solutions of equations for the functions ψn,0(ξ) and
ψn,2(ξ) are found in the work [8] numerically in the region 0 6 ξ 6 ξ1(n) and are shown in Tables.
This simple approach is enough for that to describe variation of surface under influence of rotation
with very small angular velocity. However, for the self-consistent description of the surface of the star
in all region 0 6 Ω 6 Ωmax it is necessary to find the solutions of equation (37) in the region ξ 6 ξe(Ω).
Taking into account that yn(ξ) → 1 at ξ ≪ 1 we see that ψn,2l(ξ) is an analogue of the Bessel function
j2l(ξ). Passing from the variable ξ to the variable

√
n ξ, we find that

ψn,2l(ξ) = j2l(
√
n ξ)

in the asymptotic ξ ≪ 1. In the region of large values ξ, namely at ξ > ξ1(n) we find the other
asymptotic,

ψn,0(ξ) ≈ ξ2/6; ψn,2l(ξ) ≈ ξ2l const.

The listed features facilitate the finding of the solutions of equation (37) numerically at arbitrary integer
values of the polytrope index. At fractional values of the index n described approach is inapplicable,
otherwise yn(ξ) in the region ξ > ξ1(n) becomes negative, which follows in imaginary yn−1

n (ξ). In the
case of fractional values of index n the Emden’s function yn(ξ) are not the best approximation for
the solutions of equation (7) at the self-consistent description of axial rotation, which requires more
precise consideration. In this paper we calculate the variation of polytrope characteristics due to axial
rotation for integer values of polytrope index in the region 0 6 Ω 6 Ωmax(n).

Let’s turn to the definition of integration constants α2l, using the integral form of mechanical
equilibrium equation. In Ω2-approximation the analogue of equations (26), (27) take such form:

yn(ξ) + Ω2ψ2,0(ξ) + Ω2
∞
∑

l=1

α2l ψn,2l(ξ)P2l(t) = 1 +
Ω2ξ2

6
(1− P2(t)) +

1

4π

∫

dξ′Q(ξ, ξ′)

×
{

ynn(ξ
′) + n yn−1

n (ξ′)Ω2

[

ψ2,0(ξ
′) +

∞
∑

l=1

α2l ψn,2l(ξ
′)P2l(t

′)

]}

. (38)

This equation can be simplified taking into account the equation (17) for the Emden’s function yn(ξ).
Let’s also take into account that differential equation for the function ψ2,0(ξ) corresponds to the integral
equation

ψ2,0(ξ) = − 1

4π

∫

dξ′Q(ξ, ξ′)

{

1− n yn−1
n (ξ′)ψ2,0(ξ

′)

}

.

It follows that

1

4π

∫

dξ′Q(ξ, ξ′)n yn−1
n (ξ′)ψ2,0(ξ

′) = ψ2,0(ξ
′)− {Φ0(ξ, θ)− Φ0(0, 0)}

(see f. (14)). As a result yn(ξ) and ψ2,0(ξ) are excluded from the equation (38) and an analogue of the
equation (28) is obtained:

∞
∑

l=1

α2l P2l(t)ψn,2l(ξ) = −ξ
2

6
[1 + 3I(e)]P2(t) +

1

4π

∫

Q(ξ, ξ′)

∞
∑

l=1

α2l P2l(t
′)n yn−1

n (ξ′)ψn,2l(ξ
′) dξ′.
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Expanding in series the kernel Q(ξ, ξ′) to the Legendre polynomials and integrating by variable ξ′ and
equating coefficients by the same factors ξ2l P2l(t) in the left and right sides of the equation, we get
the system of linear equations for the integration constants:

α2S2,2 + α4S2,4 + α6S2,6 + . . . = −1

6

[

1 + 3I(e)

]

;

α2B4,2 + α4S4,4 + α6S4,6 + . . . = 0;

α2C6,2 + α4C6,4 + α6S6,6 + . . . = 0.

(39)

The coefficients of this system are defined by the following expressions:

S2l,2l =

∫ 1

0
P 2
2l(t) dt ξ

−2l
0 (t)

{

(2l + 1)ψn,2l(ξ0(t)) + ξ0(t)
d

dξ0
ψn,2l(ξ0(t))

}

;

S2,2l = −
∫ 1

0
P2(t)P2l(t) dt

∫ ξ0(t)

ξ1(n)
n yn−1

n (ξ′)ψn,2l(ξ
′)(ξ′)−1dξ′; l = 2; 3;

B4,2l = −
∫ 1

0
P4(t)P2l(t) dt

∫ ξ0(t)

ξ1(n)
n yn−1

n (ξ′)ψn,2l(ξ
′)(ξ′)−3dξ′; l = 1; 3;

C6,2l = −
∫ 1

0
P6(t)P2l(t) dt

∫ ξ0(t)

ξ1(n)
n yn−1

n (ξ′)ψn,2l(ξ
′)(ξ′)−5dξ′; l = 1; 2.

(40)

The approximation of E.Milne–S.Chandrasekhar [7, 8] corresponds to

α̃2 ≃ −5

6
ξ21

{

3ψn,2(ξ1) + ξ1
d

dξ1
ψn,2(ξ1)

}−1

, (41)

where ξ1 ≡ ξ1(n) is the dimensionless radius of Emden’s sphere for the polytrope with index n. The
self-consistent calculation of rotational ellipsoid parameters is implemented in the same way as at n = 1
using the iterative method. In zero approximation α2 = α̃2, α4 = α6 = 0.

5.1. Polytrope n = 2

The solutions of equation (37) calculated by numerical integration can be approximately represented
in the form:

ψ2,0(ξ) =
c2ξ

2 + c4ξ
4 + c6ξ

6

1 + b2ξ2 + b4ξ4 + b6ξ6
,

c2 = 0.166966, c4 = 0.00468588, c6 = 0.000390954,

b2 = 0.130027, b4 = 0.00193647, b6 = −3.53099 · 10−5;

ψ2,2(ξ) = j2(
√
2ξ) +

a0 + a2ξ
2 + a4ξ

4

1 + d2ξ2 + d4ξ4 + d6ξ6 + d8ξ8
ξ4,

a0 = −3.41171, a2 = −0.0453981, a4 = 0.0479275,

d2 = 47.1876, d4 = 10.8073, d6 = −0.0769964, d8 = 0.049992;

ψ2,4(ξ) = j4(
√
2ξ) +

g0 + g2ξ
2 + g4ξ

4

1 + h2ξ2 + h4ξ4
ξ6,

g0 = −0.00455907, g2 = 0.000294272, g4 = −2.68804 · 10−6,

h2 = 1.01463, h4 = 0.0870029;
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Table 3. Dependence of the model characteristics with index n = 2 on angular velocity.

Ω e(Ω) ξp(Ω) ξe(Ω) α2(Ω) α4(Ω) η(n,Ω) ζ(n,Ω)

0.01000 0.04433 4.35153 4.35581 −9.64290 −2.46122 · 10−6 1.00036 1.00110
0.02000 0.08876 4.34747 4.36470 −9.66576 −3.98549 · 10−5 1.00143 1.00443
0.03000 0.13341 4.34065 4.37980 −9.70428 −0.00020592 1.00324 1.01006
0.04000 0.17840 4.33094 4.40155 −9.75915 −0.000670219 1.00580 1.01809
0.05000 0.22386 4.31822 4.43065 −9.83133 −0.00170194 1.00915 1.02869
0.06000 0.26994 4.30228 4.46812 −9.92219 −0.00371262 1.01333 1.04212
0.07000 0.31687 4.28289 4.51546 −10.03360 −0.00733287 1.01842 1.05869
0.08000 0.36488 4.25973 4.57492 −10.16800 −0.0135554 1.02448 1.07888
0.09000 0.41439 4.23240 4.64998 −10.32890 −0.0240197 1.03165 1.10330
0.10000 0.46602 4.20036 4.74648 −10.52110 −0.0416372 1.04008 1.13286
0.11000 0.52092 4.16271 4.87540 −10.75250 −0.072176 1.05000 1.16892
0.12000 0.58171 4.11752 5.06216 −11.03780 −0.129377 1.06177 1.21369
0.13000 0.65800 4.05799 5.40334 −11.42520 −0.263157 1.07605 1.27150
0.13100 0.66800 4.05034 5.46177 −11.47750 −0.28819 1.07767 1.27838
0.13200 0.67916 4.04210 5.53204 −11.53650 −0.318497 1.07933 1.28557
0.13300 0.69225 4.03313 5.62230 −11.60730 −0.357261 1.08106 1.29318
0.13400 0.71000 4.02345 5.75907 −11.70950 −0.414263 1.08290 1.30157
0.13410 0.71243 4.02249 5.77902 −11.72450 −0.422289 1.08310 1.30251
0.13420 0.71515 4.02155 5.80160 −11.74180 −0.43126 1.08330 1.30348
0.13430 0.71833 4.02068 5.82821 −11.76270 −0.441664 1.08351 1.30452
0.13440 0.72241 4.01995 5.86242 −11.79080 −0.454742 1.08373 1.30569
0.134494 0.73067 4.01996 5.92954 −11.85470 −0.479288 1.08402 1.30742
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Fig. 9. Dependence of the equatorial radius ξe(Ω) on
rotation velocity Ω for the polytrope n = 2 in different
approximations. Curve 1 built on the results of works [7,
8], curve 2 corresponds to the results [9]. Curve 3 built

according to the Table 3.

The equatorial and polar radii, eccentricity,
integration constants, relative stellar mass and
relative moment of inertia as the functions of
angular velocity Ω (Table 3) are found by the
method of successive approximations using the
solution of equation (7) in the approximation

Y2(ξ, θ) = y2(ξ)+ψ2,0(ξ)+

2
∑

l=1

α2lψ2,2l(ξ)P2l(t),

(42)
the system of equations (39) in the approxima-
tion α2l = 0 at l > 3 and the expressions (40).
As was shown from the Table the maximal
value of angular velocity Ωmax(2) = 0.13449.
In Fig. 9 was shown calculated by us the de-
pendence of equatorial radius on angular ve-
locity (curve 3) as well as, for the comparison,
the results of E.Milne–S.Chandrasekhar calcu-
lations [7,8] (curve 1) and R. James [9] (curve 2).

5.2. Polytrope n = 3

In this case the asymptotic region of the function ψ3,2l(ξ) (where they are close to the Bessel function)
is small (ξ < 1), therefore for the convenience we represent these functions in the form of Pade
approximant:

ψ3,0(ξ) =
c2ξ

2 + c4ξ
4 + c6ξ

6

1 + b2ξ2 + b4ξ4 + b6ξ6
,
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c2 = 0.175687, c4 = 0.0248748, c6 = 0.00071618,

b2 = 0.353168, b4 = 0.00229006, b6 = 1.20061 · 10−5;

ψ3,2(ξ) =
a2ξ

2 + a4ξ
4 + a6ξ

6

1 + d2ξ2 + d4ξ4
,

a2 = 0.061913, a4 = 0.00289971, a6 = 0.000346914,

d2 = 0.192777, d4 = 0.0229925;

ψ3,4(ξ) =
g4ξ

4 + g6ξ
6

1 + h2ξ2 + h4ξ4
,

g4 = 0.00581656, g6 = 0.00533426,

h2 = 10.6029, h4 = 0.00160348.

Analogue of the function (42) is the function

Y3(ξ, θ) = y3(ξ) + ψ3,0(ξ) +
2

∑

l=1

α2lψ3,2l(ξ)P2l(t).

The integration constants α2l are determined self-consistently in the same way as at n = 2. The results
of calculation of geometrical and physical characteristics as well as the integration constants are shown
in Table 4. The dependencies of equatorial and polar radii in different approximations are given in
Figs. 10, 11. In the Fig. 10, curve 1 corresponds to approximation of E.Milne–S.Chandrasekhar, curve
built on the results R. James’s work and curve 3 — according to Table 4. In the Fig. 11, curve 1 cor-
responds to approximation of E.Milne–S.Chandrasekhar, which almost coincides with the R. James’s
results. Curve 3 built on the results of Table 4.

Table 4. Dependence of the model characteristics with index n = 3 on angular velocity.

Ω e(Ω) ξp(Ω) ξe(Ω) α2(Ω) α4(Ω) η(n,Ω) ζ(n,Ω)

0.00500 0.04576 6.89548 6.90271 −10.85850 6.10036 · 10−10 1.00015 1.00060
0.01000 0.09174 6.89132 6.92051 −10.88610 3.99801 · 10−8 1.00061 1.00242
0.01500 0.13818 6.88425 6.95093 −10.93320 4.74182 · 10−7 1.00139 1.00549
0.02000 0.18533 6.87403 6.99520 −11.00150 2.82479 · 10−6 1.00248 1.00985
0.02500 0.23350 6.86031 7.05531 −11.09370 1.16593 · 10−5 1.00389 1.01559
0.03000 0.28308 6.84260 7.13431 −11.21420 3.85724 · 10−5 1.00564 1.02282
0.03500 0.33458 6.82022 7.23700 −11.36920 0.000110925 1.00776 1.03169
0.04000 0.38875 6.79216 7.37127 −11.56930 0.000292576 1.01025 1.04243
0.04500 0.44684 6.75683 7.55127 −11.83270 0.000739428 1.01315 1.05537
0.05000 0.51124 6.71119 7.80647 −12.19610 0.00188011 1.01652 1.07105
0.05500 0.58822 6.64689 8.21991 −12.75880 0.00525887 1.02043 1.09055
0.05600 0.60665 6.62964 8.34315 −12.92000 0.0066597 1.02130 1.09511
0.05700 0.62701 6.60958 8.49371 −13.11250 0.00861298 1.02220 1.09999
0.05800 0.65044 6.58515 8.68921 −13.35530 0.0115234 1.02314 1.10529
0.05900 0.67988 6.55253 8.97737 −13.69790 0.0164819 1.02413 1.11127
0.05910 0.68345 6.54848 9.01616 −13.74260 0.0172007 1.02424 1.11192
0.05920 0.68721 6.54421 9.05802 −13.79050 0.0179878 1.02434 1.11260
0.05930 0.69120 6.53968 9.10357 −13.84230 0.0188571 1.02445 1.11329
0.05940 0.69546 6.53484 9.15370 −13.89870 0.0198282 1.02456 1.11401
0.05950 0.70008 6.52964 9.20970 −13.96120 0.0209287 1.02467 1.11476
0.05960 0.70518 6.52396 9.27356 −14.03160 0.0222023 1.02478 1.11555
0.05970 0.71095 6.51767 9.34874 −14.11360 0.023723 1.02490 1.11639
0.05980 0.71782 6.51047 9.44222 −14.21410 0.0256391 1.02502 1.11731
0.05990 0.72696 6.50163 9.57350 −14.35310 0.0283622 1.02515 1.11840
0.05998 0.74248 6.48989 9.81476 −14.60370 0.0333914 1.02530 1.11987
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Fig. 10. Dependence of the equatorial radius ξe(Ω)
on rotation velocity Ω for the polytrope n = 3 in dif-
ferent approximations. Curve 1 built on the results
of works [7, 8], curve 2 corresponds to the results [9].

Curve 3 built according to the Table 4.

Fig. 11. Dependence of the polar radius ξp(Ω) on ro-
tation velocity Ω for the polytrope n = 3 in differ-
ent approximations. Curve 1 built on the results of

works [7, 8], curve 3 built according to the Table 4.

6. Conclusions

Simultaneous employment of the differential and integral form of mechanical equilibrium equation yields
a closed system of expressions to determine the geometrical and physical characteristics of polytropic
star with axial rotation.

Model with index n = 1 allows to write the analytical solution of two-dimensional differential
mechanical equilibrium equation in the form of expansion of Legendre polynomials and first order
Bessel spherical functions, in which appears the set of integration constants A2l (f. (26)). Use of the
integral equilibrium equation (27) fully illustrates the benefits of the proposed method, because it gives
an opportunity to gain the system of linear algebraic equations for finding constants of integration,
therefore there is the possibility of self-consistent calculation of the geometrical ellipsoid characteristics,
as well as establishment of stability range of the stars regarding to the rotation velocity. The precision
of calculations of Ωmax, like all other characteristics of the star, depends on the number of terms
considered in the series (26) and on precision of matrix elements calculation (30). As was shown from
the Figs. 6, 7, the approximation of E.Milne–S.Chandrasekhar [7, 8] (only term of type A2j2(ξ)P2(t)
is taken into account and S2,2 is determined by the formula (31)) satisfactorily describes variation of
polar and equatorial radii only in range of small angular velocities (Ω 6 0.5Ωmax). Good convergence
of series (26) provides high precision of calculation of model characteristics in all region of angular
velocity variations 0 6 Ω 6 Ωmax.

Table 5. Dependence of maximal angular velocity
on polytropic index in different approximations.

n 0 1 2 3

ΩCh
max(n) − 0.3315 0.1805 0.0793

ΩJ
max(n) − 0.29 0.147 0.062

Ω∗

max(n) 0.47399 0.24607 0.13449 0.05998

Dependence of maximal angular velocity on polytropic index in different approximations is shown
in Table 5, ΩCh

max(n) corresponds to the approximation of E.Milne–S.Chandrasekhar’s [7, 8], ΩJ
max(n)

— the R. James’s results [9], Ω∗
max(n) — corresponds to our results according to the Tables 2–4. As was

shown from the Table 5, the maximal value of angular rotation velocity decreases with the increasing
n proportional to Ωmax(n) ≈ 21−nΩmax(1). Therefore in the case n > 1 it becomes possible to
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approximate the description of equilibrium by linearization of the equation (7). In this case the
convergence of series for the functions ψn,2l(ξ)P2l(t) improves with increasing of polytropic index as
evidenced by results for the models with n = 2 and 3, shown in Tables 3 and 4.

Geometrical and physical characteristics for the polytropic models are monotonic functions of poly-
tropic index n, dimensionless angular velocity Ω as well as the constants K and ρc. Below are given
the general expressions for the equatorial Re(n,Ω|K, ρc) and polar Rp(n,Ω|K, ρc) radii, total mass
M(n,Ω|K, ρc), volume V (n,Ω|K) and moment of inertia relative to rotational axis I(n,Ω|K, ρc):

Re(n,Ω|K, ρc) = xρ
− 1

2
(1−1/n)

c ξe(n,Ω);

Rp(n,Ω|K, ρc) = xρ
− 1

2
(1−1/n)

c ξp(n,Ω);

M(n,Ω|K, ρc) = 4πx3ρ
− 1

2
(1−3/n)

c β2(n)η(n,Ω);

V (n,Ω|K) =
4

3
πx3ξ2e(n,Ω)ξp(n,Ω);

I(n,Ω|K, ρc) =
8

3
πx5ρ

− 3

2
(1−5/6n)

c β4(n)η(n,Ω);

x ≡ {K(1 + n)/4πG}1/2.
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Самоузгоджений опис рiвноваги зiр з осьовим обертанням

Ваврух М. В., Тишко Н. Л., Дзiковський Д. В., Стельмах О. М.

Львiвський нацiональний унiверситет iменi Iвана Франка,

вул. Кирила i Мефодiя, 8, Львiв, 79005, Україна

Запропоновано новий пiдхiд до опису механiчної рiвноваги зiр з осьовим обертан-
ням. Самоузгоджений розрахунок ґрунтується на одночасному використаннi дифе-
ренцiальної та iнтегральної форм рiвняння рiвноваги, що дає змогу коректно визна-
чати сталi iнтегрування. У межах полiтропної моделi з iндексами n = 0 та 1 вперше
одержано аналiтичнi розв’язки, для n = 2 i 3 — числовi. Розраховано геометричнi па-
раметри поверхнi зорi, її масу, об’єм та момент iнерцiї як функцiї кутової швидкостi.
Знайдено максимальнi значення кутової швидкостi, за яких порушується стабiль-
нiсть зiр. Одержанi результати уточнюють результати Е. Мiлна, С. Чандрасекара та
Р. Джеймса, одержанi за допомогою наближеного чисельного iнтегрування рiвняння
рiвноваги.

Ключовi слова: зорi-полiтропи, неоднорiднi елiпсоїди, осьове обертання, рiвняння

механiчної рiвноваги, стабiльнiсть зiр.
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