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New method for the description of mechanical equilibrium of stellar structure with axial
rotation was proposed. The self-consistent calculation is based on simultaneous use of
differential and integral forms of mechanical equilibrium equation, which allows us to cor-
rectly determine the integration constants. In the frame of polytropic model with indexes
n = 0 and 1 were first obtained the analytical solutions, for n = 2 and 3 numerically.
The geometrical parameters of stellar surface as well as mass, volume and moment of
inertia were calculated as the functions of angular velocity. It was found the maximal
value of angular velocity in which the stability is disturbed. Obtained results improve the
results of E. Milne, S. Chandrasekhar and R. James, obtained with help of the approximate
numerical integration of mechanical equilibrium equation.
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1. Introduction

In the late XIX-th — early XX-th centuries the works of H.Lane [1], K. Emden [2|, R.Fowler [3],
A Ritter [4], W.Kelvin [5], A. Eddington [6] and other researchers laid the foundations of the theory
of internal stellar structure. At the first stage it was only considered the mechanical equilibrium of
normal stars — the equilibrium of gravity and internal pressure of the spherical symmetry models
which did not take into account the energy sources of stars, unknown at that time. The result of this
stage was the K. Emden’s book [2| of 1907. In the late works of E.Milne [7], S. Chandrasekhar [8],
R.James [9] and other authors, which were published in the first half of the XX-th century, this
theory was generalized to the case of polytropic models with solid axial rotation. The discovery of
thermonuclear reactions solved the problem of stars energy sources. The modern theory of normal
stars generalizes the polytropic theory and is based on the system of the internal structure equations,
which take into account both the mechanical and thermal equilibrium of these objects.

However, the polytropic theory has not lost its significance now, because its mathematical apparatus
easily adapts for the description of internal structure of compact objects, in particular the degenerate
dwarfs. After all, the equation of state of electron-nuclear model with relativistic electron subsystem
has asymptotically (at high and low densities of matter) polytropic character. Because of that the
solutions of equilibrium equations for the polytropic stars (with or without rotation) play the role
of zero approximation for the solutions of equilibrium equation of degenerate dwarfs [10]. The axial
rotation of non-magnetic dwarfs is the only reason which causes an increase of their mass. Therefore,
one of the topical problems of degenerate dwarfs’ theory is the calculation of maximal mass and setting
the limit of stability with respect to the angular velocity. Although this problem was investigated both
through numerical integration of equilibrium equations and with help of the variational method [11],
still the problem is far from the final solution.
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In accordance with above said the actual task is to find the mechanical equilibrium solutions of
polytropic stars in wide range for the angular velocity and determining the limits of stability on this
basis. Usually one uses the differential equations of mechanical equilibrium. In our work they are
supplemented by the integral form of these equations, which makes it possible to strictly define the
integration constants. It also provides a direct way of finding the dependence of the equilibrium
equations and macroscopic characteristics of star on the angular velocity.

2. General relations
In the polytropic theory of stars the equation of state is modeled by the dependence [12]
P(r) = Kp¥(r) = Kp' ™™ (x), (1)

where P(r) is the pressure in point with radius-vector r, p(r) is the local density of matter, K and v
are the constants. In general case (in the presence of rotation) the equilibrium equation is rewritten
in non-inertial (rotating) coordinate system in the form

VP(r) = —p(r) {V(I)gmv(r) +Vo.(r)}, (2)
where o
_ r'p(r
grav G/ ‘I‘ — I‘,‘ (3)

is the gravitational potential inside the star and ®.(r) is the centrifugal potential. If the axis Oz of
spherical coordinate system coincides with the axis of rotation then

O (r) = —% w?r?sin? 6. (4)

Here 6 is the polar angle, w is the angular velocity of reference frame, which is considered a constant.
Substituting the expressions (1), (3) and (4) in the equation (2) and using the identity

(1 T %) o (1) Volr) = (14 1) Vol (x),

the equilibrium equation is obtained in the form of differential equation that determines the density
distribution,

K(1+n)Ap/™(r) = —47Gp(r) + %wZA(r2 sin? 6). (5)

In the presence of axial symmetry (p(r) = p(r,6)) the Laplace operator is written in the form

! 19 (,0 o 50
A=8rt 50 A= 28r< 87“) Bo =51 =15

at t = cos @, therefore A(r?sin?f) = 4. Introducing the dimensionless radial coordinate & = r/\,,, as
well as using the substitution

p(T‘, 9) = pcyn(£7 9)7 (6)

where p, is the density of matter in stellar center, we transform the equation (5) to the dimensionless
form

Herewith the scale A\, dimensionless angular velocity €2 and Laplacian are determined by the relations
K1 +n)=47G\2pl=t/m Q% = W2 (2nGpe) 71,
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The self-consistent description of stellar equilibrium with axial rotation 155

1 10 0
A, 0) =Ac+ 5A Ae==— (2=).
According to the definition (6) Y(0,0) = 1 and the condition 9Y (¢,0)/0§ = 0 at & = 0 corresponds
to the solutions, regular in the vicinity £ = 0. At the large values 2 it is possible non-monotonic
dependence Y'(£,6) on the variable ¢ in the equator region and leakage of matter. The stability
conditions of stars in the equator region

m 0 s
v(eg) =0 Fr(e3)-0 (®)
determine the maximal legitimate value of the parameter Q%L,;x and the corresponding value of the
equatorial radius £"**(n). According to the definition (6), physical meaning only have the positive
solutions of equation (7), which is the two-dimensional differential equation of second order in partial
derivatives with two dimensionless parameters n, 2 > 0.
The equation (7) is similar to the Poisson equation, therefore it can formally be considered as

the equation for dimensionless gravitational potential, which is created by the dimensionless density
distribution (47)~!-{Q2—Y™(£,0)}. In this regard, this equation can be rewritten in the integral form

Y(E6) =1+ Y CuPult) - - [ {07 - ¥7(€.6)} QL&) de' )
=1

where Cy; are the integration constants, Py (t) is the Legendre’s polynomial of 2I-th order, the kernel
of the equation is

Q& &)={le-¢I" — ()},

and the integration is performed over the stellar volume. Taking into account the identity

A(g,0){€ P(1)} =0,

it is easy to verify that the equations (7) and (9) are equivalent.

The root of equation Y (§y(6),0) = 0 determines the equation of the second-order curve (which
is close to the ellipse), the rotation of which relative to the axis Oz is forms stellar surface. The
expressions for mass, volume and moment of inertia of a star are as follows:

™ £o(9) ™
M(n,Q) :2m$;pc/ sinede/ 2Yn(,0)de, V(n,Q) = 2—7TA$;/ sin 0 &5(0) do,
0 0 3 0 (10)

T fo(t)
I(n,Q) = 47)\3 p, / sin® 0 df / Y™ (€,0) de.
0 0

At the arbitrary value of the polytropic index n the gravitational potential inside the star (3) is
related to dimensionless potential

1 [y"¢)

- de’
W) e ™

®,(§) =

with such expression

(I)grav (I‘) = 47TG)‘$ch(I)n (E) .

Rewriting the equation (2) in dimensionless variables, we obtain the relation

a%{q)n(g,g)”(g,e)} — %25{1—192(75)}. (11)

Mathematical Modeling and Computing, Vol. 6, No. 2, pp. 153-172 (2019)



156 Vavrukh M. V., Tyshko N. L., Dzikovskyi D. V., Stelmakh O. M.

The equation (9) can be represented in terms Y (§,0), ®,,(£,0), namely
Y(£7 9) + {q>n(£7 0) - q)n(()? 0)} =1+ Z 02l£2lP2l(t) + Q2{¢0(£7 0) - @0(0, 0)}7
=1

where ®¢(,0) is the dimensionless model potential with the constant density py = 1. This allows us
to convert the equation (11) to such form

8% {Z Cor€% Py (t) + Q% [@0(&,0) — (0, 0)] } = 5%2 (1 - pQ(t)>, (12)
=1

The difference of potentials ®y(&,0) — ®y(0,0) is easy to calculate using expansion in series of kernel
Q(&,¢') by Legendre polynomials and performing integration over the variable ¢ within rotational
ellipsoid with eccentricity e and equatorial radius &, which we will define in a self-consistent manner
later. In this way we find that

2 2 +1 &) ge
(6.0) - 200.0) =~ [agaee) =5 - S [ arre [TF

=5 2P0 B
where
o2 )2
o) =6 {1+ @) (13
Integrating over the variables ¢ and ¢’ we obtain the final expression (see [11]):
& e
Po(€,0) — Po(0,0) = 5 ' §P2(t) I(e),
14
I()_g+1_62—(1_62)1/2 resin "
e)=3 = =3 arcsin e.

Varying the eccentricity in the limits 0 < e < 1 the function I(e) changes in the region 2¢2/15 <
I(e) < 2/3. Substituting the expression (14) in the equation (12) we get the equality

D Cu 287y (t) = —%2P2(t) (1 + 3I(e)> .

=1
According to the orthogonality of the Legendre’s polynomials it follows that
Q2
02 == —F(l + 3[(6)),

and all others constants Cy = 0.

Therefore, equation (9) for arbitrary values of the polytropic index n can be written in the form

Q2 62
6

Y(€6) =1+ u—mm+i/wwﬂm@ww. (15)

47

3. The Emden’s equation

The partial case 2 = 0 corresponds to the polytropic star with spherical symmetry and the equation (7)
becomes the one-dimensional one-parametric equation

Aey(§) = —y" (&) (16)
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with the boundary conditions y(0) = 1, dy/d{ = 0 at £ = 0, as well as the physical condition y(&) > 0.
The dimensionless stellar radius &; is a smaller root of the equation y(§) = 0. All stellar characteristics
are determined by the polytropic index n > 0. The value n = 5 is critical: at n < 5 the solutions
of equation (16) are the alternating-sign functions of £, and at n > 5 they are positive in all range
0 < & < oo and the boundary condition on the stellar surface is not fulfilled (£1(5) = oo, that
corresponds to a star without external border). Henceforward we only consider the models with n < 5
(v = 6/5). After integration over kernel angular variables Q(&,¢’) the equation (9) takes the form

y@>=1+14§{“22—5}y“@@d8. (17)

The characteristic features of solutions for equations (16), (17) are well known [12]. They are illustrated
by the accurate analytical solutions at n = 0;1;5, namely

yo(§) =1-82/6; &(0) = V6 () = %Siné; &6(1) = -
ys(&) = {1+&/3}712% 4(5) = 0.

For other values of index n we can get the solution through numerical integration of the equation (16)
r (17). In the range of small values ¢ the Emden’s functions have such series expansion [12]:

pnl€) =1 38+ St -

n(8n — 5)

6
57 §+...

In the case n > 1 the equation (16) can be “linearized”, neglecting the term ' (£) in the surface stellar
region. The solution of equation Agy,(§) = 0 is the function

1 1 ~ 52(71)
() = 5at0) (G~ 577 ) = B (€ =)
which determines the asymptotic of solution in the L
vicinity &;(n). Herewith
0.8
£1(n) dyn yn(§)
falm) = [ €6 ds = ) | 05
0 5 &1(n)
0.4
is characteristic parameter of the polytropic model, 09
that determines its mass and energy. The impor- ’ n=0\ \10\ 20 30
tant feature of the solutions of equilibrium equa- 0
tion at n # 0 are the presence of the inflection
point &2(n), where d?y,/d¢? = 0. This point di- 02
vides the range of variable £ with different value of  —0.44 ¢

second derivative: at & < &(n) the curve y, () is
convex and in the region & > &(n) is concave. In
the first region the expansion in series by powers
of £€2 is applicable and in the second one — series
of type

0 1 2 3 4 5 6 7 8 9 10
Fig.1. The solutions of Emden’s equation for the
polytropic index 0 < n < 3.0.

(&) = 3 tnm (&1(n) — O™
m=1

This series are also valid in the region £ > &;(n) and can be used when describing the stars with axial
rotation. The nature of the solutions of equations (16), (17) are illustrated in Fig. 1.
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The dependencies of the values &1 (n), £2(n), B2(n) and S4(n) on polytropic index are shown in the
Table 1.

Table 1. The parameters of Emden’s polytropic models.

[n [ 0 [ 025 [ 05 [ 1.0 | 15 [ 20 | 25 | 30 |
€(n) | 24495 | 25921 | 2.7527 | 3.1416 | 3.6538 | 4.3520 | 5.3553 | 6.8969
&) | — 2.4780 | 2.3470 | 2.0810 | 1.8780 | 1.7210 | 1.5970 | 1.4960
Ba(n) | 4.8990 | 4.2579 | 3.7887 | 3.1416 | 2.7141 | 24111 | 2.1872 | 2.0182
Ba(n) | 17.6371 | 15.5178 | 14.0352 | 12.1567 | 11.1197 | 10.6110 | 10.5197 | 10.8516

As can be seen from the formulae (18), the function y; (§) coincides with the spherical Bessel function
of first kind jo(&) [14]. The functions y,(£) at n > 1 in the asymptotic { < 1 also coincide with the
function jo(£). The solutions of equation (16) was shown in Fig. 1, these solutions are changeable
functions &: if n is even, then the equation y,(£) = 0 has a single root &1 (n), in the case of odd n this
equation has many roots &,,(n) and the functions y, () are oscillating. In general the functions y,,(€)
in the region of £ < &(n) are analogues of the function jy(&).

According to the formulae (10) the mass, volume and moment of inertia of the polytropic star
without rotation are determined by expressions:

5 &1(n) ) 5 A7 3
M(n,0) = 47%%/0 o yn (&) d§ = 4mpeX, P2 (n);  V(n,0) = = <An£1(n)> ;

1(n,0) = 273 o £47(€) dE = ST\ pefia(n)
) - 3 nPc 0 Yn - 37T nPecP4 .

4. The models with axial rotation. Linear equations

To reveal the basic differences of the solutions of equations (7) and (15) on the Emden’s functions, we
consider partial cases n = 0 and n = 1, when these equations are linear and allow the solutions in
analytical form, unlike the works |7,8]. Note, that the case n = 0 in these works was not considered.

4.1. Polytropen =0

This simple model with constant density (p(r) = p.) corresponds to incompressible fluid and the
solution of equilibrium equation only determines shape and size of the object. It is used in the theory
of homogeneous rotational spheroids and ellipsoids [13]. We consider dimensionless angular velocity
(but not eccentricity) as the independent parameter and we determine mass and shape of model surface
in the region of valid values of angular velocity.

According to the formulae (14), (15) at the solution of equilibrium equation takes the form

2

2
o(.0) = w(© + & 02(1- 20) - § P 1) (19

where yo(§) is the Emden’s function with polytropic index n = 0. From the condition Yp(¢,60) = 0 we
find the surface equation

~1/2

£0(0) = V6 {1 —Q*(1 - P5(1)) + 3P(t) I(e) } (20)

Having determined from that formula polar and equatorial radii and taking advantage of the ratio
1 —e? = ¢2/€2 we obtain the equation

e 1 <3e2 _ g) I(e) = 292, (21)
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which defines the relation of eccentricity with angular velocity. In the approximation e? < 1

_ 22y 8o 2_19g2 2250 gz Zen
I(e)—15e +105e +..., e = 4Q 1129 +..., I(e)—2Q 159 +.... (22)
In this approximation
5 4 ~1/2
0(0) = \/6{1 —- 0%+ 5 P2(®) [92 - %94} +}
0? 5 3 4 67 25
{1 2 ] 2ot o T B 4. )

in connection with that

3 167 9 1151
~ 1—20%2+ —Q+ ... .~ 1+ 024+ —Q%+...}.
& \/6{ iR L } 3 \/6{ + ¥+

It follows also, that mass and volume of the polytropic star with index n = 0 are determined by the
expression

3 11
M(0,Q) = M(0,0)£(R), V(0,Q)=V(0,00f(), f(Q)=1+ 592 + 794 +...,  (23)
where M (0,0) and V(0,0) are mass and volume without rotation.
To investigate the dependence of stellar characteristics on rotation velocity in large range, we found
the solution of equation (21) regarding to the eccentricity by the numerical method. It turns out that
the real solutions exist only in the range 0 < Q < Qe = 0.47399... and the eccentricity is an

ambiguous function of velocity (Fig.2). The value €4, corresponds to the e(Q24:) = 0.92995. . ..

e(2) 07119
1
0.6
0.8 1 Qmaz = 0.47399, e(QUmax) = 0.92995 05 |
0.6 0.4
0.3 1
0.4 1
0.2 :
0.2 - .
0.1 1 e
Q : Q
0 . . . : . 0 . : . : -
0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.1 0.2 0.3 0.4 0.5 0.6

Fig.2. Dependence of the eccentricity e(€2) on the Fig.3. Dependence of the function I(2) on angular
angular velocity €. velocity 2. Dashed-dot curve corresponds to small
velocity (small value of the eccentricity), dashed —

small velocity at large values of the eccentricity.

The configurations which belong to the region 0 < e < €(,42) are the typical ellipsoidal structures,
and those which belong to the range e(2,4,) < e < 1.0 are similar to disk structures. This confirm the
existence of a point of bifurcation in the equation (7) relative to the angular velocity (see [13]). The
dependence I(Q2) = I(e(2)) on rotational velocity is shown in Fig. 3. Herewith I(e(Qnqz)) = 0.27698.
The solid curve in Fig.3 corresponds to dependence, which was depicted in Fig.2, and dashed —
approximation of small velocities (form. (22)).
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The dimensionless equatorial and polar radii are determined from the ratio (20)

—-1/2

—1/2
£(Q) = \/6{1 - g[m + I(Q)]} , 6(Q) = \/6{1 + 31(9)} (24)

are shown in Fig. 4. The solid curves correspond to the numerical calculations in region 0 < e < e(Q42)

5.5 0 3
£(€0) M (0,€2)/M (0, 0)

5 -

4.5 2.5 A

4 -

3.5 A 92

3 -

2.5 1 1.5 1

2 -

1.5 T T T T T T T T T 1 T T T T T T T T T
0 0.05 0.1 0.15 0.2 025 03 035 04 0.45 0 0.05 0.1 0.15 0.2 0.25 0.3 035 0.4 045 0.5

Fig.4. Dependencies of equatorial & (2) and polar
&p(2) radii on angular velocity €2 (dashed-dot curves
corresponds to small velocity).

Fig. 5. Dependence of stellar polytropic mass on the
rotational velocity 2 (dashed-dot curve corresponds
to the formula (23)).

and dashed-dot curves — approximation of small velocities. As was shown from figure, approximation
of small velocities is applicable in the range 2 < 0.5,42 -
Dependence of stellar mass on rotational velocity

M(0,€) = M(0,0) £2(2) &, () &7°(0)

is shown in Fig. 5. Herewith dashed-dot curve corresponds to small velocity according to the for-
mula (23).
In the range e(Qpnar) <e <1
2 2 4
I(Q)zg—Q LA
which is shown with dashed curve in Fig. 3. Therefore according to the formulae (24) in region of large
values of the eccentricity and small values of rotational velocity

£ () = 2

02 &(Q) = V2,

+...,

which corresponds to the disk of constant thickness and large radius.

4.2. Polytropen =1

In this case we use both differential and integral form of the mechanical equilibrium equation. It is
convenient to rewrite the equation (7) in the form of such inhomogeneous equation

2
A O (E6) + p(6,0) = ~ € sin0,
(25)

Q2
©(&,0) =Y1(,6) — Zfz sin? 6.
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In the corresponding homogeneous equation the variables are separated and its general solution
Z Boy ju(§) Pu(t),

where jo;(€) is the spherical Bessel function of first kind [14], By are the integration constants. The
substitution (&, 0) = Q2@(&,0) allows to get rid of the parameter Q2 in the equation (25):

2
—é; sin2 6.

A8, 0)p(8,0) +¢(,0) =

We find the partial solution of this equation in the form

0) = Z bay [§ sin 6] 2l
=2

Using the equality
A(E,0) {€sin 0} = (20)*{£ sin 0} 72,

we find, that
by = (1) 1272 (1)

therefore

TE7SIn% 0 B(€,6) = 1 — Jo(Esind)

where Jy(z) is the Bessel function of the zero kind [14]. From the differential equation for the function
Y1(&,0) it follows the asymptotic behavior

YVi(€,0)=1— 2+ sinf + ...

6

62 252
4
at & — 0, therefore the general solution is such:
Y1(§,0) =y (§) + 92{1 — Jo(§sinb) } 2321321 ) Pa(t),

where y1(§) = jo(&) is the Emden’s function for the polytrope with index n = 1.
It is easy to see that the function Jy(€ sin @) has the same expansion for the Legendre polynomials
(t = cos ) and spherical Bessel functions:

Jo(€sinf) = ZD2I Ja (&) Pa(t);

In this regard the solution can be represented in equivalent form, namely
Yi(£,0) = y1(€) + Q*(1 — (€ +ZA21321 &) Pa(t), (26)

where new constants Ay = By — Q%2Dy; is introduced. From the other side, according to the equa-
tion (15)
9252 1 / / / /
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The equation (27) is non-homogeneous, therefore it can be used to find the integration constants Asg;.
Substituting in it the expression (26), we get the expression

ZAzsz ) Pou(t) = —Pa(t)— 52{1+3I }Jr—ZAzz/Jm ) Pu(t) Q€. €)dg’. (28)

We will perform integration over variables £,t', ¢ in the form of the rotational ellipsoid model with
the eccentricity e and the equatorial radius &, as in the case n = 0, expanding the kernel Q(§&,¢’) in
series of Legendre polynomials:

1 & > Ay Py ¢ N2+21 - / /
— Ja (&) Pa(t") Q (&) gu(&) d¢
Ar 2 / Z4l+1£1+21/
&o(t)
21 2 (4! / . / N1-21 /
+§§l:13A21 P [ rar [ e ae
1 . 2 1 / / / fo(*) . ! N1-2 /
+5 g Ao Poy (£)€7™ (1 — 0 1) B Py (t") Pop (') dt /5 Ja(§)(E) " d¢g,

I,m=1

where 4, is the Kronecker symbol and &y(t') is determined by formula (13).
Integration over the variable ¢ is performed in analytical form using the equation for the function
Ja1(§), as well as recurrence formulae

(4l + 1)j2r (&) = E{gas1(8) +gu-1(§)};

d%jz(é) () - l%ljl(é); I>1.

Equating the coefficients at the same factors €2/ Py (t) in left and right sides of the expression (28), we
obtain the system of linear equations for the constants Ao;:

Q2
A2S99 4+ AySaa+ AgSos + ... = s (1 + 3I(€)>§

29
AoByo + AySys+ AsBag + ... = 0; (29)

A2C62 + AyCg 4 + AgSe6 + ... = 0;

The coefficients So; 21, S21.2n, Bon 21, Con 21, - - - are functions of the parameters e, & and determined by
such expressions:

1 1

Sorr = /0 P2() € joy 1 (€0) dt; S = /0 Po(t) Pa(t) & (s (o) + 265 jol0) ) di:
1

Sog = /0 Py(t)Ps(t) & {5 (%0) + 4&5  ja (o) + 885 23 (&0) } dt;

1 € 1
By = —/0 P4(t)P2(t){/§1(n) J2(E)(E)7? dil} dt; Byg = /0 Py(t)Ps(t) &2 {55(€0) + 265 " ja(&0) } dt;

Coo = — /01 PG(t)P2(t){/:;) j2(§,)(§/)_5d§'} dt
Coa = — /01 PG(t)PA‘(t){/:;) j4(§,)(§/)_5d§'} dt
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As was shown from the expressions (30),

Sopor = S = (4l + 1)1 a1 (1), (31)

where & = 7 is the dimensionless radius in the Emden’s approximation. Non-diagonal coefficients (30)
are the small values which are proportional to the degrees of squared eccentricity (to Q2). The appro-
ximation of E. Milne-S. Chandrasekhar [7,8| corresponds to

_ 0z . _ _
Ay=—{S2} ", Ai=ds=...=0,

that mean full neglect of stellar surface variation because of of rotation while determining of con-
stants Agy.

The coefficients Ag; are the functions of angular velocity, as well as the eccentricity e and the
equatorial radius &, which are the same functions of angular velocity. Therefore the problem arises of
self-consistent determining of geometrical parameters of rotational ellipsoid. From the condition

0%+ (1= Q%) 1 (S(t) + Y Az jou(&o(t)) Pa(t) = 0 (32)
=1

we will find the equation of stellar surface at a fixed value of the angular velocity &y(t) = £o(¢|€2). The
root of equation at ¢ = 1 determines the polar radius §,(Q2) = £(1|€2) and the root at ¢ = 0 takes the
equatorial radius & (2) = £ (0]Q2) at 0 < Q < Q- The equation

() = 1 FO(HQ)F (33)

£0(0[$2)

determines the dependence of eccentricity e(£2) on angular velocity. The system of equations (29),
(32), (33), in which 2 is an independent parameter, determines the dependence e(2), £.(€2), £,(€2) and
A9 (2)(1 < I < 3) on angular velocity. The system solves numerically by the method of successive
approximations. The algorithm of successive iterations are as follows. At the initial value Q1 < 1 in
zero approximation values of £ (2) = £,(£2) we determine from the equation (32) at Ay = 0. Next
we find the values So9;, S2.4,...,Cg4 and solve the system of equations (29). In the next iteration
we find £,(2) and &.(Q2) from the equation (32) with help of found coefficients Ay and calculate the
eccentricity e(§2). We calculate again Sy 9, ...,Cs4 and etc. The final values Ay (€) are used as
the zero successive approximation for the calculation of the characteristics at 9 = Q1 + AQ and etc.
Obtained in this way integration constants and ellipsoid’s characteristics are shown in Table 2.

The maximal value of angular velocity determines from condition of the disappearance of solution
of the equation (32) at ¢ = 0: at the value ,,,, the equatorial radius becomes infinite and the polar
remains finite. This is an instability point, at which the leakage of the material occurs from the vicinity
of the equator according to the condition (8). In the approximation Ay = 0 at [ > 2 we find that
Qnaz = 0.29770. ... Considering A5 (), A4(Q), Ag(2) we get the value Q,,4, = 0.24607 . .. .

Dependence of values e(f2), £.(€2), &,(2), Aa2(2) — Ag(Q2), as well as the factor

n(1,Q) = M(1,Q)/M(1,0)

on the angular velocity is shown in the Tab. 2. Here M (1,Q) denotes the mass of the rotational
ellipsoid in the approximation Ay = 0 at [ > 4 and M (1,0) is the mass of polytropic star without
rotation. Also the dependence on angular velocity of the dimensionless moment of inertia is

¢(1,9) =I(1,9)/1(1,0),
where I(1,0) = 872\°p.(7? — 6)/3 is the moment of inertia in the Emden’s model.
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Table 2. Dependence of the model characteristics with index n = 1 on angular velocity.
[ 0 [ @ [&@ [&@ [ AHO) [ A@ [ A [0 [(n9) ]
0.01000 | 0.02739 | 3.14112 | 3.14230 | —0.00082 | 6.10775- 107 | —8.02713-10~1° | 1.00023 | 1.00062
0.02000 | 0.05478 | 3.13971 | 3.14443 | —0.00329 | 9.796-10~° —5.15628 - 10~% | 1.00092 | 1.00249
0.03000 | 0.08219 | 3.13734 | 3.14799 | —0.00743 | 4.97925-10~° | —5.91249-10~7 | 1.00207 | 1.00563
0.04000 | 0.10961 | 3.13402 | 3.15302 | —0.01324 | 0.000158264 —3.3532-107° 1.00369 | 1.01006
0.05000 | 0.13706 | 3.12973 | 3.15955 | —0.02076 | 0.000389238 —1.2947-107° 1.00580 | 1.01583
0.06000 | 0.16455 | 3.12447 | 3.16765 | —0.03003 | 0.000814471 —3.92393-10=° | 1.00839 | 1.02298
0.07000 | 0.19208 | 3.11820 | 3.17737 | —0.04109 0.00152534 —0.00010072 1.01150 | 1.03158
0.08000 | 0.21967 | 3.11092 | 3.18880 | —0.05399 0.00263535 —0.000229121 1.01513 | 1.04172
0.09000 | 0.24733 | 3.10259 | 3.20205 | —0.06881 0.00428336 —0.000475679 1.01933 | 1.05351
0.10000 | 0.27507 | 3.09318 | 3.21725 | —0.08564 0.00663789 —0.000919578 1.02410 | 1.06707
0.11000 | 0.30291 | 3.08266 | 3.23456 | —0.10456 0.00990262 —0.00167936 1.02951 | 1.08256
0.12000 | 0.33087 | 3.07097 | 3.25416 | —0.12569 0.0143237 —0.00292837 1.03557 | 1.10016
0.13000 | 0.35900 | 3.05807 | 3.27632 | —0.14919 0.0201994 —0.00491599 1.04237 | 1.12011
0.14000 | 0.38731 | 3.04388 | 3.30131 | —0.17521 0.0278935 —0.00799698 1.04994 | 1.14270
0.15000 | 0.41586 | 3.02832 | 3.32953 | —0.20397 0.0378538 —0.0126729 1.05839 | 1.16830
0.16000 | 0.44471 | 3.01127 | 3.36147 | —0.23574 0.0506373 —0.0196514 1.06782 | 1.19736
0.17000 | 0.47394 | 2.99259 | 3.39779 | —0.27082 0.0669518 —0.0299343 1.07834 | 1.23047
0.18000 | 0.50367 | 2.97208 | 3.43938 | —0.30965 0.0877136 —0.0449518 1.09014 | 1.26843
0.19000 | 0.53407 | 2.94946 | 3.48752 | —0.35278 0.11415 —0.0667796 1.10343 | 1.31232
0.20000 | 0.56538 | 2.92430 | 3.54414 | —0.40103 0.147978 —0.0985096 1.11855 | 1.36371
0.21000 | 0.59802 | 2.89594 | 3.61237 | —0.45558 0.191751 —0.14496 1.13597 | 1.42496
0.22000 | 0.63273 | 2.86321 | 3.69793 | —0.51842 0.249659 —0.21424 1.15648 | 1.50007
0.23000 | 0.67114 | 2.82368 | 3.81334 | —0.59350 0.329832 —0.322202 1.18158 | 1.59696
0.24000 | 0.71852 | 2.77019 | 4.00008 | —0.69231 0.455201 —0.513924 1.21544 | 1.73805
0.24100 | 0.72446 | 2.76320 | 4.02826 | —0.70491 0.472987 —0.543279 1.21980 | 1.75727
0.24200 | 0.73086 | 2.75562 | 4.06018 | —0.71850 0.492654 —0.576426 1.22449 | 1.77830
0.24300 | 0.73793 | 2.74724 | 4.09737 | —0.73341 0.514881 —0.614842 1.22964 | 1.80179
0.24400 | 0.74604 | 2.73767 | 4.14281 | —0.75034 0.54095 —0.661368 1.23546 | 1.82894
0.24500 | 0.75612 | 2.72593 | 4.20403 | —0.77099 0.574031 —0.723247 1.24249 | 1.86270
0.24600 | 0.77450 | 2.70593 | 4.33124 | —0.80636 0.634619 —0.849421 1.25413 | 1.92196
0.24601 | 0.77507 | 2.70536 | 4.33555 | —0.80739 0.63648 —0.85372 1.25445 | 1.92369
0.24602 | 0.77563 | 2.70481 | 4.33977 | —0.80839 0.638275 —0.857875 1.25477 | 1.92537
0.24603 | 0.77626 | 2.70418 | 4.34461 | —0.80951 0.640319 —0.862636 1.25512 | 1.92728
0.24604 | 0.77702 | 2.70344 | 4.35043 | —0.81086 0.64275 —0.86836 1.25554 | 1.92955
0.24605 | 0.77800 | 2.70249 | 4.35808 | —0.81259 0.645908 —0.875871 1.25608 | 1.93248
0.24606 | 0.77959 | 2.70100 | 4.37053 | —0.81535 0.650937 —0.888039 1.25693 | 1.93714
0.24607 | 0.78685 | 2.69478 | 4.42985 | —0.82731 0.672619 —0.94297 1.26065 | 1.95773
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Fig. 6. Dependence of the equatorial radius &.(£2) on

rotation velocity €2 in different approximations. Curve

1 built on the results of works [7,8], curves 2 and 3 cor-

respond to the formula (26): curve 2 corresponds to

the approximation Ay = 0 (I > 2), curve 3 — corre-

sponds to inclusion the terms Ag. Curve 4 built on the
results of work [9].

Fig.7. Dependence of the polar radius £,(€2) on ro-

tation velocity 2 in different approximations. Curve

1 built on the results of works [7,8], curves 2 and 3

correspond to the formula (26): curve 2 corresponds

to the approximation Ay = 0 (I > 2), curve 3 — cor-

responds to inclusion the terms Ag. Curve 4 built on
the results of work [9].

Mathematical Modeling and Computing, Vol.6, No.2, pp. 153-172 (2019)



The self-consistent description of stellar equilibrium with axial rotation 165

The dependence of equatorial radius on the axial velocity in different approximations is illustrated
in Fig.6. Similarly, the dependence of polar radius on the axial velocity in the same approximations
is given in Fig. 7.

Moreover, the cross section of polytropic
star according to the formula (32), as well as the 0971 2
ellipsoid surface according to the formula (13) (g |
at 0 = 0.2 are given in Fig. 8 with help of e(2)

and & () from Table2. As we can see, there o
exists a slight deviation of stellar form from the %]
exact rotational ellipsoid. 0.5 1
As was shown from Table 2, integration con- ¢4 4
stants A9(Q), A4(Q), Ag(Q2), ... make alterna- 03 ] 5
ting-sign series, moreover |Ag(Q)] ~ Q2. The 0'2 N\ ,

relative contributions of expansion terms (26)
are illustrated in Figs.6-8. The series (26) has 0.1 1

a good convergence and sufficient number of 0 : : : z
terms of series provides more accurate values of 3.7 3.75 3.8 3.85 3.9
the characteristics. In this sense the precision of = Fig.8. Fragment of rotational ellipsoid section in the
numerical calculations in the work [9] is approxi-  vicinity of the equator at Q@ = 0.2. Curve 1 depicts

mately of the same order that gives term Ap())  the section of the ellipsoid surface in the approx?mat%on

with not very accurate calculation of constants 42 (I > 2), curve 2 corresponds to the approximation

of integration. In general, it is more impor- Ag; (I = 4), curve 3 — part of the ellipse, constructed

tant the precision of calcul&;tion of A3(2), than according to the formula (13), in which £ (€2) and €(©)
)

o } are used from Table 2.
taking into account terms with A4(€2), Ag(Q2).

5. Nonlinear equilibrium equations

From the formulae (19) and (26) it follows the way of approximate solution of equilibrium equations at
n > 1, namely linearization of these equations, that in the case of small angular velocities was proposed
in the work [7]. As was shown from the section 4 at the transition of polytrope with index n = 0 to the
polytrope with n = 1 the maximal value of angular velocity decreases approximately in 1.9 times. From
the calculation of polar and equatorial radii in the work [9] we can conclude that the approximation
expression Qe (n) ~ 217002 (1) is fulfilled, where €4, (n) is the maximal value of angular velocity
for the polytrope with index n. That is a reason for the linearization of the equation (7) limiting the
terms linear at Q2 and using the substitution

Here y,,(§) is the Emden’s function for the polytrope with index n and ¥,, (&, 0) is the unknown function
which satisfies the linear equation

A,0)U,(E,0) =1 —n -y (O Ta(E,0). (35)

For the function W, (§,0) it is used the substitution, which follows from the character of the solu-
tion (26):

an(&) 9) = Tpn,O(g) + Z Q9] wn,Ql(g) PZI (t)v (36)
=1

where g are the integration constants. Approximation of work [8] corresponds to the condition
ag; = 0 at | > 2. Substituting the expression (36) in the equation (35), we get the independent linear
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equations for the variable &:

A(E)Yn0(€) =1 —n-yn~ (€)¥n0(8),

A©na® = {ZC i © b vnater 121
According to the asymptotic of Emden’s function y,(§), expansion in series (34) and the substitu-
tion (36), the functions v,0(§) and ), 9;(&) satisfy zero limit conditions: ¢, 0(0) = 1, 2/(0) = 0,
OV 0(8)/0& = Oy (€)/0& = 0 at & — 0. The solutions of equations for the functions ¢, (¢) and
Y 2(§) are found in the work [8] numerically in the region 0 < £ < &;(n) and are shown in Tables.
This simple approach is enough for that to describe variation of surface under influence of rotation
with very small angular velocity. However, for the self-consistent description of the surface of the star
in all region 0 < Q < Qa0 it is necessary to find the solutions of equation (37) in the region & < &.(Q).
Taking into account that y,(§) — 1 at £ < 1 we see that 1, 9;(£) is an analogue of the Bessel function
j21(§). Passing from the variable £ to the variable y/n ¢, we find that

Yn,2(§) = ju(Vné)

(37)

in the asymptotic £ < 1. In the region of large values £, namely at £ > &;(n) we find the other

asymptotic,
Vno(&) = €2/6; Py (€) ~ €% const.

The listed features facilitate the finding of the solutions of equation (37) numerically at arbitrary integer
values of the polytrope index. At fractional values of the index n described approach is inapplicable,
otherwise 4, (£) in the region & > £;(n) becomes negative, which follows in imaginary y?~!(¢). In the
case of fractional values of index n the Emden’s function y,(£) are not the best approximation for
the solutions of equation (7) at the self-consistent description of axial rotation, which requires more
precise consideration. In this paper we calculate the variation of polytrope characteristics due to axial
rotation for integer values of polytrope index in the region 0 < Q < Q42 (n).

Let’s turn to the definition of integration constants as;, using the integral form of mechanical

equilibrium equation. In Q2-approximation the analogue of equations (26), (27) take such form:

} . (38)

This equation can be simplified taking into account the equation (17) for the Emden’s function y,,(£).
Let’s also take into account that differential equation for the function g o(&) corresponds to the integral
equation

9262
6

n(€) + Dnol€) + 93 am () Palt) = 1+ T (1= Paft) + 5 [ d€ Qe.€)
=1

x {yZ(S’) +nyy ()02 [%,0(5’) +) o a(€) Pu(t)
=1

0206) = - [ € Q&) {1-nu€) a0}

It follows that
1= [ € QE.€) € baal€) = va0(€) - {B0(6.0) - Ba(0.0))

(see f. (14)). As a result y,,(§) and 12,0(§) are excluded from the equation (38) and an analogue of the
equation (28) is obtained:

2

> agy Po(t) thnai(8) = 66 [1+31(e)] P(t) + % / Q&) an Pu(t) nyp (&) Ynu(€) dg'.
=1 =1
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Expanding in series the kernel Q(&,¢’) to the Legendre polynomials and integrating by variable & and
equating coefficients by the same factors £ Py (t) in the left and right sides of the equation, we get
the system of linear equations for the integration constants:

1
829 + a4S2.4 + 06S26 + ... = % [1 + 31(6)} ;
39
By + Sy + 0gSs + ... = 0; (39)
a20672 + a4C’674 + CMGSG,G +...=0.
The coefficients of this system are defined by the following expressions:
1 . d
Saar= | PR(t)dt &g () § (20 + 1) vhn2(60(t) + Eot) 7 Ynu(Eo(t)) | ;
0 d&o
! fo(®) —1 ¢t ! N—1 ¢/
Ssar=— [ PO Pyt [ 0yl ) nal€)(€) N5 123
0 €1(n)
1 €o(t) (40)
Byo = —/ Py(t) Pu(t) dt/( : nyn (&) ()€ 2 1=1;3;
0 &1(n
! So(t) 1/¢t IN(¢IN—D g7
Co,21 = —/ PG(t)Pm(t)dt/g( ) ny, (&) Yna(€)(E)7dss 1=1;2.
0 1(n
The approximation of E. Milne—S. Chandrasekhar |7,8] corresponds to
i 5 o d !
Qo =~ ——£7 §3Un2(&1) + &1 Un2(&1) ¢ (41)
6 d&y

where & = £1(n) is the dimensionless radius of Emden’s sphere for the polytrope with index n. The
self-consistent calculation of rotational ellipsoid parameters is implemented in the same way as at n = 1
using the iterative method. In zero approximation as = &9, gy = ag = 0.

5.1. Polytrope n = 2

The solutions of equation (37) calculated by numerical integration can be approximately represented
in the form:

€t el + ol
14 bo€2 + byt 4 b6€8”
co = 0.166966, ¢4 = 0.00468588, cg = 0.000390954,
by = 0.130027, by = 0.00193647, bg = —3.53099 - 10~°;
2 4

vaa(€) = 0a(VE) + o e

ag = —3.41171, a9 = —0.0453981, a4 = 0.0479275,

dy = 47.1876, dg = 10.8073, dg= —0.0769964, dg = 0.049992;

2 4

Poa(8) = ja(V28) + glo:hg;é j;f:; &,
go = —0.00455907, go = 0.000294272, g4 = —2.68804 - 1075,
ho = 1.01463, h4 = 0.0870029;

P2,0(§)
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Table 3. Dependence of the model characteristics with index n = 2 on angular velocity.

L @ [ e(® [ &O) [ &) [ @ ay(©) [ n(n. Q) [ (0, Q) |
0.01000 | 0.04433 | 4.35153 | 4.35581 | —9.64290 | —2.46122-10~° | 1.00036 | 1.00110
0.02000 | 0.08876 | 4.34747 | 4.36470 | —9.66576 | —3.98549 10> | 1.00143 | 1.00443
0.03000 | 0.13341 | 4.34065 | 4.37980 | —9.70428 —0.00020592 1.00324 | 1.01006
0.04000 | 0.17840 | 4.33094 | 4.40155 | —9.75915 —0.000670219 | 1.00580 | 1.01809
0.05000 | 0.22386 | 4.31822 | 4.43065 | —9.83133 —0.00170194 1.00915 | 1.02869
0.06000 | 0.26994 | 4.30228 | 4.46812 | —9.92219 —0.00371262 1.01333 | 1.04212
0.07000 | 0.31687 | 4.28289 | 4.51546 | —10.03360 —0.00733287 1.01842 | 1.05869
0.08000 | 0.36488 | 4.25973 | 4.57492 | —10.16800 —0.0135554 1.02448 | 1.07888
0.09000 | 0.41439 | 4.23240 | 4.64998 | —10.32890 —0.0240197 1.03165 | 1.10330
0.10000 | 0.46602 | 4.20036 | 4.74648 | —10.52110 —0.0416372 1.04008 | 1.13286
0.11000 | 0.52092 | 4.16271 | 4.87540 | —10.75250 —0.072176 1.05000 | 1.16892
0.12000 | 0.58171 | 4.11752 | 5.06216 | —11.03780 —0.129377 1.06177 | 1.21369
0.13000 | 0.65800 | 4.05799 | 5.40334 | —11.42520 —0.263157 1.07605 | 1.27150
0.13100 | 0.66800 | 4.05034 | 5.46177 | —11.47750 —0.28819 1.07767 | 1.27838
0.13200 | 0.67916 | 4.04210 | 5.53204 | —11.53650 —0.318497 1.07933 | 1.28557
0.13300 | 0.69225 | 4.03313 | 5.62230 | —11.60730 —0.357261 1.08106 | 1.29318
0.13400 | 0.71000 | 4.02345 | 5.75907 | —11.70950 —0.414263 1.08290 | 1.30157
0.13410 | 0.71243 | 4.02249 | 5.77902 | —11.72450 —0.422289 1.08310 | 1.30251
0.13420 | 0.71515 | 4.02155 | 5.80160 | —11.74180 —0.43126 1.08330 | 1.30348
0.13430 | 0.71833 | 4.02068 | 5.82821 | —11.76270 —0.441664 1.08351 | 1.30452
0.13440 | 0.72241 | 4.01995 | 5.86242 | —11.79080 —0.454742 1.08373 | 1.30569
0.134494 | 0.73067 | 4.01996 | 5.92954 | —11.85470 —0.479288 1.08402 | 1.30742

The equatorial and polar radii, eccentricity,
integration constants, relative stellar mass and
relative moment of inertia as the functions of
angular velocity Q (Table3) are found by the
method of successive approximations using the
solution of equation (7) in the approximation

2
Ya(€,0) = y2(&) +20(€) + D aanho () Pa(t),

=1
(42)
the system of equations (39) in the approxima-
- Q tion ag; = 0 at [ > 3 and the expressions (40).
' 0 002 004 006 008 01 012 014 016 As was shown from the Table the maximal

value of angular velocity Q,4.(2) = 0.13449.
In Fig.9 was shown calculated by us the de-
pendence of equatorial radius on angular ve-
locity (curve3) as well as, for the comparison,
the results of E. Milne-S. Chandrasekhar calcu-
lations [7,8] (curve 1) and R. James [9] (curve 2).

Fig.9. Dependence of the equatorial radius £.(2) on

rotation velocity €2 for the polytrope n = 2 in different

approximations. Curve 1 built on the results of works |7,

8], curve 2 corresponds to the results [9]. Curve 3 built
according to the Table 3.

5.2. Polytrope n = 3

In this case the asymptotic region of the function 13 9;(§) (where they are close to the Bessel function)
is small (¢ < 1), therefore for the convenience we represent these functions in the form of Pade
approximant:

_ o€+t + el

14 5a€% + ba&t + beg®
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¢y = 0.175687, ¢4 = 0.0248748, ¢ = 0.00071618,
by = 0.353168, by = 0.00229006, b = 1.20061 - 10~°;
a2 (E) = a2€? + as&t + a6§6’
’ 1+ d&? 4 dy&t
as = 0.061913, a4 = 0.00289971, ag = 0.000346914,
dy = 0.192777, dy = 0.0229925;
baa(€) = 94&* + go&"

C 1+ hof2 4 byt
g4 = 0.00581656, gg = 0.00533426,
he = 10.6029, hy = 0.00160348.

Analogue of the function (42) is the function

2
Y3(6,6) = ys(€) + ¥s.0(8) + Y aantps au(€) Pau(t).

=1

The integration constants asg; are determined self-consistently in the same way as at n = 2. The results
of calculation of geometrical and physical characteristics as well as the integration constants are shown
in Table4. The dependencies of equatorial and polar radii in different approximations are given in
Figs. 10, 11. In the Fig. 10, curve 1 corresponds to approximation of E. Milne—S. Chandrasekhar, curve
built on the results R. James’s work and curve 3 — according to Table4. In the Fig. 11, curve 1 cor-
responds to approximation of E. Milne—S. Chandrasekhar, which almost coincides with the R. James’s
results. Curve 3 built on the results of Table 4.

Table 4. Dependence of the model characteristics with index n = 3 on angular velocity.

L 9 [ e@ [ 6O [ &) [ (@ | () [ (0. Q) | ¢(n, Q) |
0.00500 | 0.04576 | 6.89548 | 6.90271 | —10.85850 | 6.10036- 10~1° | 1.00015 | 1.00060
0.01000 | 0.09174 | 6.89132 | 6.92051 | —10.88610 | 3.99801-10~% | 1.00061 | 1.00242
0.01500 | 0.13818 | 6.88425 | 6.95093 | —10.93320 | 4.74182-10~7 | 1.00139 | 1.00549
0.02000 | 0.18533 | 6.87403 | 6.99520 | —11.00150 | 2.82479-10~° | 1.00248 | 1.00985
0.02500 | 0.23350 | 6.86031 | 7.05531 | —11.09370 | 1.16593-10~° | 1.00389 | 1.01559
0.03000 | 0.28308 | 6.84260 | 7.13431 | —11.21420 | 3.85724-10~° | 1.00564 | 1.02282
0.03500 | 0.33458 | 6.82022 | 7.23700 | —11.36920 | 0.000110925 1.00776 | 1.03169
0.04000 | 0.38875 | 6.79216 | 7.37127 | —11.56930 | 0.000292576 1.01025 | 1.04243
0.04500 | 0.44684 | 6.75683 | 7.55127 | —11.83270 | 0.000739428 1.01315 | 1.05537
0.05000 | 0.51124 | 6.71119 | 7.80647 | —12.19610 0.00188011 1.01652 | 1.07105
0.05500 | 0.58822 | 6.64689 | 8.21991 | —12.75880 0.00525887 1.02043 | 1.09055
0.05600 | 0.60665 | 6.62964 | 8.34315 | —12.92000 0.0066597 1.02130 | 1.09511
0.05700 | 0.62701 | 6.60958 | 8.49371 | —13.11250 0.00861298 1.02220 | 1.09999
0.05800 | 0.65044 | 6.58515 | 8.68921 | —13.35530 0.0115234 1.02314 | 1.10529
0.05900 | 0.67988 | 6.55253 | 8.97737 | —13.69790 0.0164819 1.02413 | 1.11127
0.05910 | 0.68345 | 6.54848 | 9.01616 | —13.74260 0.0172007 1.02424 | 1.11192
0.05920 | 0.68721 | 6.54421 | 9.05802 | —13.79050 0.0179878 1.02434 | 1.11260
0.05930 | 0.69120 | 6.53968 | 9.10357 | —13.84230 0.0188571 1.02445 | 1.11329
0.05940 | 0.69546 | 6.53484 | 9.15370 | —13.89870 0.0198282 1.02456 | 1.11401
0.05950 | 0.70008 | 6.52964 | 9.20970 | —13.96120 0.0209287 1.02467 | 1.11476
0.05960 | 0.70518 | 6.52396 | 9.27356 | —14.03160 0.0222023 1.02478 | 1.11555
0.05970 | 0.71095 | 6.51767 | 9.34874 | —14.11360 0.023723 1.02490 | 1.11639
0.05980 | 0.71782 | 6.51047 | 9.44222 | —14.21410 0.0256391 1.02502 | 1.11731
0.05990 | 0.72696 | 6.50163 | 9.57350 | —14.35310 0.0283622 1.02515 | 1.11840
0.05998 | 0.74248 | 6.48989 | 9.81476 | —14.60370 0.0333914 1.02530 | 1.11987
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Fig.10. Dependence of the equatorial radius &.(2)
on rotation velocity € for the polytrope n = 3 in dif-
ferent approximations. Curve 1 built on the results
of works [7,8], curve 2 corresponds to the results [9].
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Fig. 11. Dependence of the polar radius &,(€2) on ro-

tation velocity € for the polytrope n = 3 in differ-

ent approximations. Curve 1 built on the results of
works [7,8], curve 3 built according to the Table 4.

Curve 3 built according to the Table 4.

6. Conclusions

Simultaneous employment of the differential and integral form of mechanical equilibrium equation yields
a closed system of expressions to determine the geometrical and physical characteristics of polytropic
star with axial rotation.

Model with index n = 1 allows to write the analytical solution of two-dimensional differential
mechanical equilibrium equation in the form of expansion of Legendre polynomials and first order
Bessel spherical functions, in which appears the set of integration constants Ay (f. (26)). Use of the
integral equilibrium equation (27) fully illustrates the benefits of the proposed method, because it gives
an opportunity to gain the system of linear algebraic equations for finding constants of integration,
therefore there is the possibility of self-consistent calculation of the geometrical ellipsoid characteristics,
as well as establishment of stability range of the stars regarding to the rotation velocity. The precision
of calculations of €4, like all other characteristics of the star, depends on the number of terms
considered in the series (26) and on precision of matrix elements calculation (30). As was shown from
the Figs.6, 7, the approximation of E.Milne-S. Chandrasekhar [7,8| (only term of type Asjo(&)Pa(t)
is taken into account and S is determined by the formula (31)) satisfactorily describes variation of
polar and equatorial radii only in range of small angular velocities ( < 0.5Q,,42). Good convergence
of series (26) provides high precision of calculation of model characteristics in all region of angular
velocity variations 0 < 2 < Q02

Table 5. Dependence of maximal angular velocity
on polytropic index in different approximations.

. » [ o [ 1 [ 2 [ 3 |
Q%% (n) - 0.3315 | 0.1805 | 0.0793
Q). — 029 | 0.147 | 0.062
QF, . (n) | 0.47399 | 0.24607 | 0.13449 | 0.05998

Dependence of maximal angular velocity on polytropic index in different approximations is shown
in Table5, QC" (n) corresponds to the approximation of E.Milne-S. Chandrasekhar’s [7,8], Q. (n)

max
— the R. James’s results 9], Q.. (n) — corresponds to our results according to the Tables 2-4. As was

max
shown from the Table 5, the maximal value of angular rotation velocity decreases with the increasing

n proportional to Quez(n) ~ 27"Qee(1). Therefore in the case n > 1 it becomes possible to
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approximate the description of equilibrium by linearization of the equation (7). In this case the
convergence of series for the functions v, 9(§) Py (t) improves with increasing of polytropic index as
evidenced by results for the models with n = 2 and 3, shown in Tables 3 and 4.

Geometrical and physical characteristics for the polytropic models are monotonic functions of poly-

tropic index n, dimensionless angular velocity €2 as well as the constants K and p.. Below are given
the general expressions for the equatorial Re(n,Q|K,p.) and polar Ry(n, K, p.) radii, total mass
M(n,Q|K, pc), volume V(n,Q|K) and moment of inertia relative to rotational axis I(n, Q| K, p.):

1
2]
3]
4]
5]
[6]
7]
18]
19]
[10]
[11]
[12]

[13]
[14]

1(1-1/n
c 2171/ )ge(n79)§

Re(n, QK, pc) = xp
—la-1/n
pe 2T e(n, )

—1(1-3/n
M(n, Q|K, po) = 4nz®pz 2" "™ By (n)n(n, Q)

)
Rp(n’ Q|K7 pc)
)
)

Vin Q1K) = Srae2n, 0)6 (n, )

8 —3(1-5/6n
I(n, QUK po) = gmapc 2 Byl (n,

z = {K(1+n)/AxG}'/2.
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Camoy3sropgykeHuii onnc piBHoBaru 3ip 3 0oCbOBMM 0bepTaHHSAM

Baspyx M. B., Tumko H. JI., [IzikoBcekuii . B., Creapmax O. M.

JIveiecorutl nayionarvruli ywisepcumem iment leana Pparxa,
eya. Kupuaa @ Megpodia, 8, Jlveis, 79005, Yxpaina

3aIporoHOBAHO HOBWIA MiJXi IO OMUCY MEXaHIYHOI PIBHOBAru 3ip 3 OCbOBUM OOEpTaH-
M. CaMOy3romKkeHnil po3paxyHOK I'DYHTYETbCS HA OJHOYACHOMY BHKODUCTAHHI mude-
peHIiabHOT Ta iHTerpaJbHOl (POPM PIBHAHHS PIBHOBATH, IO JIA€ 3MOTY KOPEKTHO BU3HA-
qaTH CTaJl iHTerpyBaHHs. ¥ MeXKax MOJITPOIHOI Mojesi 3 inmekcamu n = 0 Ta 1 Buepime
OJIepKAHO aHAITUYHI PO3B’s3KM, Ayt n = 2 i 3 — uucyiosi. PozpaxoBano reomeTpudHi ma-
3HalIEHO MAKCUMAJIbHI 3HAYEHHsI KyTOBOI IMBUMKOCTI, 38 SKHX IMOPYIILYETHCsT CTabLIb-
HicTh 3ip. OzepKani pe3ysibTaTu yTOYHIOWTE pe3ysibratu E. Minna, C. Yangpacekapa Ta
P. Ixxeiivca, onepKkaHi 38 JOTOMOTOI0 HAOIUZKEHOT'O UNCETHLHOTO iHTErpyBAHHS PiBHAHHS
piBHOBarm.

Knw4osi cnosa: sopi-noaimponu, HeodHopidni eaincoiou, ocvose 06epmManms, Pi6HAMHA
METAMIUHOT PieHOBa2U, CMabiAbHICTD 3ID.
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