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An algorithm for solving the coefficient problems of parameter identification of anisotropic
media using applied quasipotential tomographic data is modified for the case of presence
of more specific a priori information about the eigendirections of the corresponding con-
ductivity tensor. Its application is quite common in practice, in particular, in medicine,
where the object of such study may be the medium with fibrous or layered areas (which in-
cludes muscles, bones, etc.), inside which there are streams of non-spherical particles (e.g.
red blood cells). As in our previous works, the corresponding algorithm is based on al-
ternately solving the quasiconformal mapping and parameter identification problems, but
in this work it is supplemented by the procedure of parallelization of calculations and the
optimization problem is “accelerated”. The latter is characterized by a significant decrease
in the number of intermediate calculations and, when imposing additional restrictions on
eigendirections of the conductivity tensor, leads to the possibility of optimal adaptation
of the algorithm to specific cases of practice. The results of numerical experiments of
imitative restoration of medium structure are presented.

Keywords: applied quasipotential tomography, quasiconformal mappings, anisotropy,
identification, nonlinear inverse problems.
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1. Introduction

Electrical impedance tomography is a relatively new method of visualizing the interior of the investi-
gated object, which is characterized by low cost, non-invasiveness, geometric flexibility, environmental
friendliness, etc. [1]. Due to this, it has widely proliferated into a large number of branches of science
and technology [1-5]. The main drawback of the method is the low resolution of the obtained images.
This is a consequence of significant mathematical simplifications in comparison to the statement of
Calderon’s problem [6]. In particular, in [1-5,7] etc. the input and output sections of the investigated
body are considered to be point-like (although with finite values of the potential). We have published
a series of works in which the methodology for image reconstruction of the investigated object interior
using applied quasipotential tomographic (AQT) data (see, e.g. [8,9]), provided that the distribution of
local velocity values along the boundary input and output sections is taken into account, is proposed.
In particular, in [9] the numerical quasiconformal mapping method is generalized for solving the coef-
ficient problems of finding the eigenvalues of the conductivity tensor (CT) in cases where information
about its directions in an anisotropic medium is available. However, the synthesis of the numerical
quasiconformal mapping method, ideas of alternating block parametrization and the corresponding
difference analogues of the AQT problem are not satisfactorily covered there. The synthesis problem,
which lies in minimizing the functional of the sum of the squares of the residuals of the expressions
obtained from the generalized Cauchy—Riemann conditions, using the regularization concept and pro-
vided that the eigenvalues are positive, can be improved both in reducing the number of calculations
of the objective function and limiting the set of permissible solutions. The latter is useful in cases
when information about the directions of larger ellipse axis is available (instead of any of them, as was

in [9]).
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In other words, the aim of this paper is to generalize the numerical quasiconformal mapping
method [10] for solving the coefficient problems of finding the eigenvalues of the CT having addi-
tional information about their eigendirections in an anisotropic medium using AQT data [9], and for
reduce the number of calculations by the way of parallelizing the computations and refining the op-
timization procedure. This is the kind of statements that is typical in medical, geological imaging,
etc.

2. Identification of anisotropic media parameters using AQT data with application of
complex analysis methods (problem statement)

It is quite often possible to isolate a quasi-two-dimensional domain of the most intensive motion of
particles (in particular, liquids, electric charges) when researching processes in electrical impedance
tomography [1,6,7,11]. Usually the corresponding identification problem is solved in a single-connected
curvilinear domain (anisotropic layer or plate, which is some tomographic cross-section) G, Fig. la,
bounded by the smooth closed curve 0G, = {(z,y): v = Z(7),y = 9(7),0 < 7 < 27,2(0) = 2(27) =

%
Cy Q(P),,,,Bp Cyp
G&P)
QOZ’w]
Ap Dp -
0 N
stkp) o*®) ¥
a b

Fig.1. Tomographic cross-section G, (@) and corresponding to the pth injection complex quasipotential
domain G (b).

Z0,9(0) = y(2m) = go}, where Z(7), y(7) are defined continuously differentiated functions, O(Zo, go) is
given reference point. It is also assumed that quasiideal processes of particles movement are present
in G, having various situational states (injections), which are modeled by the generalized Laplace

equation
o dpP) dp®) B dpP) dp®) 0
9w \ TN + 012 oy o2 + 022 oy =

and (according to the statement of electrical impedance tomography problem proposed by A. Calderon;
to ensure uniqueness of the solution) an infinite number of interconnected conditions of Dirichlet
and Neumann for each given p [6,11]. Here (1) is a consequence of the generalized motion law of
Ohm, Darcy etc. j) = ograd o® and the continuity equation divj® = 0 [1, 10]; j(p)(aj,y) are
current densities; gp(p) = gp(p) (xz,y) are quasipotentials; p = 1,2,... is the injection number (see,
e.g. [3,5]); oap = 0ap(x,y,...) are bounded continuously differentiated in the domain G, functions
that characterize the conductivity and anisotropy of the medium [1,3,7,11,12|. In practice, the contact
surface between electrode and investigated body has a finite size and it is often convenient to consider
the sections of constancy of the corresponding potentials [8,9]. We, unlike [1-5,7], also propose to set
the local velocities distribution there and to take into account both the values of stream functions and
the distribution of potentials at other sections [8,9]. Generally, it is also impossible to set an infinite
number of these conditions. In practice, therefore, certain simplifications are allowed (see, e.g. [1,3,7]).

First of all, a finite number of current injections through the tomographic cross-section is considered.

They, similar to [8,9], will be modeled by sets of values {TXD ),7'](317 ),Tg) ),Tg) )}, which is equivalent

3

(1)
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to setting four points A, = (l‘(TAp)),y(Tlgp))), B, = (:I:(Tg))),y( (p))) Cp, = ( (Tg))),g(Tg)))), D, =

(:ﬁ(Tg) )), y(Tg) ))) According to given injection, the boundary of the domain G, with given four marked

points is denoted by aGE,”) (z(p) =z 4 z'y(p)). In this case, we rewrite a mathematical model of
AQT [1], similar to [8,9], in the form (1) and with the following conditions:

P, B, = 0P, ¢P\c,p, =P, §P|5 cua,p, =0, P (M)|a,p, =P (M), @)

P (M)|p,c, = gV (M), P (M)|a,p, = VP (M), P (M)|c,p, = TP (M),

where A,B, and Cp,D,, are selected equipotential lines; B,C, and A,D, are impermeable boundary

streamlines; n is a unit outward normal vector; M is a running point on the corresponding curve.

Functions cp(p (M) = o®(7,..) (7P < v <P, @ (M) = g®)(r,..) (7 <7 < 7)), ¥ (M) =

\Ifgﬁp)(T,...) (13 @) << T(p)) @) (M) = U @) (7, .. ) (Tg) <7< g’)) as in [8,9], can be constructed
(» () ) g*®)

by interpolating the experimental obtained their values -, Pitw U, Vo, having some given
\p P *j*p i P

T = 7_'((1;)), T = T(f;)), T = T(p()p), T = 7'**({;)) at the sections B,C,, A,D,, A,B,, C,D,, respectively

(\I/(p(pw *EI()Z) > 07 Q0>(k ) (JO(Z;)) ‘2 ( )7 (10>(kp) (10(57)) < (P*(p)7 0 < E(;D) g m*(p) + 17 0 < l(p) < mgkp) + 17

0 < i ?) < nfﬁ’) +1, 0 < j*P) < p*e) 4 1). CT components with equal additional diagonal elements
(see, e.g. [3,4,9,11]) are defined as follows:

011 = ()\1 — )\2) 00829 + )\2, 099 = ()\2 — )\1)00829 + )\1, 012 = ()\1 — )\2) sinf cos = 0921, (3)

the eigenvalues A1, Ao corresponding to (1) matrix are sought in the form of

sa,ka ka_ray"‘a

)\1 :Al(:pvyvasa,()v"-aa(],sa) = E _1 5
ka,ra=0 ka TasTa
Sb,Kp xkb_rbyTb

)\2 :)\2(%%55;),07---750,51,) = E —1 )

kp,rp=0 ~kp—Tp,Tp

and function § = 0(z,y), characterizing the direction of anisotropy is considered, similar to [1,3,9],
to be known a priori (here, in contrast to [9], its values characterize the directions of larger axes
of corresponding ellipses, which is typical for medical, geological and other practical problems of
nowadays). Here ag,—ry, ros Uky—ryr, (Ka = 0,...,8a; Ta = 0,...,kq, kpy = 0,...,8, 75 = 0,...,kp)
are parameters defined during the process of problem solving.

The problem lies in image reconstruction of the CT. In addition, it is accompanied by calculations
of the corresponding dynamic meshes and velocity fields.

Through the introduction of stream functions ¢®) = () (z,y), which are complexly conjugated
with ¢®) = o) (z,y) (p =T, p), similarly to [8-10], we can reduce (1)—(4) to the series of more general
boundary value problems of quasiconformal mapping w = w®(z) = @) (z,y) + P (z,y) of the

physical domains Gé” )
conditions (3) and (4):

Fig. 1a to the relevant domains of complex quasipotential GL(UP ) Fig. 1b under

dpP) @) Gyp®)

T + 012 oy = oy )
dpP) dp®) o
021 or + 022 oy = o
_ P o _ >
oy =0 9P, =", P, = 0P (M), oP(M)| o =P (M),

_ _ — P — .
WOy, =00 P o = QP PO, o= (), WP )|, =P (M);
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/ iPdl=Q®, MeB,C, NecA,D,,
MN

where G = {(¢,1): 9 < o < ¢*®,0 < < QW P (M) = [, VP (M) dl, P (M) =
I} pyu ¥ A )(Ml) dl; Q are discharges of a vector field (current) through contact surfaces (A,B, and

CpDp); dl and M, M; are an arc element and running points of the corresponding curves.

3. Quasiconformal mapping inverse problem, its difference analogue
and solving algorithm

In view of the complexity of realization of mapping such as Ggp ) G&p ) (curvilinear physical domains
to canonical domains of complex quasipotential), it is reasonable to consider the corresponding inverse
ones [10]. Then the problem of AQT lies in the search of the functions z®) = z®)(p,v), y®) =

y(p)(¢’¢) and (Jaﬁ(l'aya .. '))a,ﬁ=172 (p= W) 8,9]:

O [ 011099 — 09101202 591 OzP) 0 1 9z  5y502®

@( on o _0_11890>+%<0_11590+0'11 57!)) N

0 (11092 — 0910120y 7120y P) o (1 0y® g9 0y® ™
%( o2 aw*@w)*%(@w ‘a_zzaw):m

®) (P ) = (1P (), ¥y (P, 0) = G(rP @), 2P (p, QW) = F(7P (),
yP (0, Q")) = §(7P(p)), 2P (*® ) =3 (7P (y)), yP (P ) =GP (v)),  (8)

/(p (QO* 71/} (Tla"')) (Ullyip( )((10>(i<p)7 >$<p)(T17"')) _UlQ‘T (QO* 71/} (Tla"')))
1) (909),1#?)(7'17---)) (0'2 yw(p’(soff”, 9)(71,---)) —02211377[(,17)(90?), 9)(7'1,---))) =0,

y:p(p) (QO*(p) ) ¢*(p) (T27 .- )) (Ullygp) ((P*(p)7 ¢*(p) (T27 .. )) - Uleil(,p) (90*(p) ) ¢*(p) (T27 .. )))

- x:gp) ((p*(p), w*(p) (7—27 e )) (0'2111;@) (@*(p)7w*(p) (7—27 o )) - 0-223:1£p) ((10 (p)’¢*(p) (7—27 e ))) = 07

Y@ (oP)(75,...),0) <0_11y;gp) (P (r3,...),0) — algaz;gp) (@ (73,...), 0))

— P (W(r5,...),0) (02157 (¢ (73, ..),0) = o202 (67 (73,....),0) ) =0, (9)

yﬁﬁp’(cﬁ(p)(r47---),62(p’) <011y;§p)(<ﬁ( (14,-..),QP)) — o9 (p)(ﬁﬁ( )(747---)7Q(p)))
—xgp)(gb(p)(u,...),Q(p)) (ngygp)(gb(p)(u,... , ) —O'QQZL'dS )(gﬁ(p)(u,...),Q(p))) =0

subject to conditions (3) and (4), where 7 € [Té)ﬂ'ﬁ‘p)], Ty € [T(Dp),Té)], T3 € [Tﬁx)ﬂ'g)], T4 €

57 7 = iP@), 1= 70(p), T = TOE), T = 10(p) (B <o <@, 0 <y < QW)
are functions constructed by interpolating the experimental obtained their values gz, ?;(p ), T]*(p ) z(p )

having some given ¢*j , 95( ?) ¥; *p ), gpg P) at the sections A »Bp, B,Cp, CpD,, and A, Dy, respectively.

We reconstruct the CT hke in [2,8,9], under the condition of minimizing the functional of the
sum of the squares of the residuals of the expressions obtained from the generalized Cauchy—Riemann
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conditions, using the regularization concept

- N af D n Sa,ka ai Sp,kp bz
q)(x(l)uy(1)7 s 7x(p)7y(p)7 QAs,,0, bSb,07 <5 00,545 b078b) = Z (Z( Z W—F Z W)

p=1 ka,ra=0 kp,mp=0
2

<)\1( "P) o — ZE;Z(JP) sinf) — ygp) sinf — xgp) cos 0)

2
<)\2( '®) ging — xiﬁp) cos ) + y;(p) cosf — x;(p) sin 0) > — min (10)

when

0 <Xy < A, (11)

where 7 is a regularization parameter [13]|, w = 100 is a scaling coefficient.

The difference analogues of problem (3), (4), (7)—(9) in the mesh domains G1® (p =1,p), similarly
to [8-10], can be written in the following form:

)
sz(i)l jT xg )1] —2(1+ 7(’7)23%))"175? - sz(p)l 1) T 0'257(;;)14( )(fﬂz(i)l g+1 T xg )1] 1 x§+)1,] 1)

+C(p)( £+)1] z('li)l,j) +7(p)2Bz'(§)( z(l;) 1 +$Z(I;)+l) +P )Di(,l;') (sz(Z)H x(i) 1) =0,
0 @) 91 4 A@2BPY D g o5y AP (E) @) ) ) ()
y2+1j Y- 1,5 v ,J yz,y 20y ,J yz—l—l,j—l—l yz—l,]—l y2+1,]—1 yl—l,j-l—l
B (0~ wig) 2B (0 i)

AP FED )~y ) =0 (1 <i<m®, 1< <nl);

o) =3t W), w) =3P @), 2, =EE0 @), ul,,, = 1EP @),
20 = EP@)), W =i wy), B =E P (e), ul = a(EP)) (3)
O<i<m®+1, 0<j<n® +1);

(3y(p) 4y§] +y2g) < ( yo; ) ‘712(95(()pg)+1 - ‘T((]pj) 1))

<0'21 yo ]+1 yO]) 1) — 022 ($(()p])+1 - fﬂgp]) 1)) (3517813 - 4$¥3 +x§pg)) =0,
(33;(17) - 43;(17) ) (p) (p) (p) (p)

(p
m® +1,j m® j R 1, ) 021 (ym(P)+1,j+1 - ym(l’)—i-l,j—l) = (xm(p)-i-l,j-i-l B xm(”)ﬁ-l,j—l)

(p) (p) (p) (p) (p) (p) (p)
- (011 (ym(p)+1,j+1 - ym(p)+17j_1) — 012 (xm(p)+17j+1 - xm(p)+17j_1)> ( ym(p)+17j_4ym(p) ]+ym(p)_1,j)’

(10 = uiZ0) (o (30l — 402+ oi8) — 12 (32 — aif) +213))

— (021 (3%(:@0) — 4y2(11) + yz(pQ)) — 099 (3x§’) 4:172(171) + :E(p))) (xg’r)w — xl@m) =0, (14)

(yz(f_)lm(l’)q-l - yi(l_))l n<p>+1) <U 11 (39512@)“ - 4%(12@) + yfI;Z(p) 1)
_012(35”512(;:)“ 4$§ ,2<p> + wf’iz(m 1)) - (0'21(?/22@) 1 41/2(1;) w T 31/2(12@41)
— 099 (3xz(p)(P)+1 — 4x§ 73(p) + a:z(prz(p) 1)) (xg)r)l n(P)—l—l_szi)l n<P>+1) =0, i=0,m®+1, j=0nP 41,
where v(P) are quasiconformal invariants [10] for corresponding domains G’Y = { goz ,¢(p ): @ ) _
P 1 iAg® i = 0, m®) +1-¢(” —gm/) j = 0,n® +1 Ap®) = QW) /(n®) 1 1), Ap® = ((,p*@) -
(pgp))/(m(p) +1),4P) = ©) ) Agp®) @) pP) ¢ N} :1: — )(‘ﬂ(p), ()) yz(]) — 4@ ((pz(p)’%(p)),
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o) = 20" ), o) = oas(@l) uil), NP = Mal) ) A7) B, €, DY, BE. B

are determined in the same way as in [10].

(p) (P)) (p=

We rewrite the functional (10) and conditions (11) for all internal nodal points (z; /', y; ;

7ﬁ7

i=1,m®, j=1n) as follows:

1 Q) (P) (P)
q’(% 040,00 @) 11,0@ 17 Y@ 41,00 117 F5a,07 - -+ i D00+ > b0.sy)
5,m®) n® Saka a2 Spykp b2
_ Z ’I’}A(p(p)2 Z ka—"Ta,Ta + Z kp—rp,1p
wka wkb
pii=1 ka,ma=0 kp,mp=0

+ (Ali,ﬂ(p) ((yz%)ﬂ - yz%)—l) cos b j— ( EI;)+1 952(?—1) sin 92'73') - (yz(f—)l,j
2
- yz(p)1 g) sinf; ; — cos 0; ($§ﬁ)1,j — xz@l,j)) + ((517@(',13')—1 - ZEE,I;)H) cos 0 ; + (@/z(f})ﬂ—

2
U i) dau 2+ (025 ) conti — (22— o) ) sind) )““““ )

0< AP < AW, (16)

where a1 1, bgy it s (ki = 0,84, 7, = 0,kl,, kj, =0, sp, 7, = Tkzé) are parameters for which values
are sought. It seems reasonable to solve the problem of nonlinear programming (15), (16) by one of the
appropriate methods of local optimization, e.g., by penalty function method, implemented in the [14]
with the application of parallelization mechanisms.

In addition, given the necessity for a huge amount of calculations when refining the coordinates of
the mesh nodes, it is advisable to parallelize the corresponding computations. One of the promising
mechanisms that provide such capabilities is the CUDA platform [15]. In particular, it is advisable
to parallelize the procedure of solving systems of equations (12) with the use of “red—black” ordering
of the unknowns [16]. Such order of “perambulation” ensures that both nodal coordinates from the
previous steps and the approximate values are used in the iterative process, according to the Seidel
method.

The algorithm for solving the original problem is similar to [9]. The main difference lies in applying
the optimization problem in the form of (15), (16). We also propose to refine the parameters of the
meshes by the formula (12) in parallel, namely: firstly at the nodes with indices for which the condition
(i +7)/2 € N is fulfilled, and then in all other cases (p = 1,p, i = 1,m®), j = 1,n(®)). Also, all of the
notes given in [9] remain valid.

4. Numerical results

We present the results of numerical experiments of imitative restoration of media structure using
the following input data: Z(r) = 150cos7, y(7) = 100sinT, p = 20, m® = 100, s, = s, = 3,
a00 = bop = 1, aky—rora = 0, by, = 0 (ka = Lsq, 1o = 0,ka, ky = Ly, 1 = 0,k), 1 = 100,
g = 200, & — & — 102, P = 0, @) — 1, P = (p-1)/p+9/8)m, 7 = ¥ — /4,
Tép) = TIE{’) -, Tg)) = Té —m/4, p=1,p (here the parameters Tjg ), T](Bp), é) Tg)) are chosen similarly
to the polar scheme of quasipotential application [1]),

0=0.748-10"2—4-10"%—4-10"°2%+10 %y —7-10"%>—3-10 2> —8-10 22y—17-10" 23> +14-10~ "

Parameter values Q) \Ifi‘?-), v -(p), gpl(p), gg ?) (1 < p < p) are obtained by the following algorithm:
solve p problems of modeling the quasiideal stream (4)—(6), (7) using the method described, e.g., in [10]

(with simultaneous Q) determination) having given

M= M(z,y) = 1.5—8-10"42—5-10"4y+ 1022y +3-10"°y2 + 10" "23+ 10" "2?y+2-10 "xy> —2.10~ 7y

Mathematical Modeling and Computing, Vol. 6, No.2, pp.211-219 (2019)



On a method of image reconstruction of anisotropic media using . .. 217

X2 = Xo(z,y) = 14+2-107 32— 1073y — 1022 +4-10 Szy+3-10"%2+10 %3 - 10~ %2y + 108y ? + 1073,

carry out a uniform division of the domain boundary into s (s = 60) points, in each of which determine

the values of the corresponding function 1,[)55), w;(p ), @Ep ), fgp ); calculate \118;), \IJ;(p ) according to

the difference representations of formulas g (M) = 81,[)550) (M)/ol, @) (M) = 9y*®) (M) /0l. The
problem (1)—(4) is solved using the above data and implementation of the proposed algorithm where,
in particular, the parameters of expressions (4) are identified:

M A135+28-1032+47-10 3y —9-10%22 +33-10 P2y +7.2-107%y%> —5-107823
—5-107"2%y — 3.6 - 10" "2y? — 6.2 107" y°,

A 1154+22-1032427-103y —2.1-107%22 +4- 10 P2y +5-1075y? — 7. 107823
—1.4-10""zy? —5.2- 1077y

@«

0—-0.17 0.17—0.34 0.34—0.5 0.5—0.67 0.67—0.84 0.84—1.01 1.01—1.18 1.18—1.34 1.34—1.51 1.51—1.68 1.68—1.85 1.85—-2.01 2.01—-2.18 2.18—-2.35

Fig. 2. Distributions of A; and As2: exact (a) and (b), and approximated (¢) and (d) solutions, respectively.

The values of calculated A\; and Ag, and exact (etalon) A1 and \g correspond to the grayscale in Fig. 2¢
and Fig. 2d, and Fig. 2a and Fig. 20, respectively. We see that residual peaks are reached at eight spe-
cific points AX;(—138.924,37.713) = —0.611, AX(—90.252,—-79.874) = 0.513, AX(2.15,99.99) =
0.369, AA;(141.314,33.536) = —0.413, AXy(—147.411,18.5) = 0.134, AXy(—8.107,61) = 0.337,
AX2(—20.104, —99.098) = 0.668, A)2(149.519,8.005) = —0.338, most of which are located at the
domain boundary, where, apparently, quasiconformal errors occur. Certainly, the first of these peaks
is caused by the insufficient value of the reconstructed CT Ay, and all others are characterized by
displaced inhomogeneity locations. The average residual modulus in the domain is AN = 0.179,
A)Xy =0.17.

Mathematical Modeling and Computing, Vol. 6, No.2, pp.211-219 (2019)



218 Bomba A.Ya., KuzloM. T., Michuta O. R., BoichuraM. V.

5. Conclusions

Given the relevance of developing the complex analysis methods for solving AQT problems, the corre-
sponding algorithm is modified to the case of parameter identification of anisotropic media having more
specific a priori information about eigendirections of the sought CT. In this, the image reconstruction
is carried out using additional data regarding the longer axis of the corresponding anisotropy ellipse.
The application of this type of data is especially common in medicine, geology, etc. Certainly, like
in [9], the basis of the described approach is taking into account the distribution of both local velocity
values along the sections of input and output particles from the investigated object, and potentials
at remaining places of domain border on the one hand, and applying the quasiconformal mapping
methods to ensure the possibility of solving the direct problems in the iterative process on the other.
However, in comparison to [9], parallelization of calculations is introduced here, and in order to reduce
the number of intermediate calculations, the form of minimizing functional is optimized. Here, when
imposing additional restrictions on the eigendirections of the CT, the adaptability of the corresponding
algorithm to a series of specific cases of practice is ensured.

The developed algorithm is characterized by comparatively fast computer convergence (since, unlike
many methods used, it does not require finding numerical derivatives of the CT distribution function
at certain points and refining the boundary nodes at each iteration step) and relative ease of its paral-
lelization. The latter is implemented with the use of “red—black” ordering of the unknowns, mechanisms
of the CUDA platform, and the ALGLIB library. It should be noted that the anisotropy tensor affects
the deterioration order of accuracy and stability of the corresponding algorithm, which, in particular,
requires both the creation of special constructions-procedures of Tikhonov—type regularization and
approaches to optimization (in particular, parallelization) of calculations.

We plan to extend our algorithm for the following cases: possibility of spatial reconstruction of
the CT, parameter identification of piecewise-homogeneous and piecewise-inhomogeneous media, in
particular, using the conditions of non-ideal contact [17] both inside the object under study and at
the applied quasipotential sections (the latter allows to implement the complete electrode model given
in [1,4,5]), taking into account the distribution of impedance in the body (see, e.g. [1]), and also the use
of three-component (device for collecting and entering physical data, calculating devices, and server)

GRID-technologies [18].
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MeToa pekoHCTpyKLUii 300paXxeHb aHI30TPONHMX cepeaoBuLL
3a gaHMMK Tomorpadpii NpukIageHnx KBasinoTeHuianis

Bomba A. 4., Kyzno M. T., Miuyra O. P., Boituypa M. B.

Havionanorutl ynisepcumem 600H020 20CNn00apcmea ma npupodokopucmysatia,
eya. Cobopra, 11, Piene, 33028, Vrpaina

MonudikoBano ajmropurm po3B’sizanHs KOedIli€eHTHUX 3ajad imeHTudikaril mapamMerpis
AHI30TPOIHUX CEPEJIOBUIN 3a JAHUMHU TOMOTrpadil TpUKIIaIHNX KBA3IMOTEHITAIIB HA BU-
MMaT0K HasIBHOCTI KOHKPETHIIIOI ampiopHoi iHdopMariil mo/10 BJIaCHUX HAIPIMKIB Bimo-
BiZIHOrO TeH30pa MPOBigHOCTI. 3acTOCYBaHHS TOBOJI IOIMUPEHEe HA MPAKTUIN, 30KpeMa B
MeTUInHI 06’€KTOM TaKUX JOCTIIKEHb MOXKYThH Oy TH CepeIOBHINA i3 AIMITHKAMI BOJTOKHIC-
TOCTI YU IMAPYBATOCTI ([0 AKUX HAJIEXKATH M’sI3U, KICTKHU TOIIO), B AKUX ICHYIOTH IIOTOKI
HEKYJISICTUX JACTUHOK (HANPUKJIAJ, epuTporuTis). B ocHOBY BiamosizHOoro amropurmy i
HaJIa i TOKJIaIEHO MMOYepProBe PO3B’si3aHHS 3a/71a9 Ha KBa3iKoHMOPMHI BiloOpaKeHHs Ta,
imenTudikalliio mapamMerpis, mpoTe y Iiif poboTi HOTO JOMOBHEHO MPOIEIYPOI0 po3mapa-
JieJIeHHsT 0049mc/IeHb 1 “npumBuiainieno”’ 3agady ontuMizaril. OcTaHHE XapaKTepU3yeThCs
3HAYHUM 3MEHITEeHHAM KiJTbKOCTI MPOMIXKHUX PO3PaXyHKIB Ta, Y pa3i HaKIaJaHHS JTOJTAT-
KOBUX OOMEKeHb Ha BJIACHI HANPSIMKHM TEH30pa MPOBIIHOCTI, TPUBOIUTH 10 MOXKJIUBOCTI
ONTHUMAJIBHOI IPUCTOCOBHOCTI aJIrOPUTMY [0 KOHKPETHUX BHUIAJIKiB npakTuku. Haseneno
BIJIIOBITHI pe3yJIbTaTU YHCJIOBUX €KCIIEPUMEHTIB IMITAIiifHOTO BiJIHOBJIEHHSI CTPYKTYPH
CepeIOBUIIIA.
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