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An algorithm for solving the coefficient problems of parameter identification of anisotropic
media using applied quasipotential tomographic data is modified for the case of presence
of more specific a priori information about the eigendirections of the corresponding con-
ductivity tensor. Its application is quite common in practice, in particular, in medicine,
where the object of such study may be the medium with fibrous or layered areas (which in-
cludes muscles, bones, etc.), inside which there are streams of non-spherical particles (e.g.
red blood cells). As in our previous works, the corresponding algorithm is based on al-
ternately solving the quasiconformal mapping and parameter identification problems, but
in this work it is supplemented by the procedure of parallelization of calculations and the
optimization problem is “accelerated”. The latter is characterized by a significant decrease
in the number of intermediate calculations and, when imposing additional restrictions on
eigendirections of the conductivity tensor, leads to the possibility of optimal adaptation
of the algorithm to specific cases of practice. The results of numerical experiments of
imitative restoration of medium structure are presented.
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1. Introduction

Electrical impedance tomography is a relatively new method of visualizing the interior of the investi-
gated object, which is characterized by low cost, non-invasiveness, geometric flexibility, environmental
friendliness, etc. [1]. Due to this, it has widely proliferated into a large number of branches of science
and technology [1–5]. The main drawback of the method is the low resolution of the obtained images.
This is a consequence of significant mathematical simplifications in comparison to the statement of
Calderon’s problem [6]. In particular, in [1–5,7] etc. the input and output sections of the investigated
body are considered to be point-like (although with finite values of the potential). We have published
a series of works in which the methodology for image reconstruction of the investigated object interior
using applied quasipotential tomographic (AQT) data (see, e.g. [8,9]), provided that the distribution of
local velocity values along the boundary input and output sections is taken into account, is proposed.
In particular, in [9] the numerical quasiconformal mapping method is generalized for solving the coef-
ficient problems of finding the eigenvalues of the conductivity tensor (CT) in cases where information
about its directions in an anisotropic medium is available. However, the synthesis of the numerical
quasiconformal mapping method, ideas of alternating block parametrization and the corresponding
difference analogues of the AQT problem are not satisfactorily covered there. The synthesis problem,
which lies in minimizing the functional of the sum of the squares of the residuals of the expressions
obtained from the generalized Cauchy–Riemann conditions, using the regularization concept and pro-
vided that the eigenvalues are positive, can be improved both in reducing the number of calculations
of the objective function and limiting the set of permissible solutions. The latter is useful in cases
when information about the directions of larger ellipse axis is available (instead of any of them, as was
in [9]).
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In other words, the aim of this paper is to generalize the numerical quasiconformal mapping
method [10] for solving the coefficient problems of finding the eigenvalues of the CT having addi-
tional information about their eigendirections in an anisotropic medium using AQT data [9], and for
reduce the number of calculations by the way of parallelizing the computations and refining the op-
timization procedure. This is the kind of statements that is typical in medical, geological imaging,
etc.

2. Identification of anisotropic media parameters using AQT data with application of
complex analysis methods (problem statement)

It is quite often possible to isolate a quasi-two-dimensional domain of the most intensive motion of
particles (in particular, liquids, electric charges) when researching processes in electrical impedance
tomography [1,6,7,11]. Usually the corresponding identification problem is solved in a single-connected
curvilinear domain (anisotropic layer or plate, which is some tomographic cross-section) Gz Fig. 1a,
bounded by the smooth closed curve ∂Gz = {(x, y) : x = x̃(τ), y = ỹ(τ), 0 6 τ 6 2π, x̃(0) = x̃(2π) =

x
y
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Fig. 1. Tomographic cross-section Gz (a) and corresponding to the pth injection complex quasipotential

domain G
(p)
ω (b).

x̃0, ỹ(0) = ỹ(2π) = ỹ0}, where x̃(τ), ỹ(τ) are defined continuously differentiated functions, O(x̃0, ỹ0) is
given reference point. It is also assumed that quasiideal processes of particles movement are present
in Gz having various situational states (injections), which are modeled by the generalized Laplace
equation

∂

∂x

(

σ11
∂ϕ(p)

∂x
+ σ12

∂ϕ(p)

∂y

)

+
∂

∂y

(

σ21
∂ϕ(p)

∂x
+ σ22

∂ϕ(p)

∂y

)

= 0 (1)

and (according to the statement of electrical impedance tomography problem proposed by A.Calderon;
to ensure uniqueness of the solution) an infinite number of interconnected conditions of Dirichlet
and Neumann for each given p [6, 11]. Here (1) is a consequence of the generalized motion law of
Ohm, Darcy etc. j(p) = σ gradϕ(p) and the continuity equation div j(p) = 0 [1, 10]; j(p)(x, y) are
current densities; ϕ(p) = ϕ(p)(x, y) are quasipotentials; p = 1, 2, . . . is the injection number (see,
e.g. [3, 5]); σαβ = σαβ(x, y, . . .) are bounded continuously differentiated in the domain Gz functions
that characterize the conductivity and anisotropy of the medium [1,3,7,11,12]. In practice, the contact
surface between electrode and investigated body has a finite size and it is often convenient to consider
the sections of constancy of the corresponding potentials [8,9]. We, unlike [1–5,7], also propose to set
the local velocities distribution there and to take into account both the values of stream functions and
the distribution of potentials at other sections [8, 9]. Generally, it is also impossible to set an infinite
number of these conditions. In practice, therefore, certain simplifications are allowed (see, e.g. [1,3,7]).

First of all, a finite number of current injections through the tomographic cross-section is considered.

They, similar to [8, 9], will be modeled by sets of values
{

τ
(p)
A , τ

(p)
B , τ

(p)
C , τ

(p)
D

}

, which is equivalent
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to setting four points Ap =
(

x̃(τ
(p)
A ), ỹ(τ

(p)
A )
)

, Bp =
(

x̃(τ
(p)
B ), ỹ(τ

(p)
B )
)

, Cp =
(

x̃(τ
(p)
C ), ỹ(τ

(p)
C )
)

, Dp =
(

x̃(τ
(p)
D ), ỹ(τ

(p)
D )
)

. According to given injection, the boundary of the domain Gz with given four marked

points is denoted by ∂G
(p)
z (z(p) = x(p) + iy(p)). In this case, we rewrite a mathematical model of

AQT [1], similar to [8, 9], in the form (1) and with the following conditions:

ϕ(p)
∣

∣

ApBp = ϕ
(p)
∗ , ϕ(p)

∣

∣

CpDp = ϕ∗(p), j(p)
∣

∣

BpCp∪ApDp = 0, ϕ(p)(M)
∣

∣

ApDp = ϕ(p)(M),

ϕ(p)(M)
∣

∣

BpCp = ϕ̄(p)(M), j(p)(M)
∣

∣

ApBp = Ψ
(p)
∗ (M), j(p)(M)

∣

∣

CpDp = Ψ∗(p)(M),
(2)

where ApBp and CpDp are selected equipotential lines; BpCp and ApDp are impermeable boundary
streamlines; n is a unit outward normal vector; M is a running point on the corresponding curve.

Functions ϕ(p)(M) = ϕ(p)(τ, . . .) (τ
(p)
A 6 τ 6 τ

(p)
D ), ϕ̄(p)(M) = ϕ̄(p)(τ, . . .) (τ

(p)
C 6 τ 6 τ

(p)
B ), Ψ

(p)
∗ (M) =

Ψ
(p)
∗ (τ, . . .) (τ

(p)
B 6 τ 6 τ

(p)
A ), Ψ∗(p)(M) = Ψ∗(p)(τ, . . .) (τ

(p)
D 6 τ 6 τ

(p)
C ), as in [8,9], can be constructed

by interpolating the experimental obtained their values ϕ̄
(p)

ī(p)
, ϕ

(p)

i(p)
, Ψ

(p)

∗j
(p)
∗

, Ψ
∗(p)

j∗(p)
having some given

τ = τ̄
(p)

ī(p)
, τ = τ

(p)

i(p)
, τ = τ

(p)

∗j
(p)
∗

, τ = τ
∗(p)

j∗(p)
at the sections BpCp, ApDp, ApBp, CpDp, respectively

(Ψ
(p)

∗j
(p)
∗

,Ψ
∗(p)

j∗(p)
> 0, ϕ

(p)
∗ 6 ϕ

(p)

i(p)
6 ϕ∗(p), ϕ

(p)
∗ 6 ϕ̄

(p)

ī(p)
6 ϕ∗(p), 0 6 ī(p) 6 m̄∗(p) + 1, 0 6 i(p) 6 m

(p)
∗ + 1,

0 6 j
(p)
∗ 6 n

(p)
∗ + 1, 0 6 j∗(p) 6 n∗(p) + 1). CT components with equal additional diagonal elements

(see, e.g. [3, 4, 9, 11]) are defined as follows:

σ11 = (λ1 − λ2) cos
2 θ + λ2, σ22 = (λ2 − λ1) cos

2 θ + λ1, σ12 = (λ1 − λ2) sin θ cos θ = σ21, (3)

the eigenvalues λ1, λ2 corresponding to (1) matrix are sought in the form of

λ1 = λ1(x, y, asa,0, . . . , a0,sa) =

sa,ka
∑

ka,ra=0

xka−rayra

a−1
ka−ra,ra

,

λ2 = λ2(x, y, bsb,0, . . . , b0,sb) =

sb,kb
∑

kb,rb=0

xkb−rbyrb

b−1
kb−rb,rb

,

(4)

and function θ = θ(x, y), characterizing the direction of anisotropy is considered, similar to [1, 3, 9],
to be known a priori (here, in contrast to [9], its values characterize the directions of larger axes
of corresponding ellipses, which is typical for medical, geological and other practical problems of
nowadays). Here aka−ra,ra, bkb−rb,rb (ka = 0, . . . , sa, ra = 0, . . . , ka, kb = 0, . . . , sb, rb = 0, . . . , kb)
are parameters defined during the process of problem solving.

The problem lies in image reconstruction of the CT. In addition, it is accompanied by calculations
of the corresponding dynamic meshes and velocity fields.

Through the introduction of stream functions ψ(p) = ψ(p)(x, y), which are complexly conjugated
with ϕ(p) = ϕ(p)(x, y) (p = 1, p̃), similarly to [8–10], we can reduce (1)–(4) to the series of more general
boundary value problems of quasiconformal mapping ω = ω(p)(z) = ϕ(p)(x, y) + iψ(p)(x, y) of the

physical domains G
(p)
z Fig. 1a to the relevant domains of complex quasipotential G

(p)
ω Fig. 1b under

conditions (3) and (4):


















σ11
∂ϕ(p)

∂x
+ σ12

∂ϕ(p)

∂y
=
∂ψ(p)

∂y
,

σ21
∂ϕ(p)

∂x
+ σ22

∂ϕ(p)

∂y
= −

∂ψ(p)

∂x
;

(5)

ϕ(p)
∣

∣

ApBp
= ϕ

(p)
∗ , ϕ(p)

∣

∣

CpDp
= ϕ∗(p), ϕ(p)(M)

∣

∣

ApDp
= ϕ

−

(p)(M), ϕ(p)(M)
∣

∣

BpCp
= ϕ̄(p)(M),

ψ(p)
∣

∣

ApDp
= 0, ψ(p)

∣

∣

BpCp
= Q(p), ψ(p)(M)

∣

∣

ApBp
= ψ

(p)
∗ (M), ψ(p)(M)

∣

∣

CpDp
= ψ∗(p)(M);

(6)
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∫

MN

j(p) dl = Q(p), M ∈ BpCp, N ∈ ApDp,

where G
(p)
ω =

{

(ϕ,ψ) : ϕ
(p)
∗ 6 ϕ 6 ϕ∗(p), 0 6 ψ 6 Q(p)

}

; ψ
(p)
∗ (M) =

∫

ApM
Ψ

(p)
∗ (Ml) dl, ψ

∗(p)(M) =
∫

DpM
Ψ∗(p)(Ml) dl; Q

(p) are discharges of a vector field (current) through contact surfaces (ApBp and

CpDp); dl and M , Ml are an arc element and running points of the corresponding curves.

3. Quasiconformal mapping inverse problem, its difference analogue
and solving algorithm

In view of the complexity of realization of mapping such as G
(p)
z → G

(p)
ω (curvilinear physical domains

to canonical domains of complex quasipotential), it is reasonable to consider the corresponding inverse
ones [10]. Then the problem of AQT lies in the search of the functions x(p) = x(p)(ϕ,ψ), y(p) =
y(p)(ϕ,ψ) and (σαβ(x, y, . . .))α,β=1,2 (p = 1, p̃) [8, 9]:























∂

∂ψ

(

σ11σ22 − σ21σ12

σ11

∂x(p)

∂ψ
−
σ21

σ11

∂x(p)

∂ϕ

)

+
∂

∂ϕ

(

1

σ11

∂x(p)

∂ϕ
+
σ12

σ11

∂x(p)

∂ψ

)

= 0,

∂

∂ψ

(

σ11σ22 − σ21σ12

σ22

∂y(p)

∂ψ
+
σ12

σ22

∂y(p)

∂ϕ

)

+
∂

∂ϕ

(

1

σ22

∂y(p)

∂ϕ
−
σ21

σ22

∂y(p)

∂ψ

)

= 0;

(7)

x(p)(ϕ
(p)
∗ , ψ) = x̃

(

τ
(p)
∗ (ψ)

)

, y(p)(ϕ
(p)
∗ , ψ) = ỹ

(

τ
(p)
∗ (ψ)

)

, x(p)(ϕ,Q(p)) = x̃
(

τ̄ (p)(ϕ)
)

,

y(p)(ϕ,Q(p)) = ỹ
(

τ̄ (p)(ϕ)
)

, x(p)(ϕ∗(p), ψ) = x̃
(

τ∗(p)(ψ)
)

, y(p)(ϕ∗(p), ψ) = ỹ
(

τ∗(p)(ψ)
)

, (8)

x(p)(ϕ, 0) = x̃
(

τ (p)(ϕ)
)

, y(p)(ϕ, 0) = ỹ
(

τ (p)(ϕ)
)

;

y′(p)ϕ

(

ϕ
(p)
∗ , ψ

(p)
∗ (τ1, . . .)

)

(

σ11y
′(p)
ψ

(

ϕ
(p)
∗ , ψ

(p)
∗ (τ1, . . .)

)

− σ12x
′(p)
ψ

(

ϕ
(p)
∗ , ψ

(p)
∗ (τ1, . . .)

)

)

− x′(p)ϕ

(

ϕ
(p)
∗ , ψ

(p)
∗ (τ1, . . .)

)

(

σ21y
′(p)
ψ

(

ϕ
(p)
∗ , ψ

(p)
∗ (τ1, . . .)

)

− σ22x
′(p)
ψ

(

ϕ
(p)
∗ , ψ

(p)
∗ (τ1, . . .)

)

)

= 0,

y′(p)ϕ

(

ϕ∗(p), ψ∗(p)(τ2, . . .)
)

(

σ11y
′(p)
ψ

(

ϕ∗(p), ψ∗(p)(τ2, . . .)
)

− σ12x
′(p)
ψ

(

ϕ∗(p), ψ∗(p)(τ2, . . .)
)

)

− x′(p)ϕ

(

ϕ∗(p), ψ∗(p)(τ2, . . .)
)

(

σ21y
′(p)
ψ

(

ϕ∗(p), ψ∗(p)(τ2, . . .)
)

− σ22x
′(p)
ψ

(

ϕ∗(p), ψ∗(p)(τ2, . . .)
)

)

= 0,

y′(p)ϕ

(

ϕ
−

(p)(τ3, . . .), 0
)

(

σ11y
′(p)
ψ

(

ϕ
−

(p)(τ3, . . .), 0
)

− σ12x
′(p)
ψ

(

ϕ
−

(p)(τ3, . . .), 0
)

)

− x′(p)ϕ

(

ϕ
−

(p)(τ3, . . .), 0
)

(

σ21y
′(p)
ψ

(

ϕ
−

(p)(τ3, . . .), 0
)

− σ22x
′(p)
ψ

(

ϕ
−

(p)(τ3, . . .), 0
)

)

= 0, (9)

y′(p)ϕ

(

ϕ̄(p)(τ4, . . .), Q
(p)
)

(

σ11y
′(p)
ψ

(

ϕ̄(p)(τ4, . . .), Q
(p)
)

− σ12x
′(p)
ψ

(

ϕ̄(p)(τ4, . . .), Q
(p)
)

)

− x′(p)ϕ

(

ϕ̄(p)(τ4, . . .), Q
(p)
)

(

σ21y
′(p)
ψ

(

ϕ̄(p)(τ4, . . .), Q
(p)
)

− σ22x
′(p)
ψ

(

ϕ̄(p)(τ4, . . .), Q
(p)
)

)

= 0

subject to conditions (3) and (4), where τ1 ∈
[

τ
(p)
B ; τ

(p)
A

]

, τ2 ∈
[

τ
(p)
D ; τ

(p)
C

]

, τ3 ∈
[

τ
(p)
A ; τ

(p)
D

]

, τ4 ∈
[

τ
(p)
C ; τ

(p)
B

]

; τ = τ
(p)
∗ (ψ), τ = τ̄ (p)(ϕ), τ = τ∗(p)(ψ), τ = τ (p)(ϕ) (ϕ

(p)
∗ 6 ϕ 6 ϕ∗(p), 0 6 ψ 6 Q(p))

are functions constructed by interpolating the experimental obtained their values τ
(p)
∗j∗

, τ̄
(p)

ī
, τ

∗(p)
j∗ , τ

(p)
i

having some given ψ
(p)
∗j∗

, ϕ̄
(p)

ī
, ψ

∗(p)
j∗ , ϕ

(p)
i at the sections ApBp, BpCp, CpDp and ApDp, respectively.

We reconstruct the CT, like in [2, 8, 9], under the condition of minimizing the functional of the
sum of the squares of the residuals of the expressions obtained from the generalized Cauchy–Riemann
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conditions, using the regularization concept

Φ(x(1), y(1), . . . , x(p̃), y(p̃), asa,0, bsb,0, . . . , a0,sa , b0,sb)
df
=

p̃
∑

p=1

(

η

4

( sa,ka
∑

ka,ra=0

a2ka−ra,ra
100ka

+

sb,kb
∑

kb,rb=0

b2kb−rb,rb
100kb

)

+
(

λ1(y
′(p)
ψ cos θ − x

′(p)
ψ sin θ)− y′(p)ϕ sin θ − x′(p)ϕ cos θ

)2

+
(

λ2(y
′(p)
ψ sin θ − x

′(p)
ψ cos θ) + y′(p)ϕ cos θ − x′(p)ϕ sin θ

)2
)

→ min (10)

when
0 < λ2 6 λ1, (11)

where η is a regularization parameter [13], w = 100 is a scaling coefficient.

The difference analogues of problem (3), (4), (7)–(9) in the mesh domains G
γ(p)
z (p = 1, p̃), similarly

to [8–10], can be written in the following form:















































x
(p)
i+1,j + x

(p)
i−1,j − 2

(

1 + γ(p)2B
(p)
i,j

)

x
(p)
i,j − x

(p)
i−1,j+1

)

+ 0.25γ(p)A
(p)
i,j

(

x
(p)
i+1,j+1 + x

(p)
i−1,j−1 − x

(p)
i+1,j−1

)

+C
(p)
i,j

(

x
(p)
i+1,j − x

(p)
i−1,j

)

+ γ(p)2B
(p)
i,j (x

(p)
i,j−1 + x

(p)
i,j+1) + γ(p)D

(p)
i,j

(

x
(p)
i,j+1 − x

(p)
i,j−1

)

= 0,

y
(p)
i+1,j + y

(p)
i−1,j − 2

(

1 + γ(p)2B
(p)
i,j

)

y
(p)
i,j + 0.25γ(p)A

(p)
i,j

(

y
(p)
i+1,j+1 + y

(p)
i−1,j−1 − y

(p)
i+1,j−1 − y

(p)
i−1,j+1

)

+E
(p)
i,j

(

y
(p)
i+1,j − y

(p)
i−1,j

)

+ γ(p)2B
(p)
i,j

(

y
(p)
i,j−1 + y

(p)
i,j+1

)

+γ(p)F
(p)
i,j

(

y
(p)
i,j+1 − y

(p)
i,j−1

)

= 0 (1 6 i 6 m(p), 1 6 j 6 n(p));

(12)

x
(p)
0,j = x̃

(

τ
(p)
∗ (ψj)

)

, y
(p)
0,j = ỹ

(

τ
(p)
∗ (ψj)

)

, x
(p)

i,n(p)+1
= x̃

(

τ̄ (p)(ϕi)
)

, y
(p)

i,n(p)+1
= ỹ

(

τ̄ (p)(ϕi)
)

,

x
(p)

m(p)+1,j
= x̃

(

τ∗(p)(ψj)
)

, y
(p)

m(p)+1,j
= ỹ

(

τ∗(p)(ψj)
)

, x
(p)
i,0 = x̃

(

τ (p)(ϕi)
)

, y
(p)
i,0 = ỹ

(

τ (p)(ϕi)
)

(13)

(0 6 i 6 m(p) + 1, 0 6 j 6 n(p) + 1);

(

3y
(p)
0,j − 4y

(p)
1,j + y

(p)
2,j

)

(

σ11
(

y
(p)
0,j+1 − y

(p)
0,j−1

)

− σ12
(

x
(p)
0,j+1 − x

(p)
0,j−1

)

)

−
(

σ21
(

y
(p)
0,j+1 − y

(p)
0,j−1

)

− σ22
(

x
(p)
0,j+1 − x

(p)
0,j−1

)

)

(

3x
(p)
0,j − 4x

(p)
1,j + x

(p)
2,j

)

= 0,

(

3x
(p)

m(p)+1,j
− 4x

(p)

m(p),j
+ x

(p)

m(p)−1,j

)

(

σ21
(

y
(p)

m(p)+1,j+1
− y

(p)

m(p)+1,j−1

)

− σ22
(

x
(p)

m(p)+1,j+1
− x

(p)

m(p)+1,j−1

)

)

=
(

σ11
(

y
(p)

m(p)+1,j+1
− y

(p)

m(p)+1,j−1

)

− σ12
(

x
(p)

m(p)+1,j+1
− x

(p)

m(p)+1,j−1

)

)

(

3y
(p)

m(p)+1,j
−4y

(p)

m(p),j
+y

(p)

m(p)−1,j

)

,

(

y
(p)
i+1,0 − y

(p)
i−1,0

)

(

σ11
(

3y
(p)
i,0 − 4y

(p)
i,1 + y

(p)
i,2

)

− σ12
(

3x
(p)
i,0 − 4x

(p)
i,1 + x

(p)
i,2

)

)

−
(

σ21
(

3y
(p)
i,0 − 4y

(p)
i,1 + y

(p)
i,2

)

− σ22
(

3x
(p)
i,0 − 4x

(p)
i,1 + x

(p)
i,2

)

)

(

x
(p)
i+1,0 − x

(p)
i−1,0

)

= 0, (14)

(

y
(p)

i+1,n(p)+1
− y

(p)

i−1,n(p)+1

)

(

σ11
(

3y
(p)

i,n(p)+1
− 4y

(p)

i,n(p) + y
(p)

i,n(p)−1

)

−σ12
(

3x
(p)

i,n(p)+1
− 4x

(p)

i,n(p) + x
(p)

i,n(p)−1

)

)

−
(

σ21
(

y
(p)

i,n(p)−1
− 4y

(p)

i,n(p) + 3y
(p)

i,n(p)+1

)

−σ22
(

3x
(p)

i,n(p)+1
− 4x

(p)

i,n(p) + x
(p)

i,n(p)−1

)

)

(

x
(p)

i+1,n(p)+1
−x

(p)

i−1,n(p)+1

)

= 0, i = 0,m(p)+1, j = 0, n(p) + 1,

where γ(p) are quasiconformal invariants [10] for corresponding domains G
γ(p)
ω =

{

(ϕ
(p)
i , ψ

(p)
j ) : ϕ

(p)
i =

ϕ
(p)
∗ + i∆ϕ(p), i = 0,m(p) + 1;ψ

(p)
j = j∆ψ(p), j = 0, n(p) + 1;∆ψ(p) = Q(p)/(n(p) + 1),∆ϕ(p) = (ϕ∗(p) −

ϕ
(p)
∗ )/(m(p) + 1), γ(p) = ∆ϕ(p)/∆ψ(p),m(p), n(p) ∈ N

}

; x
(p)
i,j = x(p)

(

ϕ
(p)
i , ψ

(p)
j

)

, y
(p)
i,j = y(p)

(

ϕ
(p)
i , ψ

(p)
j

)

,
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z
(p)
i,j = z(p)

(

ϕ
(p)
i , ψ

(p)
j

)

, σ
γ(p)
αβi,j

= σαβ(x
(p)
i,j , y

(p)
i,j ), λ

γ(p)
i,j = λ(x

(p)
i,j , y

(p)
i,j ); A

(p)
i,j , B

(p)
i,j , C

(p)
i,j , D

(p)
i,j , E

(p)
i,j , F

(p)
i,j

are determined in the same way as in [10].

We rewrite the functional (10) and conditions (11) for all internal nodal points (x
(p)
i,j , y

(p)
i,j ) (p = 1, p̃,

i = 1,m(p), j = 1, n(p)) as follows:

Φ
(

x
(1)
0,0, y

(1)
0,0, . . . , x

(p̃)

m(p̃)+1,n(p̃)+1
, y

(p̃)

m(p̃)+1,n(p̃)+1
, asa,0, . . . , a0,sa , bsb,0, . . . , b0,sb

)

=

p̃,m(p),n(p)
∑

p,i,j=1

(

η∆ϕ(p)2

( sa,ka
∑

ka,ra=0

a2ka−ra,ra
wka

+

sb,kb
∑

kb,rb=0

b2kb−rb,rb
wkb

)

+
(

λ1i,jγ
(p)
(

(

y
(p)
i,j+1 − y

(p)
i,j−1

)

cos θi,j−
(

x
(p)
i,j+1 − x

(p)
i,j−1

)

sin θi,j

)

−
(

y
(p)
i+1,j

− y
(p)
i−1,j

)

sin θi,j − cos θi,j
(

x
(p)
i+1,j − x

(p)
i−1,j

)

)2
+
(

(

x
(p)
i,j−1 − x

(p)
i,j+1

)

cos θi,j +
(

y
(p)
i,j+1−

−y
(p)
i,j−1

)

sin θi,j

)

λ2i,jγ
(p) +

(

y
(p)
i+1,j − y

(p)
i−1,j

)

cos θi,j −
(

x
(p)
i+1,j − x

(p)
i−1,j

)

sin θi,j

)2
)

→ min; (15)

0 < λ
γ(p)
2i,j

6 λ
γ(p)
1i,j

, (16)

where ak′a−r′a,r′a, bk′b−r
′

b
,r′

b
(k′a = 0, sa, r

′
a = 0, k′a, k

′
b = 0, sb, r

′
b = 0, k′b) are parameters for which values

are sought. It seems reasonable to solve the problem of nonlinear programming (15), (16) by one of the
appropriate methods of local optimization, e.g., by penalty function method, implemented in the [14]
with the application of parallelization mechanisms.

In addition, given the necessity for a huge amount of calculations when refining the coordinates of
the mesh nodes, it is advisable to parallelize the corresponding computations. One of the promising
mechanisms that provide such capabilities is the CUDA platform [15]. In particular, it is advisable
to parallelize the procedure of solving systems of equations (12) with the use of “red–black” ordering
of the unknowns [16]. Such order of “perambulation” ensures that both nodal coordinates from the
previous steps and the approximate values are used in the iterative process, according to the Seidel
method.

The algorithm for solving the original problem is similar to [9]. The main difference lies in applying
the optimization problem in the form of (15), (16). We also propose to refine the parameters of the
meshes by the formula (12) in parallel, namely: firstly at the nodes with indices for which the condition

(i+ j)/2 ∈ N is fulfilled, and then in all other cases (p = 1, p̃, i = 1,m(p), j = 1, n(p)). Also, all of the
notes given in [9] remain valid.

4. Numerical results

We present the results of numerical experiments of imitative restoration of media structure using
the following input data: x̃(τ) = 150 cos τ , ỹ(τ) = 100 sin τ , p̃ = 20, m(p) = 100, sa = sb = 3,
a0,0 = b0,0 = 1, aka−ra,ra = 0, bkb−rb,rb = 0 (ka = 1, sa, ra = 0, ka, kb = 1, sb, rb = 0, kb), η = 100,

q = 200, ε1 = ε2 = 10−2, ϕ
(p)
∗ = 0, ϕ∗(p) = 1, τ

(p)
A = ((p− 1)/p̃ + 9/8) π, τ

(p)
B = τ

(p)
A − π/4,

τ
(p)
C = τ

(p)
A −π, τ

(p)
D = τ

(p)
C −π/4, p = 1, p̃ (here the parameters τ

(p)
A , τ

(p)
B , τ

(p)
C , τ

(p)
D are chosen similarly

to the polar scheme of quasipotential application [1]),

θ=0.7+8·10−3x−4·10−3y−4·10−5x2+10−4xy−7·10−5y2−3·10−7x3−8·10−7x2y−17·10−7xy2+14·10−7y3.

Parameter values Q(p), Ψ
(p)
∗j , Ψ

∗(p)
j , ϕ̄

(p)
i , ϕ

(p)
i (1 6 p 6 p̃) are obtained by the following algorithm:

solve p̃ problems of modeling the quasiideal stream (4)–(6), (7) using the method described, e.g., in [10]
(with simultaneous Q(p) determination) having given

λ̄1 = λ̄1(x, y) = 1.5−8·10−4x−5·10−4y+10−5xy+3·10−5y2+10−7x3+10−7x2y+2·10−7xy2−2·10−7y3,
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λ̄2 = λ̄2(x, y) = 1+2·10−3x−10−3y−10−5x2+4·10−5xy+3·10−5y2+10−8x3−10−8x2y+10−8xy2+10−7y3;

carry out a uniform division of the domain boundary into s (s = 60) points, in each of which determine

the values of the corresponding function ψ
(p)
∗j , ψ

∗(p)
j , ϕ̄

(p)
i , ϕ

(p)
i ; calculate Ψ

(p)
∗j , Ψ

∗(p)
j according to

the difference representations of formulas Ψ
(p)
∗ (M) = ∂ψ

(p)
∗ (M)/∂l, Ψ∗(p)(M) = ∂ψ∗(p)(M)/∂l. The

problem (1)–(4) is solved using the above data and implementation of the proposed algorithm where,
in particular, the parameters of expressions (4) are identified:

λ1 ≈ 1.35 + 2.8 · 10−3x+ 4.7 · 10−3y − 9 · 10−6x2 + 3.3 · 10−5xy + 7.2 · 10−5y2 − 5 · 10−8x3

− 5 · 10−7x2y − 3.6 · 10−7xy2 − 6.2 · 10−7y3,

λ2 ≈ 1.15 + 2.2 · 10−3x+ 2.7 · 10−3y − 2.1 · 10−5x2 + 4 · 10−5xy + 5 · 10−6y2 − 7 · 10−8x3

− 1.4 · 10−7xy2 − 5.2 · 10−7y3.

a b

c d

0−0.17 0.17−0.34 0.34−0.5 0.5−0.67 0.67−0.84 0.84−1.01 1.01−1.18 1.18−1.34 1.34−1.51 1.51−1.68 1.68−1.85 1.85−2.01 2.01−2.18 2.18−2.35

Fig. 2. Distributions of λ1 and λ2: exact (a) and (b), and approximated (c) and (d) solutions, respectively.

The values of calculated λ1 and λ2, and exact (etalon) λ̄1 and λ̄2 correspond to the grayscale in Fig. 2c
and Fig. 2d , and Fig. 2a and Fig. 2b, respectively. We see that residual peaks are reached at eight spe-
cific points ∆λ1(−138.924, 37.713) = −0.611, ∆λ1(−90.252,−79.874) = 0.513, ∆λ1(2.15, 99.99) =
0.369, ∆λ1(141.314, 33.536) = −0.413, ∆λ2(−147.411, 18.5) = 0.134, ∆λ2(−8.107, 61) = 0.337,
∆λ2(−20.104,−99.098) = 0.668, ∆λ2(149.519, 8.005) = −0.338, most of which are located at the
domain boundary, where, apparently, quasiconformal errors occur. Certainly, the first of these peaks
is caused by the insufficient value of the reconstructed CT λ1, and all others are characterized by
displaced inhomogeneity locations. The average residual modulus in the domain is ∆λ̃1 = 0.179,
∆λ̃2 = 0.17.
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5. Conclusions

Given the relevance of developing the complex analysis methods for solving AQT problems, the corre-
sponding algorithm is modified to the case of parameter identification of anisotropic media having more
specific a priori information about eigendirections of the sought CT. In this, the image reconstruction
is carried out using additional data regarding the longer axis of the corresponding anisotropy ellipse.
The application of this type of data is especially common in medicine, geology, etc. Certainly, like
in [9], the basis of the described approach is taking into account the distribution of both local velocity
values along the sections of input and output particles from the investigated object, and potentials
at remaining places of domain border on the one hand, and applying the quasiconformal mapping
methods to ensure the possibility of solving the direct problems in the iterative process on the other.
However, in comparison to [9], parallelization of calculations is introduced here, and in order to reduce
the number of intermediate calculations, the form of minimizing functional is optimized. Here, when
imposing additional restrictions on the eigendirections of the CT, the adaptability of the corresponding
algorithm to a series of specific cases of practice is ensured.

The developed algorithm is characterized by comparatively fast computer convergence (since, unlike
many methods used, it does not require finding numerical derivatives of the CT distribution function
at certain points and refining the boundary nodes at each iteration step) and relative ease of its paral-
lelization. The latter is implemented with the use of “red–black” ordering of the unknowns, mechanisms
of the CUDA platform, and the ALGLIB library. It should be noted that the anisotropy tensor affects
the deterioration order of accuracy and stability of the corresponding algorithm, which, in particular,
requires both the creation of special constructions-procedures of Tikhonov–type regularization and
approaches to optimization (in particular, parallelization) of calculations.

We plan to extend our algorithm for the following cases: possibility of spatial reconstruction of
the CT, parameter identification of piecewise-homogeneous and piecewise-inhomogeneous media, in
particular, using the conditions of non-ideal contact [17] both inside the object under study and at
the applied quasipotential sections (the latter allows to implement the complete electrode model given
in [1,4,5]), taking into account the distribution of impedance in the body (see, e.g. [1]), and also the use
of three-component (device for collecting and entering physical data, calculating devices, and server)
GRID-technologies [18].
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Метод реконструкцiї зображень анiзотропних середовищ
за даними томографiї прикладених квазiпотенцiалiв

Бомба А. Я., Кузло М. Т., Мiчута О. Р., Бойчура М. В.

Нацiональний унiверситет водного господарства та природокористування,

вул. Соборна, 11, Рiвне, 33028, Україна

Модифiковано алгоритм розв’язання коефiцiєнтних задач iдентифiкацiї параметрiв
анiзотропних середовищ за даними томографiї прикладних квазiпотенцiалiв на ви-
падок наявностi конкретнiшої апрiорної iнформацiї щодо власних напрямкiв вiдпо-
вiдного тензора провiдностi. Застосування доволi поширене на практицi, зокрема в
медицинi об’єктом таких дослiджень можуть бути середовища iз дiлянками волокнис-
тостi чи шаруватостi (до яких належать м’язи, кiстки тощо), в яких iснують потоки
некулястих частинок (наприклад, еритроцитiв). В основу вiдповiдного алгоритму й
надалi покладено почергове розв’язання задач на квазiконформнi вiдображення та
iдентифiкацiю параметрiв, проте у цiй роботi його доповнено процедурою розпара-
лелення обчислень i “пришвидшено” задачу оптимiзацiї. Останнє характеризується
значним зменшенням кiлькостi промiжних розрахункiв та, у разi накладання додат-
кових обмежень на власнi напрямки тензора провiдностi, приводить до можливостi
оптимальної пристосовностi алгоритму до конкретних випадкiв практики. Наведено
вiдповiднi результати числових експериментiв iмiтацiйного вiдновлення структури
середовища.

Ключовi слова: томографiя прикладених квазiпотенцiалiв, квазiконформнi вiдо-

браження, анiзотропiя, iдентифiкацiя, нелiнiйнi оберненi задачi.
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