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Unsteady processes of isothermal natural gas flow, emerging in a long pipeline when there
is switching-over from one stationary process to another stationary process, have been
considered in this paper. The one-dimensional system of gas dynamics equations is used
for that purpose. It includes equations for conservation of mass and momentum written
relative to of dimensionless mass and flow densities. Three boundary-value problems for-
mulated for this system define three models for control of the transient processes. The
problems differ by the boundary (control) functions imposed at the ends of the gas pipeline.
A unified model for the control functions is introduced. According to this model, such a
function is defined by four real parameters. That restricts the class of control functions by
the smooth ones monotonically varying from the value characteristic for the first stationary
regime to the other one specific for the second stationary regime. The transient processes
realized with the use of the models for various values of control parameters are analyzed
numerically in this paper. Application of the considered mathematical models and ob-
tained results of conducted case-studies for planning the transient regimes of pipelines
operation are discussed in the paper.
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1. Introduction

Main gas pipelines are very effective for natural gas transmission on large distances [1]. Optimally they
operate in stationary regimes. But non-stationary processes are also used in the operation of these gas
transportation facilities.

Unsteady gas flows in a long pipeline were considered by many authors with various purposes, in
particular, to examine approximations of gas state equations and their impact on solutions of non-
stationary problems [2,3], to clear up the role of thermal processes in pipeline gas dynamics [4,5], to
describe propagation of small disturbances of pressure in the gas flowing in the pipeline [6-8], to study
transient processes emerging at a local depressurization of the pipe [9,10].

Unsteady processes are more often used in the operation of a gas pipeline to switch-over it from
an actual stationary regime to another prescribed one. With this aim, one should increase or decrease
the mechanical power transferring to the flow, changing operation regimes of compressor stations.
That causes variations of the pressure and flow rate at the inflow and outflow of each pipeline section
between two compressor stations. The transient process emerging at that in the section will depend
on parameters being controlled at the section’s inflow and outflow (pressure or flow rate), and on the
time dependences of the controlled parameters.
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Numerical modeling transient processes in a long gas pipeline 221

There are many ways to transfer the gas pipeline from one to another stationary regime. The aim
of the paper is to study numerically how the algorithm of controlling by the transient process impacts
this process’s parameters.

2. Models for control functions of transient processes

We consider a section of a gas main as a long pipeline. Its inner diameter is Dpipe, the length is
L. We suppose the profile of the pipeline elevation H(x) and the coefficient of pipeline hydraulic
resistance A(x) are known functions of coordinate x along the pipeline trace. As well, we will assume
that gas composition and physical-chemical property of all its components, needed for calculation the
gas thermodynamic properties, are also known. In isothermal approximation, the movement of the gas
in the pipeline is governing by two partial differential equations (PDE), describing the conservation of
mass and momentum, as well as the thermal equation of state [6]. In dimensionless variables, these
equations can be written as

dp apv

or Ma B3 (1)

opv 0 Zy dry

B = Ma - 8£< a2 ) Ma - pd5 Ma - B |v|vp, (2)
p==z0p. (3)

Here 7 = t/t; and £ = /L stand for the dimensionless time variable and coordinate along the pipeline
trace, p = D/Dy, p = P/P; and v = V/V;, are dimensionless gas parameters: density, pressure and
velocity correspondingly, Dy, P; and V; are typical for this pipeline value of corresponding dimensional
gas parameters: density D, pressure P and velocity V;  is dimensionless temperature (we put # = 1 in
considered here isothermal approximation T = const); z = Z/Z; stands for normalized compressibility
factor of the gas, where Z; = Z; (Dy,T) is the value of the compressibility factor Z = Z (D, T),
calculated at D; and T; Ma = V;/C} is the Mach number, where C; is typical sonic velocity, defined
from thermal equation of state P = Z(D,T)R,TD as C;* = (OP/OD)|z—1 p—p, = RgT, where
Ry, = R/ug, R is universal gas constant, 4 is molar mass of the gas. Parameters 8 = (), v = v(§)
in (2) are defined as
gH (x)
V2

V(z/L) =

where g is the gravity acceleration.
Equations (1) and (2) contain three dependent variables: p(&,7), p(§,7) and v(§, 7). Applying
relation (3), we can reduce them to the closed system of two PDF for key functions p(&,7) and j(&, 7):

Blz/L) = (4)

- Op dj
PDE,: 5 = ~Ma o2
a7 0 (.o _ Z dry
PDE;: a—i:—Ma 8_§<]2p 1+M—a2p> Ma - pd—g—Ma Blilip~?, (5)

where j = J/J; = pv is dimensionless density of mass flow, J; is the typical value of mass flow density
J=pV.

As we can see, thanks to such choice of the key functions, the first equation of the system (5)
appears linear.

In stationary case, when 0p/01 = 05/07 = 0, from the first equation (5) we obtain 95/9¢§ =0 —
j = const, and the second one leads to first order non-linear ordinary differential equation (ODE) for
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222 Chekurin V. F., Khymko O. M.

stationary density distribution p(¢) in the pipeline:

ODE,: I _ S - (6)

—- g
dg 32+%<z+pg—;>

To determine density distribution p(§) in the pipeline in stationary state, one should define a value
of dimensionless density of mass flow j, and then formulate and solve an initial value problem (IVP)
for ODE (6). Two such IVP can be considered — in the first one the initial condition (IC) is prescribed
on the left end & = 0 of the segment and, in the second one — on the right segment’s end £ = 1:

where p™ and p°“ are given real values.

The problems IVP; = {ODE,,IC;} and IVP, = {ODE,,ICy} represent two models for control by
the stationary flow process. Their sets of control parameters are I} = { 7, pm} and Il = { 7, pm}
correspondingly. This means that, choosing, for instance, model IVP1 and prescribing a values for both
elements of set II}, we fully determine stationary flow in the pipeline.

To determine the functions p(§,7) and j(&,7) of a transient process Transient;_o one should first
determine two stationary processes Stationar; and Stationars. Here Stationar; is the starting for
Transient;_o stationary process, whereas Stationar, is the target stationary process for it. “Deter-
mine a stationary process” means here that one should choose a model (IVPr or IVPy1) and define
values for elements of corresponding set (Il or Iljy) of control parameters. Then one should formulate
a boundary problem (BVP) for system (5). For that, it is necessary to define boundary conditions
(BC) and initial conditions for the system.

Since system (5) is of hyperbolic type, we should prescribe two boundary and two initial values for
it. We will consider the next BC for system (5)

BCr: P|g:0 = Pm (7), P|§=1 = Pout (1),

BCyr: P’gzo = p'" (1), j‘§:1 = " (1), (8)
BCir:  Jlemo =" (7), pley = ™ (7).

Here p™(7), p°“*(7), j7(7) and j°“*(7) are prescribed functions.
The initial conditions for system (5) we take in the form

IC: pl—g = p1(§), o = J1- 9)

Here j; is the value of dimensionless flow density for stationary process Stationary, p1(€) is dimensionless
density distribution in this process. Function p;(&) is the solution of IVPy or IVPy1 (depending on the
used model for control by the stationary process).

With this, we can define three boundary-value problems:

BVP; = {PDE,, PDE;, BCy,IC},
BVPy; = {PDE,, PDE;, BCyy,IC}, (10)
BVPyi1 = {PDE,, PDE;, BCyy, IC} .

Boundary-value problems (10) determine tree models for control by transient process Transient;_s.
Functions p™(7), p°“(7), 7(7) and j°“(7) of boundary conditions (8) are external or control func-
tions. Defining a pair of them specific for a model BVPk, K € {I, I1, ITI}, we determine an algorithm for
control by the transient process. Defining, for instance, the functions p™(7) and p°“(7), we determine
the algorithm for control by the transient process in correspondence with the model BVPy.
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Numerical modeling transient processes in a long gas pipeline 223

3. Models for control functions of transient processes
Four control functions of transient processes /Ut ¢ { pinlout jin/ "“t} should satisfy some conditions.
The first condition is continuity requirement. It follows from the nature of compressor stations which
are very inertial systems. Hence the pressure and flow rate at their inputs and outputs cannot change
rapidly.

Other conditions follow from the requirement of compatibility of the control functions of process
Transient;_o with the control parameters of both stationary processes Stationar; and Stationars. These
conditions look like

in out __out
P | pln = pl s | pout = P1
Tstart T=Tstart
pin | ) ,02 pout | ot pgut
__pin — 3 P - )
T__t;d T=Tend
in . -out .
J jin. = J1 J jout = J1
‘7ﬁ:7éan ’ ‘T Tian ’
in . -out .
] ‘ jin = ]2, ] ‘ jout = J2. (11)
T=Tend T=Tend
in/out . . .. . . . .
Here Tsptart Jend is the time moment at which variation of mass density at the pipeline’s inflow /outflow

n/out

is start/over, T]tlart Jend is the time moment at which variation of flow density at the inflow/outflow is

in/out .
1/2
1/2, j; /2 is the value of mass flow density in stationary process 1 /2.

To satisfy conditions (11), we restrict the class of control functions by monotonic increas-

ing/decreasing ones. Each function ¢™/°%(7), 7 € [0,71,], where 71, is duration of the transient
in/out ( win/out wzn/out)

process, is monotone within the interval 75, = (Tstart > Tend
in/out

values outside 7yar

start /over, p is the value of mass density at the pipeline’s inflow/outflow in stationary process

\]

C [0, 71,] and remains constant

™ot (7) Jdr £0, TeTh™,

var

in/ou in/out
g ) = o = const, e [0k
in/out t in/out
P (1) = ;n/ou const, T € [ edr}]d ,TTr] . (12)

where wi%om is the value of parameter v at the pipeline inflow/outflow in stationary process 1/2.

To satisfy the restrictions we can present the model of control function 1(7) by piece-wise linear

approximation
Y, 0T < Tty

Y2 — 1
O NS A -
Tend — Tstart

$o, TE <7< T

But the first derivative of function (13) has jumps at the moments 7 = T;fart and 7 = Téﬁd. To avoid
this, we approximate (13) by analytical function of the form
p(r) = vr + P2 (samh (0 7)) +1). (14)

We cannot satisfy the conditions (12) with function (14) exactly. Therefore, instead of conditions
1/1( Start) U1, w( end) = 1)9, we will subordinate functions (14) to the conditions

‘w(Tsdt}art) - wl‘ < &, ‘¢2 - w(Tid)‘ < g, (15)
where ¢ is a small positive number.
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This brings to the next formulas for parameters a¥ and ¥ of function (14)
Y (4
2 2
¥ = Tstart 1 Teng Tend, a¥ = SR atanh <1 S > . (16)
2 YT, 12 — 41

start
With the use of the models (13) and (14), we can fundamentally constrain the class of control
functions ¥ (7). Each () € {p"(7), p®*(7), 5" (7), 7°*(7)} can be defined now by four real constants,

namely — 1, Yo and T;fa,t, Ti 4~ The first pair v, 12 are control parameters of the stationary processes

end

Stationar; and Stationars. The second pair Tj{art, Tid are the time parameters, which determine the
rate of function v (7) changing.

Each model BVPk, K € {I,II,I11} depends on two controls functions. Hence, the set of control
functions of model K is defined by the set IIk of 8 real parameters:

in out in out

_ in  out in _out _pP P
II; = {pl yP1 P2 P2 5 Tstarts Tstart» Tend * Tend } ’
. in - in - pin jout pin jout
1_[II - {pl yJ15 P2 5725 Tstarts Tstart> Tend > Tend ’
- . out - out ]zn pout -in out
I = {]17 P1 5J2:P2 5 Tstarts Tstarts Tends Tend [ ° (17)

4. Internal parameters and functionals of the transient process

The course of any transient process Transient;_o depends on chosen model BVPk and numerical
values of all elements of set IIx associated with this model. In the aggregate, BVPk and Ilk de-
fine the algorithm of controlling by the transient process, that can be written as Transient;_o =
Transient;_o (BVPk, IIk). It means that assigning different numerical values to the parameters Tsdt)art?
Tj;d of a set Ilk, we define different transient processes, switching-over the pipeline between the same
two stationary regimes Stationar; and Stationary in correspondence with model BVPx.

Two internal functions p(&, 7) and j(§, 7), being the solution of boundary-value problem BVP, fully
determine the transient process, controlling by the algorithm {BVPxk,IIkx}. The boundary functions
used in BVPk are external or control functions for this model. For instance, the functions p™(7) and
p°“t (1), calculated by models (13) or (14) with the use of the data contained in set IIj, are control
functions for the model BVPy. But the functions j*(7) and j°“(7) are local internal functions for this
model: they can be calculated from the solution {p(§,7),j(&,7)} of the boundary-value problem BVP
as ]Zn(T) =3(0,7), jOUt(T) =j(1,7).

Similarly, for the model BVPyy, p™(7) and j°“(7) are the control functions: they should be calcu-
lated by model (13) or (14) with the use the data containing in the set ITj, whereas j(7) and p°“(7)
are the local internal functions this model. The pair 7 (7) and p°“ () are the external functions for
the model BVPyy1, whereas p™(7) and j°“!(7) are the local internal functions for this model.

Besides the local functions of the transient processes, one can consider its integral parameters. We
define here some such parameters.

The first one is the total mass M (t) of the gas that occupies the inner volume of the pipeline at
the moment t¢:

L 1
M) =5 [ Dot ds =My [ plee/n) s = M), (18)

where My = SLD;, S is the area of the pipeline duct’s cross-section, M (7) is dimensionless mass of
the gas:

1
M) = [ oler)as (19)
Dimensionless mass M, j, for process Stationary /; is calculated as
1
M1/2 = /0 /71/2(5) dg. (20)
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Numerical modeling transient processes in a long gas pipeline 225

The second internal integral parameter we consider here is the power WX (¢) of viscous friction
force at the moment t:
W) = WEW T (t/t,), (21)

where Wt = M V;3/L, WE(r) is dimensionless power of viscous friction force:

1 3 T
)= /0 s L

T% de. (22)

Corresponding parameters for processes Stationar; and Stationar; are calculated as

]1 o
wij /2= / B(& / d§. (23)
o /2
One more internal integral parameter of the transient processes is the work A®(t) of viscous friction
force:

AR(t) = /t WE#) dt = ARAR(t/t), (24)
0

where Af* = M;V;2, AR(7) is dimensionless work of viscous friction force:

Ma/ Wh(r dT—Ma//ﬁ

Now we introduce functional for process Transient;_s i.e. — scalar parameters, the values of which
give certain quantitative characteristics of the transient process.
The first is the duration 77, of the transient process. We define it as

dg dr. (25)

TTr = TSt — Tstart, (26)

where Tgtart is the time moment, when the transient process has been started, 7s; is a moment of estab-
lishing of the stationary process Stationary. Parameter 7gat can be defined as 7gat = min (T;f;ft, T;f::tt)

To detect the moment 75; we can use the properties of internal parameters of transient processes. As
the process Transient;_o determines the transition from Stationar; to Stationars, its internal parameters
are compatible with corresponding parameters of the both stationary processes. In terms of local

functions p(§, 7) and j(&, 7), this compatibility can by expressed by the relations:
p(Ev Tstart) = p1 (6)7 ](57 Tstart) = j17 p(é.a TSt) = p2(£)7 ](57 TSt) = j2' (27)

The first pair of these relations has been used to define the function of the initial conditions. The
second one can be applied to determinate the moment 7g;.

If to use the local functions acting on the pipeline ends, then the compatibility relations for models
BVPk will be

jm (Tstart) = jla jout (Tstart) = j17 J " (TSt) = j27 jout (TSt) = j27 K= Ia
jm (Tstart) =J1, pout (Tstart) = P‘f“t7 ]m (TSt) = J2, pout ( ) = PS% K =1I,
Pin (Tstart) = Plin, jom (Tstart) = J1, Pm (Tst) = Pén’ jout (Tst) = Jo, K=1IIL (28)

We can use the second pairs of these relations involving parameter 7g; to determinate it.

It should be stressed that the end phase of the process Transient;_» is of relaxation type. It means
that function j™(7), for instance, exponentially approaches to value j, with growing 7 and might never
reach it. Hence equations j™(7) = j, will has no solution at finite 7. But at that, function | () — ja|
will quickly decay with growing 7. Hence we can determine 7s;, for instance, as 7s;: | J(T) —j2| < e
V7T > 7s¢, where € is given small positive real number. In correspondence with that we determine
duration 7s; as
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Ts¢ = max <arngin (|[7(7) = j2| —€]) arg min (|77 () = jo| — 6‘)) : K=1I,

Tsy = max <arngin(Hjm —j2|—€|) argmln(HpO“t T) — p2 (1)!—5‘)), K =1I,

Tt = max (argmin(Hpm (1) = p2(0)] —¢|), argmln(H]‘mt ) — ja —ED) , K =IIL (29)
T
To evaluate the energy expended by the transient process, we will use the work of viscous friction
force executed during the process: A = M; V2 ATr, where A% is dimensionless work defined as
A-lRir = AR(TSt) — AR(TStart)' (30)

Parameter A-ﬁ is a functional of the transient process.

To evaluate the amount of the gas transmitted via the pipeline during the transient process, we
will use two parameters. The first one Mfﬁ defines the mass of gas entered into the pipeline at its inlet
and the second M"Tijt is the mass of gas delivered into the gas transmission system at the outlet

tend ) ) tend
=S [ Jm™b)dt=MME, MU =S / JOUE(t) dt = M, M2, (31)

tstart tstart
Here MY and M9" are corresponding dimensionless parameters:

i TSt | TSt
M = Ma / jm(rydr,  M$" = Ma / U (7) dr. (32)

start start

The values, average over the transient process duration, of dimensionless mass flow density at the

inlet and outlet , .
m ou
MTr “out __ MTr

Tr (33)

P — =__Ir
™= Ma-m’ Ma -1

are also functionals of the transient process. They enable us to compare the efficiency of the transient
process and the stationary processes 1 and 2.

Parameters QF; and Q"“t
in AR AR ou AR AR ou
QTF = MZ;Z = ‘/t2 Mln ‘/; Tr7 Q b= Mout - ‘/t Mout - ‘/; K (34)
Tr

define the specific energy, expended for entering the gas into the pipeline through the inlet and delivered
it into the gas transmission system through the outlet of the pipeline.

Dimensionless parameters Qi and Q"“t are functionals of the transient process. They can be used
to evaluate the power efficiency of the transient process Transient;_o(BVPk,Ilk) by comparing them
to corresponding parameters ()1 and )2 of the stationary processes Stationar; and Stationars calculated

as
Wi o 18O, o W 1B

lej—l—hom —j—z—Jz()%

de. (35)

5. Case study of the models and algorithms for control by transient processes

In this section, we consider the results of the numerical study of transient processes executed due to
three models BVPk by various algorithms. Totally, we have studied 12 various algorithms. In all
cases, the same two stationary processes, called “low flow stationary process” and “high flow stationary
process”, were used. They are determined by the next control parameters:

— low flow stationary process: pi = 0.7, p9“ = 0.3, j; = 0.6372;
— high flow stationary process: p§* = 0.9, pg*t = 0.3, jo = 0.8443.
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In Fig.1 one can see the dimensionless mass density and flow density in the pipeline for these
stationary processes.

In all cases, we used the model for control functions 1
in form (14).
. . . AT 0.9 208 ;
The algorithms switching-over the pipeline from the L J2
low flow stationary process into the high flow stationary 0.8¢
process as well as that switching-over the pipeline in 0.7 p1(6)
reverse direction were considered. J1

The problems BVPyk, K = I, II, III were solved nu- 0.6r
merically. For that, a uniform grid X was created on

section [0,1]. Then, with the use of finite difference o2

method, the problems BVPk were reduced to corre- 0.4t

sponding initial value problems IVPk for systems of or- L
dinary differential equations relative to the node values 0 01020304 05 06 07 08 09 ¢

p(&,7) §(&,7), & € X of the key functions. The prob- Fig. 1. .The graphs of contr.ol parameters .for
lems IVPk were solved by the Runge-Kutta method two stationary processes used in the case studies.
applying the known algorithm RKF-45 [11]. Obtained in such manner solutions contain node values
p(&, ;) and j(&,7;) of the key functions at discrete time moments 7;. The solutions were used to
calculate the internal parameters of transient processes.

The results of numerical studies presented in this chapter were obtained for the horizontal pipeline
with length 100 km and diameter 1.420m. The next values for the typical gas state parameters were
used: pressure P; = 6.665 MPa, temperature T; = 300K, density D; = 48.2016kg/m?®. The typical
mass flow density was taken J; = 467.8117kg/(m?-s), typical gas velocity V; = 9.7053m/s, typical
sonic velocity, Mach number and time period are correspondingly: C; = 396.6253 m/s, Ma = 0.0245
and t; = 252.1271s. The equivalent height of inner surface irregularities of the pipeline wall was taken
equal to 3.3 -107°.

5.1. Control model BVP,

External functions p™(7) and p°“!(7) are control in model BVPy. First, we considered the case of
pipeline transition from the state with low flow into that with high flow. Since outlet density of both
stationary processes Stationar; and Stationars are the same, so p°“(7) = const. Therefore, it was
enough to define the values of time control parameters in set ITj only for function p™ (7). So, we chose
this set in the form:

Il = {pi" = 0.7, 7" = 0.3, pi" = 0.9, pg" = 0.3, 78y = 25,70 = 75} . (36)

In Fig.2, the graphs of functions of the transient process Transient;_ o (BVPI,H%) are shown. In
Fig.2a one can see the graphs of the control function p"*(7) and two end internal functions — j"*(7)
and j°%(7), calculated with the use of obtained solution. The duration of the transient process
Transient;_o (BVPI, H%), calculated due to the first formula (28) with precision ¢ = 0.02 equals 68.18.

Fig. 2b illustrates how integral parameters — dimensionless mass M of the gas filling the pipeline
(curve 1) and dimensionless power of viscous friction force W (curve 2) change with time 7.

The graphs in Figs.2c¢ and 2d show distributions of dimensionless mass density and flow in the
pipeline at various time moments.

To estimate impact the rate of control parameter p"f‘ changing on the transient process, we applied

. 3 2 71
control function p™(7) with shorter period AT#" = 70 4 — Thare Of variation — instead of 50 we chose

ATP" = 30, other control parameters have remained the same:
2 = {pgn = 0.7, 7" = 0.3, pi" = 0.9, p¢" = 0.3, 75y = 25,70, = 55} . (37)

In Fig.3 we can see the plots of the functions of the transient process Transient; o (BVPI,H%). This
process duration equals 53.84.
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Fig. 2. The graphs of the functions of the transient process Transient;_o (BVPI, H%)
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Fig. 3. The graphs of the functions of the transient process Transient;_o (BVPI, Hf)
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Fig.5. The graphs of functions of the transient process Transienty_1 (BVPI7 H%).
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We also studied two control algorithms for switching-over the pipeline from the stationary state of
high flow into that of low flow. In the first one, the period AP of control function varying was taken
50, in another — 30:

3 = { = 0.9, p2 = 0.3, pi" = 0.7, p2 = 0.3, 7y = 25,70 = 75} (38)
m — {pgn = 0.9, p0" = 0.3, pif" = 0.7, p0" = 0.3, 7y = 25,7001 = 55} (39)

The durations of these process are 66.22 and 49.93 correspondingly. The graphs of the transient pro-
cesses Transienty_1 (BVPI7 H:I)’) and Transienty_q (BVPI, H‘;’) are shown on Figs. 4 and 5 correspondingly.

5.2. Control model BVPy,

External functions j(7) and p°®“(7) are the control in this model. Outlet density of both stationary
processes are the same, so it was enough to define the values of time control parameters in sets Iy
only for function j*(7). We considered here two cases with control parameters:

Il = {31 = 0.6372, p7" = 0.3, ji" = 0.8443, pg" = 0.3, ey = 25,70 = 75} (40)
My = {1 = 0.8443, 57" = 0.3, jo = 0.6372, p8" = 0.3, Thore = 25,7 = 75} . (41)

The graphs of these transient processes are shown on Figs. 6 and 7 correspondingly.
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Fig. 6. The graphs of functions of the transient process Transients_1 (BVPIH, H%H).

The durations of these transient processes are 125.75 and 123.50 correspondingly.

Mathematical Modeling and Computing, Vol. 6, No. 2, pp.220-238 (2019)



Numerical modeling transient processes in a long gas pipeline 231

1 T T M(‘r) T 1 WR(T)

0.9 7 1.3 41200
0.8 - 1.2 41000
0.7 . 1.1 71800

1 1 1 1 1 600

0 100 200 T 0 100 200 T
a b
p(&,7) . J(€, )

1 1-7=0, 2-7=050
3-17=62, 4-7=75

0.8

0.8 5- 1 =100, 6 7 =125
7 -7 =150,8 — 7 = 250
0.75
0.6
0.7
0.4
0.65
0.2 ! L
0 0.5 13 0 0.5 ¢

Fig. 7. The graphs of functions of the transient process Transienty_1 (BVPHI7 H%)

5.3. Control model BVPy,

In this model external functions p™(7) and j°“/(7) control by transients processes.
First, we considered the case, when both control functlons start at the same time moment and

'Ln sout

durations of their variation are equal: Tdelay Tdelay” AP = A73”™ . For that, we chose the next set
of control parameter for external functions:

Ij; = {pli" = 0.7, j1 = 0.6372, p" = 0.9, jo = 0.8443, 7hoory = 25,700y = 75, Thary = 25,70y = 75}.
The graphs of this transient process functions are shown on Fig 8.

On Fig. 8a we can see the graphs of two control functions — p"*(7) and j°“*(7), and two end internal
functions of the process — j7*(7) and p°“(7). The duration of the process is 7, ~ 153.70.

In Fig.8b, where internal integral functions M(7) and WT(r) are presented, we observe the
essential raising of the power of viscous friction force at the beginning phase of the process
Transient;_o (BVPH, H%I). We can explain this by the rapid raising of the flow at the pipeline’s inflow
in this phase (see Fig.8d) and the corresponding growth of the friction force.

To estimate the impact of the control function j°“(7) rate on the transient process, we shortened
the interval A79"" of its varying from 50 till 30, taking the next set of parameters for the control
functions
=75 Tstart =25, T

) end ’ end

2 = {pﬁn — 0.7, j1 = 0.6372, pi" = 0.9, jo = 0.8443, 70 = 25,7 - 55}

The graphs of this transient process are shown on Fig. 9.
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Fig. 8. The graphs of functions of the transient process Transient;_o (BVPH, Hlll).
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Fig. 9. The graphs of functions of the transient process Transient;_o (BVPH, Hfl).
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The duration of the process is 71, ~ 175.67.

Here we can observe intense decreasing of outflow density (see Fig.9a) and more rapid growth of
the power of viscous friction force at the beginning phase of the transient process (see Fig. 9b).

The next numeric experiment was intended to study the influence of time shift between control
functions acting at the pipeline’s inflow and outflow on the transient process. For that, we considered
an algorithm of switching-over of the pipeline from the state of low flow into that of high flow in the
case when the control function at outflow is lag in relation to that at the inflow. The next set of
parameters of control functions was used in this case

I3, = {p’i" = 0.7, j1 = 0.6372, pil" = 0.9, jo = 0.8443, 7y = 25,77 = 75, 7wy = 50,707 = 80}.
(44)
The graphs of the transient process functions are shown in Fig. 10.

1 T T - T T T R T
jin(r) 7 (7) M(r) W

0.8 7
0.6 7
1.2 -4 1000
047 7 2
N !
0 1 1 1 1 1 0
0 100 200 T 0 100 200 T
a b
P(§7 T) ! J (67 7_) !

0.8

0.6

1-7=0, 2-7=25

04F 3-7=38 4-7=50

5-7=62, 6-T7="75

7-7=100, 8 - T = 250
1

0.2

0 0.5 3 0 0.5 3
c d

Fig.10. The graphs of functions of the transient process Transient;_o (BVPH, H?I).

As we can see from the graphs, the lag in 25 units of dimensionless time between control functions,
acting at the inflow and outflow of the pipeline, makes the transient process more “quiet”. That appears,
in particular, in more smooth dependencies p°*(7) and W¥(7) as compared to those arising in the
process Transient|_o (BVPH, HH).

In the frame of the control model BVPy, we also studied numerically two algorithms of switching-
over the pipeline from the state of high flow into the state of low flow.

First, we considered the case of synchronous starts of control functions acting at the inflow and
outflow, using the next set of control parameters:

out

I, = {p’i" = 0.9, 1 = 0.8443, pil' = 0.7, jo = 0.6372, 76y = 25,77 = 75, Ty = 25,70 = 55}

The graphs of the functions of the transient process are shown in Fig. 11.
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Fig.11. The graphs of functions of the transient process Transient;_o (BVPH, Hi‘l).
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Fig. 12. The graphs of functions of the transient process Transient;_o (BVPH, H?I).
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The duration of this transient process isT, ~ 169.56.

The next case was intended to estimate how lag in the start of control function acting at the pipeline
inflow will impact the transient process. We used the next set of control parameters for that

. . in in sout ou

My = {pi" = 0.9,j1 = 08443, p§" = 0.7, jo = 0.6372, Ty = 25,760 = T5, oo = 0,70g =30},
The graphs of the functions of the transient process are shown in Fig. 12.

The duration of this process is 71 = 169.56.

One more case we considered was intended to estimate how the lag of the start of the control func-

tion, acting at the pipeline’s outlet, impacts the transient process. The next set of control parameters
was used for that

My = {pi" = 0.9, j1 = 0.8443, pf" = 0.7, j = 0.6372, Thr = 25, 76r = 75, Thoa = 50, 70pg = 80}
(47)
By this algorithm, the control function j°“!(7), acting at the outflow, starts with a lag of 25 units
of dimensionless time in relation to control function p*(7) at the inflow.
The graphs of the functions of the transient process are shown in Fig. 13.
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Fig.13. The graphs of functions of the transient process Transient;_o (BVPH, H?I).

Comparing the graphs in Fig. 13 with corresponding that presented in Fig. 12, we can conclude,
that the delay in control at outflow makes the transient process more “quiet” and cuts its duration.

5.4. Quantitative comparison of the transient processes

To compare considered in this chapter algorithms, we calculated for each of them the functionals,
introduced by formulas (28), (31), (32), (34). In Tablel the control parameters of the transient
processes are presented. In Table2 the values of functionals for these processes are consolidated.
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Table 1. The control parameters of the transient processes.

Algorithm | Direction | A7 | Aro¥ | £ ity
BVP, I 1-2 50 - 0
BVPy, IT7 1-2 30 - 0
BVP;, I3 2-1 50 - 0
BVP, II} 2-1 30 - 0

BVPr, g 1-2 50 - 0
BVP1, I3 2-1 50 - 0

BVPy, 1T} 1-2 50 50 0

BVPp, I1j; 1-2 50 30 0

BVPp, 1T} 1-2 50 30 25

BVP, 117 2-1 50 30 0

BVPyp, I} 2-1 50 30 | =25

BVPy, 11§, 2-1 50 30 25

Table 2. The functionals of the transient processes.

Algorithm | Direction | 77, | A7, 103 | M| j | MWt | 599 | Q%,10° | Q34,103
BVP;, I} 1-2 6818 | 1.84 [142]0.85] 1.20 [0.72] 1.29 1.53
BVPy, I17 1-2 53.84 | 151 |[1.18 090 0.95 | 0.72 | 1.28 1.59
BVPy, IT} 2-1 6622 | 1.66 | 1.02]0.63] 1.24 [0.76 | 1.63 1.33
BVPy, 1] 2-1 4943 | 121 071058 ] 094 [0.77] 1.71 1.29
BVP1, IT] 1-2 12575 | 331 [245]080] 223 [0.72| 1.35 1.48
BVP1, I3 2-1 12350 | 3.11 | 206|068 ] 228 [ 0.75 | 1.51 1.37
BVPy, ITj 1-2 153.60 | 5.78 [3.26 087 | 3.04 | 081 | 1.77 1.90
BVPy, IT§; 1-2 175.67 | 810 |3.77 [ 0.88] 355 | 0.82| 2.15 2.28
BVPy, 113 1-2 9339 | 266 |138]0.85] 1.70 [ 0.75 | 1.39 1.56
BVP, 117 2-1 13552 | 211 [ 1.60 | 0.58 | 1.18 | 0.64 | 1.10 0.98
BVPy, 17 2-1 169.56 | 2.33 [ 2.35]057] 1.80 | 0.62| 0.99 0.91
BVPy, I} 2-1 6731 | 1.70 | 1.05]0.64] 1.26 [ 0.76 | 1.62 1.36

6. Conclusion

Three mathematical models for the unsteady gas-dynamic processes of switching-over the pipeline from
an actual stationary regime to another (target) stationary regime have been studied numerically in
isothermal approximation. A boundary-value problem for the gas-dynamic equation system, describing
the motion of the gas in the pipeline, corresponds to each model. The problems differ by the boundary
functions, prescribed at the ends of the pipeline. In the problem BVP; for instance, dimensionless
densities p'(7) and p°%(7) are defined as the boundary data. In this case, we say, that the transient
process realized in the correspondence by the model BVPy, is controlled by these functions, acting at
the pipeline’s ends. In the model BVPyy, they are functions p*(7) at the inflow and dimensionless
mass flow density j°“(7) at the outflow, whereas in the model BVP; — the flow j*(7) and density
p'™(T) are the control functions.

A unified model for the control functions was used in the study. The model restricts their class by
the smooth functions, which monotonically vary from the value characteristic for the first stationary
regime to another one specific for the target stationary regime. By the model, each control function
1(7) is defined by four real constants. They are two values, which v (7) acquires in the first and second
stationary regimes, and two parameters (Tsdt}art and Tj; 4), defining the period of the function variation.

With the use of the control functions model, any transient process, realized by model BVPg, K =
[,II,IIT is fully defined by a set Ik of eight parameters (four ones for each control function of the
model BVPk). Prescribing numerical values for the set [Tk elements, we define an algorithm for control
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by a transient process realized in correspondence with the model BVPk. The transient process realized
by any algorithm can be characterized by several numerical parameters (functionals). They are the
time duration 71, the work A-ﬁ of viscous friction force executed during the process, the amounts M?ﬂ
and M$“* of the gas entered into the pipeline at its inlet and delivered into the gas transmission system
at the outlet, etc. The functionals allow evaluating some parameters of effectiveness of the transient
process.

Results of case studies of twelve various algorithms of control by transient processes are presented in
the paper. They are four algorithms for control model BVP1, two ones for BVP1y1, and six — for BVPyy.
The functionals were calculated for each case. The presented in Figs.2-13 graphs make it possible to
judge how the used model and parameters of control functions impact the transient processes. The data
in Table 2, show that integral characteristics of transient process effectiveness depend on the chosen
model and the algorithm of control by this process.

The mathematical models and results of the case studies, presented in the paper, can be used
for development of strategy and practice for planning of transient regimes of pipeline operation. In
particular, one can use them to check a planned transient process for its consistency with restrictions
on the permissible values of the pressure and flow rate, to choose the algorithm, which provides a
better efficiency of the pipeline, etc.

The class of control functions, used for modeling the transient process, can be extended by non-
monotonic functions and corresponding expanding the sets of control parameters IIx. That will give
new possibilities for transient processes controlling.

Involving into consideration a mathematical model for compressor stations will make it possible
to use as the controls for transient processes the parameters determining regimes of their operation,
namely — the power, developed by the compressors, their rotary speeds, consumed fuel, etc. Using the
mathematical model, which determines among other parameters the gas temperature at compressor
station’s outflow, will enable considering the heat processes in the gas moving in the pipeline.
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YucenbHe mogentoBaHHSI nepexigHNX NPOLECIB Y AOBromy
rasonposogi

Yexypin B. @.12, Xumro O. M.3

I Inemumym npuxaadnuc npobaem mexariry i mamemamury im. . C. IHidempueawa HAH Yxpainu,
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Y crarTi PO3MVIIHYTO HECTAITIOHAPHI IMPOIECH 130TepMivHOl Tedil raldy, M0 BUHUKAOTDL Yy
JIOBromMy TpyOOIpOBOJI IIij 9ac Horo mepexoay 3 OJIHOTO CTAIliOHAPHOTO PeXKUMy Ha iH-
mnit. JIoc/TiKeH s TPOBEIeHO 3 BUKOPUCTAHHAM OJHOBUMIPHOI MOJIENi JUHAMIKH ra3y, B
Ky BXOISATH DIBHsIHHsI 30€peKEHHsI MacCH Ta IMIIyJIbCy ra3y, 3alucaHi BiJIHOCHO 6e3po3-
MIpHHX T'yCTHH Macu Ta moToKy. Jlis 1iel cucremu chopMmyIb0BaHO Tpu Kpailosi 3aadi,
sIKi BU3HAYAKOTH TPU MOJIEJI KEePYBAHHS MEPEXiTHUMA IIPOTecaMu. 3aadi BiIpI3HIIOTHCS
rpaHUYHUMEA (PYHKIISIMU, 33JaHUMUA Ha KiHIEX TPYyOOIIPOBOLy. 3aIlIpoIlOHOBAHO YHI(IKO-
BaHy MOJEJb JJist (DYHKIHH KepyBaHHs. 3a I[E€I0 MOAEII0 Oy/ib-sKa (DYHKIlS KepyBaHHs
BU3HAYAETHCA YOTUPMA JiiCHUME ITapaMeTpaMu. BuKoHaHO dnceIbHU aHaJI3 IepexiTHIX
MIPOIIECIB, 3 BUKOPUCTAHHAM PI3HUX MOJesell KepyBaHHS 3a PI3HUX 3HAYEHb NapaMeTpiB
KEpYBaHHSA. ¥ CTATTI PO3IJIAHYTO JESTKl MOYKJIMBOCTI 3aCTOCYBAHHS TaKUX MAaTEMaTHIHUX
MoOJIeJIeil Ta Pe3y/IbTaTU IIPOBEJIEHNX YHCJIOBUX JOCIIKEHb JJIs ILJIAHYBAHHS HEPeXiTHuX
PeXKUMIB pOOOTU MAriCTPAIbLHUX Ta30IIPOBOJIIB.
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