
MATHEMATICAL MODELING AND COMPUTING, Vol. 6, No. 2, pp. 239–250 (2019)
Mathematical

M
odeling

Computing

Numerical analysis of heterogeneous mathematical model of elastic
body with thin inclusion by combined BEM and FEM

Dyyak I. I.1, Rubino B.2, Savula Ya. H.1, Styahar A. O.1,2

1Ivan Franko Lviv National University of Lviv,

1 Universytetska Str., 79000, Lviv, Ukraine
2University of L’Aquila,

via Vetoio, loc. Coppito, 67100, L’Aquila, Italy

(Received 30 September 2019; Accepted 16 October 2019)

This article dwells upon the multiscale elastic structures consisting of matrix medium and
thin coatings or inclusions. The matrix medium is described by the equations of classical
elasticity theory, while Timoshenko shell theory is used for the description of the thin parts
of the structure. On the interface between media, perfect contact conditions are assumed
to hold. The coupled algorithm is developed, based on the boundary element method in the
matrix part and on the high order finite element method in the thin parts of the structure.
The two methods are coupled using a domain decomposition approach. Two numerical
examples are considered to illustrate the proposed approach: a Girkmann-type problem
and an elastic structure with a thin inclusion. The dependence of the displacement and
the stress-strain state on the different shell shapes in the first example and on the inclusion
thicknesses in the second example are analyzed.
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1. Introduction

Contact problems of elasticity theory for structures that contain thin inclusions or coatings arise
naturally in applications in engineering and various fields of science. These problems are difficult to
analyze both numerically and analytically. In order to simplify the analysis of these types of problems,
heterogeneous mathematical models [1, 2] or multiscale models [3, 4] are typically used. Multiscale
modeling is often used while combining mixed-dimensional models [5] (D-adaptive modeling [6]). In
addition, multiscale approaches can be applied for coupling processes of different physical scales [4].
The strength and reliability of the elements of various engineering structures are ensured by the detailed
information about the stress-strain state, which is practically impossible to obtain without the use of
multiscale modeling.

In the case of heterogeneous modeling for contact problems for structures that contain thin in-
clusions, different hierarchical models are used for the description of the stress-strain state of the
inclusions [7]. These models are obtained by assuming particular behavior of displacement and stress
fields inside the inclusions, taking into account the thickness of the inclusions. Such models include
equations of various theories of plates and shells [7–9]. In this article we consider plain deformation of
the structure containing a thin inclusion. In this case, different types of equations are used in different
parts of structure for the description of physical phenomena; in each subdomain, particular numerical
approaches are applied for the analysis of the undergoing processes. For the description of the stress-
strain state of the elastic body the equations of the linear elasticity theory in the form of boundary
integral equations (BIE) are used [10]. The stress-strain state of the thin inclusion is modeled using

c© 2019 Lviv Polytechnic National University

CMM IAPMM NASU

239



240 Dyyak I. I., RubinoB., Savula Ya. H., Styahar A.O.

the equations of linear Timoshenko shell theory, which for the problem under consideration is a system
of ordinary differential equations (ODE) from the mathematical point of view [6].

Systems of BIE and ODE are coupled using special contact conditions on the interface [11,12], which
one may consider as a variant of multipoint constraint method [3]. Numerical treatment of the problem
is based on the domain decomposition method (DDM), namely Dirichlet–Neumann scheme [13]. This
allows us to obtain a solution using direct boundary element method [6, 10]. In order to get the
numerical solution of ODE in its weak form we apply the finite element method (FEM).

The aim of this paper is to show that heterogeneous modeling, boundary element method (BEM),
FEM and DDM can be used to build an efficient approach for the structures that contain thin inclusions
and coatings. In the first section, we formulate a heterogeneous mathematical model as a coupled
system of integral and differential equations. In the second section, theoretical results on the questions
of the well-posedness of the mathematical problem corresponding to the heterogeneous model are
addressed. The third section deals with algorithm of the numerical solution of the problem, including
BEM, FEM and DDM. In the fourth section the results of numerical experiments are analyzed. One
of the examples under analysis is the Girkmann type problem which is analyzed in detail in [14].

2. Mathematical model of an elastic body with a thin inclusion

Let us consider an elastic body bounded by the domain Ω = Ω1∪Ω2 with Lipschitz boundaries Γ1 and
Γ2 respectively (see Fig. 1).

Ω1

Ω2

ΓI1

ΓI2
ΓI3

ξ1 = ξb
1

ξ1 = ξe
1

x1

x2

ξ3

Fig. 1. Physical structure under consideration.

Let us define the displacement vector u = (u1, u2) in
Ω1 and v = (v1, w, γ1) in Ω2. Furthermore, we assume
the matrix and inclusion to be isotropic with E1 and
E2 being Young’s moduli, ν1, ν2 being Poisson’s ratios.
The equilibrium equations in Ω1 are given by [10]

1

2
uj(x0) =

∫

Γ1

[ti(x)Gij(x, x0)− Fij(x, x0)ui(x)] dΓ(x),

which hold for x0 ∈ Γ1, i, j = 1, 2, where u(x) =
(u1(x), u2(x)) and t(x) = (t1(x), t2(x)) are the vectors
of displacements and tractions in Ω1 along x1 axis and
x2 axis; Gij(x, ξ) = C1(C2δij ln r− yiyj

r2
) is the Green’s

function; Fij(x, ξ) = C3

r2
(C4(njyi − niyj) + (C4δij +

2yiyj
r2 )yknk is the co-normal derivative of Green’s function, r2 = yiyi, yi = xi − ξi, C1 = − 1

8πµ1(1−ν1)
,

C2 = 3− 4ν1, C3 = − 1
4π(1−ν1)

, C4 = 1− 2ν1, n1, n2 are the components of the outer normal vector for

Ω1, µ1 =
E1

2(1+ν1)
is the shear modulus, E1 is the Young’s modulus, ν1 is the Poisson’s ratio.

In order to describe the stress-strain state inside Ω2 we use the equations of Timoshenko shell
theory of the form [15]:

− 1

A1

dT11
dξ1

− k1T13 = p1, (1)

− 1

A1

dT13
dξ1

+ k1T11 = p3, (2)

− 1

A1

dM11

dξ1
+ T13 = m1, (3)

where Ω2 = {ξ : ξ = (ξ1, ξ3) : ξ
b
1 6 ξ1 6 ξe1,−h

2 6 ξ3 6
h
2}, T11, T13, M11 denote the forces and moment

in the shell; k1(ξ1) denotes the curvature of the shell; A1(ξ1) denotes the Lame parameter of the shell.
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The forces T11, T13 and the moment M11 in Ω2 using Hook’s law can be represented as follows:
T11 = E2h

1−ν2
2

ε11, T13 = k′G′hε13, M11 = E2h3

12(1−ν2
2
)
χ11, where G′ is the shear modulus, k′ is the shear

coefficient. On the other hand, strains ε11, ε13, χ11 can be represented as ε11 = 1
A1

dv1
dξ1

+ k1w, ε13 =
1
A1

dw
dξ1

+ γ1 − k1v1, χ11 =
1
A1

dγ1
dξ1

.

Let σ+13, σ
+
33 be the components of the surface forces vector that act on the outer (ξ3 =

h
2 ) and the

inner (ξ3 = −h
2 ) boundaries of the shell; let m1 be the moment of external surface tension.

Then the external forces and moment in (1)–(3) that act on the shell are given by

p1 =

(

1 + k1
h

2

)

σ+13 + (1− k1
h

2
)σ−13, (4)

p3 =

(

1 + k1
h

2

)

σ+33 − (1− k1
h

2
)σ−33, (5)

m1 =
h

2

((

1 + k1
h

2

)

σ+13 −
(

1− k1
h

2

)

σ−13

)

. (6)

Besides, for isotropic bodies G′ = E2

2(1+ν2)
, k′ = 5

6 .

Let us define Ω∗
2 as the projection of Ω2 on the middle surface with ξ3 = 0 and the interface ΓI

between Ω1 and Ω2 as ΓI = ΓI1 ∪ ΓI2 ∪ ΓI3 , where ΓI1 = {ξ : ξ = (ξ1, ξ3) : ξ1 ∈ Ω∗
2in, ξ3 = −h

2};
ΓI2 = {ξ : ξ = (ξ1, ξ3) : ξ1 = ξb1,−h

2 6 ξ3 6 h
2}; ΓI3 = {ξ : ξ = (ξ1, ξ3) : ξ1 ∈ Ω∗

2in, ξ3 = h
2}, Ω∗

2in is the
part of Ω∗

2, that lies inside Ω1.
On the interfaces ΓI = ΓI1 ∪ ΓI2 ∪ ΓI3 we assume the following contact conditions to hold:

– on ΓI1 :

un = w, uτ = −v1 +
h

2
γ1, (7)

σnn = −σ−33, σnτ = −σ−13; (8)

– on ΓI2 :

uτ = w, un = v1 + ξ3γ1, (9)
∫ h

2

−h
2

σnn dξ3 = T11,

∫ h
2

−h
2

σnτ dξ3 = T13, (10)

∫ h
2

−h
2

ξ3σnn dξ3 =M11;

– on ΓI3 :

un = −w, uτ = v1 +
h

2
γ1, (11)

σnn = −σ+33, σnτ = σ+13. (12)

Let Γ1D ⊂ Γ1, Γ1N ⊂ Γ1, Γ1N ∪ Γ1D = ∅, Γ1D ∪ ΓI = ∅, Γ1N ∪ ΓI = ∅. Let Γ2D ⊂ Γ2, Γ2N ⊂ Γ2,
Γ2N ∪ Γ2D = ∅, Γ2D ∪ ΓI = ∅, Γ2N ∪ ΓI = ∅. As for the boundary conditions, we prescribe the
following:
– on Γ1D: un = u0n, uτ = u0τ ;
– on Γ1N : σnn = σ0nn, σnτ = σ0nτ ;
– on Γ2D: v1 = v01 , w = w0, γ1 = γ01 ;
– on Γ2N : T11 = T 0

11, T13 = T 0
13, M11 =M0

11.
It is also possible to prescribe other kinds of boundary conditions, for example mixed boundary

conditions.
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3. Theoretical investigation of the model with thin inclusion

In this section we describe the domain decomposition algorithm, which is used to numerically solve
elasticity problems for the structures that contain thin covers or inclusions.

Let us denote by λ = (λ11, λ12, λ21, λ22, λ23, λ31, λ32) the unknown displacements on ΓI . The
domain decomposition algorithm is read as follows:

1) set an initial guess λ0 for the unknown displacements on the interface ΓI , set ε > 0;
2) for k = 0, 1, . . . solve the boundary value problem in Ω1 with the displacements equal to λk to

obtain the approximation for the forces and momenta in Ω2 using (7)–(12);
3) solve the corresponding problem in Ω2 to find the displacements ukn, ukτ on ΓI ;
4) update the displacements λk on ΓI :

— on ΓI1 :
λk+1
11 = (1− θ)λk11 + θukn|ΓI1

,

λk+1
12 = (1− θ)λk12 + θukτ |ΓI1

;

— on ΓI2 :
λk+1
21 = (1− θ)λk21 + θvk1 |ΓI2

,

λk+1
22 = (1− θ)λk22 + θwk|ΓI2

,

λk+1
23 = (1− θ)λk23 + θγk1 |ΓI2

;

— on ΓI3 :
λk+1
31 = (1− θ)λk31 + θukn|ΓI3

,

λk+1
32 = (1− θ)λk32 + θukτ |ΓI3

,

where θ > 0 is a relaxation parameter;
5) if ‖λk+1 − λk‖ > ε, go to step 2, otherwise the algorithm ends.

Assume that on ΓI the function φ ∈ Λ is set, where Λ is a linear space of the form

Λ = {φ = (φ1, φ2, φ3) : φ1 = (φ11, φ12), φ2 = (φ21, φ22, φ23), φ3 = (φ31, φ32),

φij ∈ H1(ΓIi), i = 1, 3, j = 1, 2; φ2j ∈ H1/2(ΓI2), φ2j = const on ΓI2 , j = 1, 2, 3}.

The scalar product and the norm in Λ for φ,ψ ∈ Λ is defined as

(φ,ψ)Λ =

∫

ΓI1

(

dφ11
dξ1

dψ11

dξ1
+
dφ12
dξ1

)

dΓI1 +

∫

ΓI1

(φ11ψ11 + φ12ψ12)dΓI1

+

∫

ΓI2

(φ21ψ21 + φ22ψ22 + φ23ψ23)dΓI2

+

∫

ΓI3

(

dφ31
dξ1

dψ31

dξ1
+
dφ32
dξ1

dψ32

dξ1
+ φ31ψ31 + φ32ψ32

)

dΓI3 ;

‖φ‖Λ = (φ, φ)
1/2
Λ .

The relationship between φ and the displacements on ΓI is given by

– on ΓI1 : φ11 = un, φ12 = uτ ; (13)

– on ΓI2 : φ21 = v1, φ22 = w, φ23 = γ1; (14)

– on ΓI3 : φ31 = un, φ32 = uτ . (15)
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Let S : Λ → Λ∗ be a Steklov–Poincare operator and Si be local Steklov–Poincare operators [6, 10],
that correspond to the domains Ωi, i = 1, 2, where Λ∗ is a space, conjugate to Λ.

The operators S, S1 and S2 are represented by

(Sφ,ψ)Λ = (S1φ,ψ)Λ + (S2φ,ψ)Λ,

(S1φ,ψ)Λ =

〈

−A1

(

1− k1
h

2

)

σnn(φ), ψ11

〉

ΓI1

+

〈

−A1

(

1− k1
h

2

)

σnτ (φ), ψ12

〉

ΓI1

+

〈

−A1

(

1 + k1
h

2

)

σnn(φ), ψ31

〉

ΓI3

+

〈

−A1

(

1 + k1
h

2

)

σnτ (φ), ψ32

〉

ΓI3

+

〈

−1

h

∫ h/2

−h/2
σnn(φ)dξ3, ψ21

〉

ΓI2

+

〈

−1

h

∫ h/2

−h/2
σnτ (φ)dξ3, ψ22

〉

ΓI2

+

〈

−1

h

∫ h/2

−h/2
σnn(φ)ξ3dξ3, ψ23

〉

ΓI2

;

(S2φ,ψ)Λ =

〈

−A1(1− k1
h

2
)σ−33(φ), ψ11

〉

ΓI1

+

〈

−A1(1 + k1
h

2
)σ+33(φ), ψ31

〉

ΓI3

+

〈

−A1(1− k1
h

2
)σ−13(φ), ψ12

〉

ΓI1

+

〈

A1(1 + k1
h

2
)σ+13(φ), ψ32

〉

ΓI3

+

〈

1

h
T11(φ), ψ21

〉

ΓI2

+

〈

1

h
T13(φ), ψ22

〉

ΓI2

+

〈

1

h
M11(φ), ψ23

〉

ΓI2

,

where 〈u, v〉ΓI
is a bilinear form that can be formally written as

〈u, v〉ΓI
=

∫

ΓIu v dΓI , u ∈ H1/2(ΓI), v ∈
(

H1/2(ΓI)
)∗

.

We now investigate the properties of the local Steklov–Poincare operators S1 and S2.

Lemma 1. Operator S1 is linear, continuous, symmetric and elliptic on Λ.

Proof. Follows from the corresponding properties of the Steklov–Poincare operators for the classical
problem of linear elasticity and continuous embedding [9, 10]: H1(ΓIi) ⊂⊂ H1/2(ΓIi), i = 1, 2, 3. �

Lemma 2. Operator S2 is linear, symmetric, continuous and elliptic on Λ.

Proof. Expressing functions φij in terms of displacements using (13)–(15), we write

(S2φ,ψ)Λ =

(

A1

((

1 + k1
h

2

)

σ+33(φ)−
(

1− k1
h

2

)

σ−33

)

, w̃

)

Ω∗

2

+

(

A1

((

1 + k1
h

2

)

σ+13(φ) +

(

1− k1
h

2

)

σ−13

)

, ṽ1

)

Ω∗

2

+

(

A1
h

2

((

1 + k1
h

2

)

σ+13(φ)−
(

1− k1
h

2

)

σ−13

)

, γ̃1

)

Ω∗

2

+

〈

1

h
T11, ṽ1

〉

ΓI2

+

〈

1

h
T13, w̃

〉

ΓI2

+

〈

1

h
M11, γ̃1

〉

ΓI2

, (16)

where (u, v)Ω∗

2
=

∫ ξ1e
ξ1b

uv dξ1 for u, v ∈ L2(Ω
∗
2).

Substituting the expressions for σ∗ij from (1)–(6) into (16), integrating by parts, we reduce the
properties of the operator S2 to the properties of the operator of the weak formulation of the problem
on the middle line.
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It is known that the operator of the shell theory (1)–(3) is linear, elliptic, symmetric and continu-
ous [5, 6, 16].

Therefore, we obtain

(S2φ, φ)Λ > c2
∫ ξ1e

ξ1b

((

dv1
dξ1

)2

+

(

dw

dξ1

)2

+

(

dγ1
dξ1

)2

+ v21 + w2 + γ21

)

dξ1, c 6= 0

.
From the expression above using trace inequality [10] we get

(S2φ, φ)Λ > c21

∫ ξ1e

ξ1b

((

dw

dξ1

)2

+

(

−dv1
dξ1

+
h

2

dγ1
dξ1

)2

+ w2 + (−v1 +
h

2
γ1)

2

)

dξ1 + c22‖φ2‖H1/2(ΓI2
)

+

∫ ξ1e

ξ1b

((

dw

dξ1

)2

+

(

dv1
dξ1

+
h

2

dγ1
dξ1

)2

+ w2 + (v1 +
h

2
γ1)

2

)

dξ1, ci 6= 0, i = 1, 2, 3.

Since the operator of the shell theory problem (1)–(3) is continuous, the estimate

|(S2φ,ψ)Λ| 6 C(

∫ ξ1e

ξ1b

((

dv1
dξ1

)2

+

(

dw

dξ1

)2

+

(

dγ1
dξ1

)2

+ v21 +w2 + γ21

)1/2

(

∫ ξ1e

ξ1b

((

dṽ1
dξ1

)2

+

(

dw̃

dξ1

)2

+

(

dγ̃1
dξ1

)2

+ ṽ21 + w̃2 + γ̃21

)1/2

, C > 0

is valid.
Using arguments, similar to the ones in the first part of the proof, we conclude that the operator

S2 is continuous on Λ. �

It can be shown, that the Steklov–Poincare equation has a unique solution on Λ. The proof directly
follows from Lax–Milgram lemma.

Theorem 3. The sequential Dirichlet–Neumann domain decomposition algorithm presented in this

section is convergent to the solution of the corresponding Steklov–Poincare equation.

Proof. The proof follows from the properties of local Steklov–Poincare operators and theorem about
convergence of Dirichlet–Neumann domain decomposition schemes [17]. �

4. Numerical experiments

4.1. Girkmann type problems [14]

xb1 xb2

xe1xe2

x1

x2

Ω1

Ω2

A

B

C

D
E

p

Fig. 2. Physical structure
under consideration.

Let Ω1 be a polygon with xb1 = −1, xb2 = −1, xe1 = 1, xe2 = 1. To
the main part in Ω1 a thin body in Ω2 is attached on its edge.
The thickness of the body in Ω2 is h = 0.01 (Fig. 2).

On the boundaries AC and AB the structure is fixed (the
displacements are equal to zero); we prescribe a load of p =
1Pa/m on the outer boundary of the body in Ω2 (Fig. 2); on the
edge with the point E the symmetry conditions are set; all the
other parts of the outer boundary are traction-free.

We consider the following physical parameters of the bod-
ies: Young’s modulus of the main part in Ω1 is equal to
E1 = 25000MPa, which corresponds to concrete; the Young’s
modulus of the thin part in Ω2 is equal to E2 = 20580MPa,
which corresponds to cork. Poisson’s ratio of the body in Ω1 is
equal to ν1 = 0.33, in Ω2 — ν2 = 0.
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For the numerical solution we use FEM in the shell with
bubble shape functions. For the main part we use boundary element method with quadratic shape
functions. Problems in both parts are connected using domain decomposition algorithm (Dirichlet–
Neumann scheme) [17].

In all the cases under consideration the convergence is obtained in around 5 iterations. The results
correspond to a case of 202 boundary elements, 32 finite elements of the fourth order. It should be
noted that the mesh refinement or the change of the order of the shape functions do not change the
solution significantly.

Let us consider different cases of the curve shapes that describe middle line of the body in Ω2:
circle arc, parabola and chain curve. The unknown coefficients of the parametric representation of the
curves are chosen in such a way that all the curves have the same endpoints D and E. Moreover, all
the curves are symmetric with respect to the axis, which passes through the point E and is colinear
to AB.

The parametric representations for the circle arc (a), parabola (b) and chain curve (c) take the
following forms:
(a): x1(α) = R sinα,

x2(α) = R cosα,
π

4
6 α 6

π

2
;

(b):
x1(α) = −2−

√
2

R
x22 +R,

x2(α) = R cosα,
π

4
6 α 6

π

2
;

(c):
x1(α) = −4.497

2

(

e
x2

4.497 + e−
x2

4.497

)

+ 9.502,

x2(α) = R cosα,
π

4
6 α 6

π

2
,

with R = 5.005.

x
1

x2
0 −0.5 −1 −1.5 −2 −2.5 −3 −3.5 −4

1

1

1.5

2

2

2.5

3

Fig. 3. Middle Line of Different Curves.

The graphs of three curves are
shown in Fig. 3.

We can conclude from Fig. 3
that the graphs of the curves lie
close to each other.

Formulae for the calculation of
Lame parameter A1 and curvature
k1 of the middle line of the shells
have the form

A1 =
√

x′21 + x′22 ,

k1 =
x′′1x

′
2 − x′1x

′′
2

A3
1

.

Let us calculate the stress-strain state for the body depicted on the Fig. 2.
Fig. 4 shows the displacements in the case of the chain curve as a middle line of Ω2 for different

meshsizes, Fig. 5 shows the momenta that arise on the middle line of Ω2.
Curve 1 on the Figs. 4–5 corresponds to the case of 8 fourth order elements with bubble basis

functions in Ω2 and 42 quadratic boundary elements in Ω1, curve 2 — 16 elements in Ω2 and 74
elements in Ω1, curve 3 — 32 elements in Ω2 and 138 elements in Ω1, curve 4 — 64 elements in Ω2 and
202 elements in Ω1.
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α

w

×10−4

0.7 0.8 0.9 1

1

1.1 1.2 1.3 1.4 1.5 1.6

0

−0.5

−1

−1.5

−2

−2.5

−3

2
3
4

α

M
1
1

×10−7

0.7 0.8 0.9 1

1

1

1.1 1.2 1.3 1.4 1.5 1.6

0

−1

−2

2

2

3

3

4
4

5

6

Fig. 4. Displacements w on the middle line of the
shell in the case of different meshsizes.

Fig. 5. Moment M11 on the middle line of the shell
in the case of different meshsizes.

On the interface 0 6 x2 6 h, x1 = xe1 we have to set the Neumann condition for the problem in
main part and Dirichlet condition for the problem in the shell. The displacements on the interface for
the shell are found using the conditions

un = v1 + ξ3γ1,

uτ = w.

Applying the first condition at the points ξ3 = 0 and ξ3 = h/2, we obtain:

v1|ξ1=0 = −un|ξ3=0,

γ1|ξ1=0 =
2

h

(

un|ξ3=h
2

− un|ξ3=0

)

.

Similarly, when the second condition is applied at the point ξ3 = 0, the results are as follows:

w|ξ1=0 = uτ |ξ3=0.

Let us consider the conditions on the loads that need to be imposed on the interface for the problem
in the main part. In order to express σnτ and σnn we use the conditions stated below.

For σnτ :

∫ h
2

−h
2

σnτdξ3 = T13, σnτ (ξ3) = σ−13|ξ1=0,

σnτ (ξ3) = −σ+13|ξ1=0;

for σnn:
∫ h

2

−h
2

σnndξ3 = T11,

∫ h
2

−h
2

σnnξ3dξ3 =M11.

Let us assume that on the interface σnτ = aξ23 + bξ3 + c, σnn = eξ3 + f , where a, b, c, e, f are the
unknown coefficients. These assumptions are based on the fact, that we have three conditions for σnτ
and two conditions on σnn.

The computations yield

σnn(ξ3) =M11
12

h3
ξ3 +

T11
h
,
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σnτ =

(

3

h2
(

σ−13|ξ1=0 − σ+13|ξ1=0

)

− 6

h3
T13

)

ξ23 −
1

h

(

σ−13|ξ1=0 + σ+13|ξ1=0

)

ξ3

+
1

h
(T13 −

1

4

(

h
(

σ−13|ξ1=0 − σ+13|ξ1=0

)

− 2T13
)

.

It is shown (see for example [16]) that the smallest displacement in the normal direction is achieved
when the middle line of the thin part of the body is a chain curve. The largest displacement in the
normal direction arises when the middle line of the thin part is a circle segment.
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Fig. 6. Displacements w on the middle line of the
shell depending on its thickness.

Fig. 7. Moment M11 on the middle line of the shell
depending on its thickness.

Figs. 6–7 show the dependence of displacements and momenta on the thickness of the shell, curve 1
corresponds to middle line of the shell being a circular segment, curve 2 — part of the parabola,
curve 3 — chain curve.

In conclusion, the stress-strain state of the thin part of the structure in the case of the Girkmann
problem heavily depends on the geometrical parameters of the middle line of the shell (shape, curvature)
as well as its thickness.

4.2. A body with an inclusion

x2

xe2

xm2

xb2 xb1 xm1 xe1 x10

h

p

Fig. 8. Body with inclusion.

Consider a numerical example that illustrates the
application of the proposed algorithm to the ap-
proximate determination of the stress-strain state
of a body with an inclusion. Let the domain
Ω = Ω1 ∪ Ω2 be a rectangle with vertices at
the points (xb1, x

b
2), (x

b
1, x

e
2), (x

e
1, x

e
2), and (xe1, x

b
2),

and let the domain Ω2 be a rectangle with ver-
tices at the points (xm1 , x

m1

2 ), (xm1 , x
m2

2 ), (xe1, x
m2

2 ),
(xe1, x

m1

2 ), where xb1 = 0.5, xm1 = 1, xm1

2 = xm2 − h
2 ,

xm2

2 = xm2 + h
2 , xe1 = 2, xb2 = 0, and xe2 = 1 (Fig. 8).

Here, all sizes of the body are referred to the di-
mensions.

In order to compare the results, we consider
several cases of structures with inclusions of different thicknesses:

1) h = 0.1 (xm2 = 0.15).
2) h = 0.05 (xm2 = 0.125).
3) h = 0.02 (xm2 = 0.11).
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Along the straight lines x1 = xb1 and x1 = xe1 the structure is fixed, and along the straight line
x2 = xe2 it is loaded by the uniform normal force p = 1MPa; the boundary of the domain Ω lying
on x2 = xb2 is free. Young’s modulus of the material of the body Ω1 is equal to E1 = 3300MPa,
which corresponds to acryl, and the material of the inclusion Ω2 is glass fiber with E2 = 80000MPa.
Poisson’s ratios of the materials of the body Ω1 and inclusion Ω2 are equal to ν1 = 0.37 and ν2 = 0.22
respectively.

In the figure Fig. 9 the comparison for the displacements u2 along the line x2 = xb2 in the case 2
is shown between the numerical solution obtained using the approach from section 3 (curve 1) and
the numerical solution obtained using COMSOL5.0 (curve 2). In our approach we use 116 second
order elements inside the main part (476 degrees of freedom) and 16 elements with fourth order bubble
functions (194 degrees of freedom). The solutions in COMSOL5.0 uses 1311 triangles with 5428 degrees
of freedom. From Fig. 9 we can conclude that the domain decomposition approach produces reliable
numerical solutions.

Taking into account the linearity of the problem, we solved approximately the problem in the
domain Ω1 only in the first iteration, and in subsequent iterations, the approximate solution of the
BEM was constructed as a linear combination of already known solutions.
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Fig. 9. Displacement u2 on the curve x2 = xb
2
. Fig. 10. Displacement u2 on the curve x2 = xb

2
de-

pending on the thickness of the shell.

In Fig. 10, the comparison for the displacements u2 along the line x2 = xb2 for the 3 cases (1, 2
and 3) is shown (curves 1, 2 and 3 respectively). For h = 0.1 and h = 0.05 we use 116 second order
elements inside the main part and 16 elements with fourth order bubble functions, for h = 0.02 114
second order elements inside the main part and 16 elements with fourth order bubble functions are
used. Since the physical material of the inclusion is harder than the main part of the structure, the
displacements become larger as the thickness of the inclusion decreases.

5. Concluding remarks

The approach under analysis allows to reduce computational cost due to the use of multiscale approach.
The space dimension of each subproblem is reduced by one: in a matrix part it is achieved with the
use of BEM and in a thin inclusion it is achieved with the help of Timoshenko shell theory.

The numerical schemes based on the domain decomposition method have been theoretically inves-
tigated with the Steklov–Poincare operators and the theoretical results have been obtained.

Our approach, obviously, has its limitations (BEM can be applied only for the homogeneous matrix,
shell theory requires the corresponding assumptions for stresses and displacements to hold). However,
it is efficient for thin inclusions of a certain thickness (e.g., in case of inclusion 1/10 − 1/50 of the
thickness of matrix). Besides, it provides quite a simple way for evaluating the impact of thin inclusion
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or coating on the stress-strain state of the matrix. From this prospective, the model may be applied
for solving the engineering problems.

It must be pointed out that the proposed approach may be applied to similar problems in other
modeling applications as well as for more complex problems (e.g. the ones that require nonlinear shell
theory for the description of thin inclusions or several inclusions).
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Числовий аналiз рiзномасштабної математичної моделi пружного
тiла з тонким включенням комбiнованими МГЕ та МСЕ

Дияк I. I.1, Рубiно Б.2, Савула Я. Г.1, Стягар А. О.1,2
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Статтю присвячено математичному моделюванню рiзномасштабних пружних кон-
струкцiй, що складаються iз матрицi та тонких покриттiв або включень. Матрицю
описано рiвняннями класичної теорiї пружностi, для опису тонких частин конструк-
цiї використано теорiю оболонок Тимошенка. На спiльнiй границi мiж середовищами
задано iдеальнi умови контакту. Розроблено алгоритм на основi методу граничних
елементiв у матрицi та методу скiнченних елементiв високого порядку в тонких час-
тинах конструкцiї. Цi два методи поєднано за допомогою методу декомпозицiї об-
ластей. Для iлюстрацiї запропонованого пiдходу розглянуто два числовi приклади:
задачу типу Гiркмана i задачу для пружного тiла з тонким включенням. У першому
прикладi проаналiзовано залежнiсть перемiщень i напружено-деформованого стану
вiд форми оболонки, у другому — залежнiсть перемiщень вiд товщини включення.

Ключовi слова: метод скiнченних елементiв, метод граничних елементiв, теорiя

оболонок Тимошенка, теорiя пружностi.
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