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This article dwells upon the multiscale elastic structures consisting of matrix medium and
thin coatings or inclusions. The matrix medium is described by the equations of classical
elasticity theory, while Timoshenko shell theory is used for the description of the thin parts
of the structure. On the interface between media, perfect contact conditions are assumed
to hold. The coupled algorithm is developed, based on the boundary element method in the
matrix part and on the high order finite element method in the thin parts of the structure.
The two methods are coupled using a domain decomposition approach. Two numerical
examples are considered to illustrate the proposed approach: a Girkmann-type problem
and an elastic structure with a thin inclusion. The dependence of the displacement and
the stress-strain state on the different shell shapes in the first example and on the inclusion
thicknesses in the second example are analyzed.
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1. Introduction

Contact problems of elasticity theory for structures that contain thin inclusions or coatings arise
naturally in applications in engineering and various fields of science. These problems are difficult to
analyze both numerically and analytically. In order to simplify the analysis of these types of problems,
heterogeneous mathematical models [1,2] or multiscale models [3, 4] are typically used. Multiscale
modeling is often used while combining mixed-dimensional models [5] (D-adaptive modeling [6]). In
addition, multiscale approaches can be applied for coupling processes of different physical scales [4].
The strength and reliability of the elements of various engineering structures are ensured by the detailed
information about the stress-strain state, which is practically impossible to obtain without the use of
multiscale modeling.

In the case of heterogeneous modeling for contact problems for structures that contain thin in-
clusions, different hierarchical models are used for the description of the stress-strain state of the
inclusions [7]. These models are obtained by assuming particular behavior of displacement and stress
fields inside the inclusions, taking into account the thickness of the inclusions. Such models include
equations of various theories of plates and shells [7-9]. In this article we consider plain deformation of
the structure containing a thin inclusion. In this case, different types of equations are used in different
parts of structure for the description of physical phenomena; in each subdomain, particular numerical
approaches are applied for the analysis of the undergoing processes. For the description of the stress-
strain state of the elastic body the equations of the linear elasticity theory in the form of boundary
integral equations (BIE) are used [10]. The stress-strain state of the thin inclusion is modeled using

(© 2019 Lviv Polytechnic National University 239
CMM IAPMM NASU
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the equations of linear Timoshenko shell theory, which for the problem under consideration is a system
of ordinary differential equations (ODE) from the mathematical point of view [6].

Systems of BIE and ODE are coupled using special contact conditions on the interface [11,12], which
one may consider as a variant of multipoint constraint method [3]. Numerical treatment of the problem
is based on the domain decomposition method (DDM), namely Dirichlet-Neumann scheme [13]. This
allows us to obtain a solution using direct boundary element method [6,10]. In order to get the
numerical solution of ODE in its weak form we apply the finite element method (FEM).

The aim of this paper is to show that heterogeneous modeling, boundary element method (BEM),
FEM and DDM can be used to build an efficient approach for the structures that contain thin inclusions
and coatings. In the first section, we formulate a heterogeneous mathematical model as a coupled
system of integral and differential equations. In the second section, theoretical results on the questions
of the well-posedness of the mathematical problem corresponding to the heterogeneous model are
addressed. The third section deals with algorithm of the numerical solution of the problem, including
BEM, FEM and DDM. In the fourth section the results of numerical experiments are analyzed. One
of the examples under analysis is the Girkmann type problem which is analyzed in detail in [14].

2. Mathematical model of an elastic body with a thin inclusion

Let us consider an elastic body bounded by the domain = Q1 U Qs with Lipschitz boundaries I'y and
Iy respectively (see Fig. 1).

Let us define the displacement vector u = (ug, ug) in
0y and v = (v, w, 1) in Qo. Furthermore, we assume
the matrix and inclusion to be isotropic with F; and
FE» being Young’s moduli, 1, vy being Poisson’s ratios.
The equilibrium equations in ; are given by [10]

1
\ §uj(a:0) = / [ti(x)Gij(x, x0) — Fij(x, zo)ui(x)] dl'(z),
Iy

. which hold for g € Ty, 4,j = 1,2, where u(z) =

sz f=8 (u1(x),us(z)) and t(x) = (t1(x), t2(z)) are the vectors
of displacements and tractions in €2y along x; axis and

xo axis; Gij(x, &) = C1(Cadij Inr — y;‘ZJ) is the Green’s
function; Fjj(x,&) = %(04(71]% — n3y;) + (Cadyj +

931

T

Fig. 1. Physical structure under consideration.

%%%)yknk is the co-normal derivative of Green’s function, r? = y;y;, y; = =; — &, C1 = —m,
Cy=3—41, Cy = —m, C4y = 1—2v1, nq, no are the components of the outer normal vector for
Qp, 1 = —EL__ is the shear modulus, Ej is the Young’s modulus, v, is the Poisson’s ratio.

2(1+l/1)
In order to describe the stress-strain state inside {29 we use the equations of Timoshenko shell

theory of the form [15]:

1 d111

— == kT3 = p1, 1
A dG 1113 = p1 (1)
1 dTis
A, & 1411 = P3 ()
1 dMyy

- — + T3 = my, 3
A, d& 1B 3)

where Qg = {€: € = (£1,63): €0 < & < &, —% <& < %}, T11, Ti3, Myq denote the forces and moment
in the shell; k1(&;) denotes the curvature of the shell; A;(&;) denotes the Lame parameter of the shell.
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The forces 111, T13 and the moment MH in Qo using Hook’s law can be represented as follows:

13 . .

T, = %611, T3 = kK'G'he13, My, = mxll, where G’ is the shear modulus, k' is the shear
2

coefficient. On the other hand, strains €11, €13, x11 can be represented as €11 = A1 dfl + kiw, €13 =

1 dw _ 1 .dm
Arde, T~ ks X = A

Let 013, O';% be the components of the surface forces vector that act on the outer (£5 = %) and the
inner (&3 = —%) boundaries of the shell; let m; be the moment of external surface tension.
Then the external forces and moment in (1)—(3) that act on the shell are given by

h h, _
h h, _
h h h
mip = =< 5 <<1—|-k‘1 >O’13 <1—k71§> 0'1_3> (6)
Besides, for isotropic bodies G’ = 2(1%1”2) kK = %
Let us define €235 as the projection of {22 on the middle surface with {3 = 0 and the interface I'y
between 1 and Qs as I'; = I'yy UTy, UTy,, where Ty, = {&: € = (§4,8): & € 0.6 = —4);

T ={&&6=(6.6): 6=, -2 <& < T, = {6 6= (6.,6): & € Uy, 6 = B3, Q5. s the
part of 23, that lies inside ;.

On the interfaces I'y =I'f, UT', UT'7, we assume the following contact conditions to hold:
—onl'y:

h
Up = W, Ur = —v1 + 5’717 (7)
Onn = _0-3_37 Onr = _0-1_3; (8)
—on I'y,:
Ur = w, Uy =v1+E371, 9)
h h
2 2
/ , Onn d§3 =T11, / N Onrt d§3 = T3, (10)
-2 -2
%
/} £3O-nn d£3 = Mll;
-
—on I'y,:
h
Up = —W, Ur = V1 + 5717 (11)
Onn = _O-;_37 Onr = O-il—3‘ (12)

LetThpCcIl', 'y CI',[''/nwUTl1p=2, T'pUl'; =0, I''/ynUIl'; = 3. Let I'syp CT'y, I'agny C I's,
ToyUTlsp = @, I'op Uy = @, oy U = @. As for the boundary conditions, we prescribe the
following:

—onI'ip: u, = ug, Upr = u(T);
~on Tyt Opp =00, Opr =09
—on I'yp: v1 = v?, w = w?, Y1 = ’y?;

— on FQNZ T11 = Tlol, T13 = Tlo3, M11 = Mlol

It is also possible to prescribe other kinds of boundary conditions, for example mixed boundary
conditions.
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3. Theoretical investigation of the model with thin inclusion

In this section we describe the domain decomposition algorithm, which is used to numerically solve
elasticity problems for the structures that contain thin covers or inclusions.

Let us denote by A = (A11, A12, A21, A22, A23, A31, As2) the unknown displacements on I';. The
domain decomposition algorithm is read as follows:

1) set an initial guess A\° for the unknown displacements on the interface I'z, set & > 0;

2) for k = 0,1,... solve the boundary value problem in ; with the displacements equal to AF to
obtain the approximation for the forces and momenta in Q9 using (7)-(12);

3) solve the corresponding problem in 9 to find the displacements u'ﬁw uf on I'y;

4) update the displacements A* on I'y:

on I'y,: N = (1= 0)AT, + 0ublr,,
MFU = (1 - )\ + 0ulr,
on I'y,: AL — (1 — 0Nk + 9U1f|F12’
Mt = (1= 05, + 0uwPlr,
Nt = (1= 0)M5 + 04F I,

— on I'z,:

Ml = (1= 0)Ms, + 0ullr,

Mt = (1= 0)A5, + Oullp,, ,

where 6 > 0 is a relaxation parameter;
5) if |M+1 — AF|| > €, go to step 2, otherwise the algorithm ends.

Assume that on I'; the function ¢ € A is set, where A is a linear space of the form

A ={¢=(d1,02,03): 1 = (P11, P12), P2 = (P21, P22, P23), ¥3 = (P31, P32),
¢ij € HY(Tp,), i=1,3, j = 1,2; ¢o; € H/*(T'1,), oj = const on Ty, j =1,2,3}.

The scalar product and the norm in A for ¢,¢ € A is defined as

(&, 9)a = /F <d¢11 Bu + d¢12> dr'y, -I-/ (P11911 + P129012)dl ',

d& d&; d&y
4 /F (P21v21 + P201P22 + Pa3tpoz)dly,

doz1 dipgr  dosa dipzs
+/r, <d51 d&r | dg &

Iglla = (¢,0)y>.

The relationship between ¢ and the displacements on I'; is given by

I'n

+ P31931 + ¢321/132> dl'r,;

—on I'y: P11 = Upn, P12 = Ur; (13)
—on I'y,: Poa1 =01, P2 =w, a3 =Y1; (14)
—on I'y,: P31 = Un, P32 = Us. (15)

Mathematical Modeling and Computing, Vol. 6, No. 2, pp.239-250 (2019)



Numerical analysis of heterogeneous mathematical model of elastic body ... 243

Let S: A — A* be a Steklov—Poincare operator and S; be local Steklov—Poincare operators |6, 10],
that correspond to the domains §2;, i = 1,2, where A* is a space, conjugate to A.
The operators S, S; and Sy are represented by

(S¢7¢)A = (Sl¢7¢)1\ + (S2¢771Z))A7
(S19,7%)a A (1- kl%) Unn(¢)7¢11> + <—A1 (1 - kl%) Unr(¢),1/112>
T, T,

+ <— 1 <1 + k‘l%) Unn(¢)7¢31> + <—A1 (1 + kl%) Unr(¢),1/132>
T, I,

1 /2 1 [h/2
+ <—E/_h/20'nn(¢)d£3a¢21>m + <—E/_h/20n'r(¢)d£3,7/)22>

2

h/2
+ <—%/_h/2 Jnn(¢)§3d€3,¢23> ;

IS

N

Ir,

(820, 9)a = < 1(1 - klh)ag},(¢)7¢11> + <—A1(1 + klh)033(¢) ¢31>

'y Lrg

(M= B o) vn) o+ (A1 + R goh (o), v )

'y

F(FT@va) 4 (GTa@)0n) 4 (GM00).0n)
Iz, T, T'ry

where (u,v)r, is a bilinear form that can be formally written as

Ty

<u,?}>p] = /FjuvdFI, u < H1/2(FI), v E (Hl/z(l“j)>* .

We now investigate the properties of the local Steklov—Poincare operators S; and Ss.

Lemma 1. Operator Sy is linear, continuous, symmetric and elliptic on A.
Proof. Follows from the corresponding properties of the Steklov—Poincare operators for the classical
problem of linear elasticity and continuous embedding [9,10]: H*(T;,) cc HY?(',), i =1,2,3. |

Lemma 2. Operator Sy is linear, symmetric, continuous and elliptic on A.
Proof. Expressing functions ¢;; in terms of displacements using (13)—(15), we write

(S = (1 (14115 ) oie) = (1- kg ) o) )
Q3
+ <A1 <<1 + k‘lh> 0'13((25) + <1 — ]{71%> 01_3> ,@1)
Q3
+ <Alg <<1 + k1h> 0'13(¢) — <1 — klg) 0'1_3> ,"~y1>
o
+ <%T11,171>FI2 + <%T13,1Z)>FI2 + <%M11,71>FI2 ; (16)
Ele

where (u,v)o; = [ " uvdéy for u,v € Ly(923).

Substituting the expressions for ¢f; from (1)-(6) into (16), integrating by parts, we reduce the
properties of the operator S5 to the propertles of the operator of the weak formulation of the problem
on the middle line.
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It is known that the operator of the shell theory (1)—(3) is linear, elliptic, symmetric and continu-
ous [5,6,16].
Therefore, we obtain

Ere 2 2 2
(S2, ) = 02/ <<Z—Z> + (j—Z) + <%> + 0} + w? +v%>d£1,c# 0

From the expression above using trace inequality [10] we get

e/ (dw\? d hdy |2 h
(S26,O)n > c%/ << w) - ( =+ 71) +w? + (—vr + —71)2>d£1 + Blgallmrraqry
1b

de; S de T 2dg 2
Se / Cdw\?  [dvy  hdyn\? ho
+ S2) (R 28 w4 (o 4 om)? e, o £0, i=1,2,3.
/&b ((d&) <d51 2d51> (01 2””) e

Since the operator of the shell theory problem (1)—(3) is continuous, the estimate
€1e dvy 2 dw \ 2 v 2 1/2
Sa, <C/ ((—) +<—> +<—> +0f +w” + 2)
’( 2(25 /l/})A‘ ( " dfl dfl dfl 1 M

516 d'l’)l 2 dw 2 d’}hil 2 2 2 21/2
— ) (o) + (o) +E+P+AE) , C>0
o () + () = () it est)
is valid.

Using arguments, similar to the ones in the first part of the proof, we conclude that the operator
So is continuous on A. [

It can be shown, that the Steklov—Poincare equation has a unique solution on A. The proof directly
follows from Lax—Milgram lemma.

Theorem 3. The sequential Dirichlet—Neumann domain decomposition algorithm presented in this
section is convergent to the solution of the corresponding Steklov—Poincare equation.

Proof. The proof follows from the properties of local Steklov—Poincare operators and theorem about
convergence of Dirichlet-Neumann domain decomposition schemes [17]. |

4. Numerical experiments

4.1. Girkmann type problems [14]

1 Let Q1 be a polygon with 3:1{ = -1, ajg =-1La2{=125=1. To
the main part in 2; a thin body in s is attached on its edge.
The thickness of the body in Q9 is h = 0.01 (Fig. 2).

On the boundaries AC' and AB the structure is fixed (the
displacements are equal to zero); we prescribe a load of p =
1 Pa/m on the outer boundary of the body in Q9 (Fig.2); on the
edge with the point E the symmetry conditions are set; all the
other parts of the outer boundary are traction-free.

We consider the following physical parameters of the bod-
ies: Young’s modulus of the main part in €}y is equal to
FE7 = 25000 MPa, which corresponds to concrete; the Young’s

ZUI{ x% modulus of the thin part in Qs is equal to Ey = 20580 MPa,
Fig.2. Physical structure which corresponds to cork. Poisson’s ratio of the body in € is
under consideration. equal to 1 = 0.33, in Q9 — 1o = 0.
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For the numerical solution we use FEM in the shell with
bubble shape functions. For the main part we use boundary element method with quadratic shape
functions. Problems in both parts are connected using domain decomposition algorithm (Dirichlet—
Neumann scheme) [17].

In all the cases under consideration the convergence is obtained in around 5 iterations. The results
correspond to a case of 202 boundary elements, 32 finite elements of the fourth order. It should be
noted that the mesh refinement or the change of the order of the shape functions do not change the
solution significantly.

Let us consider different cases of the curve shapes that describe middle line of the body in Qs:
circle arc, parabola and chain curve. The unknown coefficients of the parametric representation of the
curves are chosen in such a way that all the curves have the same endpoints D and E. Moreover, all
the curves are symmetric with respect to the axis, which passes through the point £ and is colinear
to AB.

The parametric representations for the circle arc (a), parabola (b) and chain curve (c) take the
following forms:

(a):

z1(a) = Rsina,

T T
z2(a) = Rcos a, Zéagg;
b): 2—4/2
(b) zi(a) = — R\/_w% + R,
T T
z2(a) = Rcos a, Zéag?
(c) () = ——5— (eﬁzw +e 44297) 19.502,
s
zo(a) = Rcosa, — <a< -,
4 2
with R = 5.005. 2.5
The graphs of three curves are =
shown in Fig. 3. W//
We can conclude from Fig.3 ﬁf/“/
that the graphs of the curves lie 2 ,444
close to each other. o ya
Formulae for the calculation of 465/
Lame parameter A; and curvature 1.5 4‘5{; .
%
k1 of the middle line of the shells v 1
have the form £ T LTS 2
——%--3
J— 2 2 L L L 1 1 1 L
Ay = /27 + a5, Y o -1 15 —2 25 3 35 -4
B Gt e
1= Fig. 3. Middle Line of Different Curves.

A

Let us calculate the stress-strain state for the body depicted on the Fig. 2.

Fig. 4 shows the displacements in the case of the chain curve as a middle line of 5 for different
meshsizes, Fig. 5 shows the momenta that arise on the middle line of .

Curvel on the Figs.4-5 corresponds to the case of 8 fourth order elements with bubble basis
functions in Q5 and 42 quadratic boundary elements in Q;, curve2 — 16 elements in 29 and 74
elements in 1, curve 3 — 32 elements in 29 and 138 elements in €1, curve4 — 64 elements in 29 and
202 elements in ;.
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x10~7

My
N

3 1 1 1 1 1 1 1 1
0.7 08 09 1 1.1 12 13 14 15 16 0.7
«

Fig. 4. Displacements w on the middle line of the  Fig.5. Moment M;; on the middle line of the shell
shell in the case of different meshsizes. in the case of different meshsizes.

On the interface 0 < x9 < h, 1 = 2§ we have to set the Neumann condition for the problem in
main part and Dirichlet condition for the problem in the shell. The displacements on the interface for
the shell are found using the conditions

Up, = v1 + 371,

Ur = w.
Applying the first condition at the points {3 = 0 and &3 = h/2, we obtain:

01‘51:0 = _un‘&:(]y
2
71|£1:0 - h (un|§3=% - un|§3=0> .

Similarly, when the second condition is applied at the point £ = 0, the results are as follows:

Wlg; =0 = Ur|ez=0-

Let us consider the conditions on the loads that need to be imposed on the interface for the problem
in the main part. In order to express o, and o, we use the conditions stated below.
For o,,,:

h

2
/ onrdé3 =Tiz, 0nr(&3) = 013le1=0,

N>

Unr(§3) = _05‘5120;

for opp:

2
/ N O'nndfg = T117 / . O'nnfgdfg = Mll-
2 2

M=

Let us assume that on the interface oy, = a€3 + b€3 + ¢, opp = e€3 + f, where a, b, ¢, e, f are the
unknown coefficients. These assumptions are based on the fact, that we have three conditions for o,
and two conditions on oy,,.

The computations yield

T

12
onn(&3) = Mnﬁ&a + 7
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3, _ 6 1, _
Onr = <ﬁ (013’&:0 — Uf},‘gl:o) — ﬁTB) 532, 7 (‘713‘51=0 + UE,kl:O) €3
1 1 _
+ E(Tls 1 (h (013|£1=0 - 0E|£1=0) - 2T13) :

It is shown (see for example [16]) that the smallest displacement in the normal direction is achieved
when the middle line of the thin part of the body is a chain curve. The largest displacement in the
normal direction arises when the middle line of the thin part is a circle segment.

-5
0 & & © 9 X107

—0.005F ] o] I
_2 L

—0.01r ]
74 L

—0.015} | L

3 -0.02F | s _g

—0.025 ] —10t
_12,

—0.02r ]
14t

0.035 —e—1
- - ;2; | —16

04 . . . . . . . . . —18 . . . . . . . . .
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11
h h

Fig.6. Displacements w on the middle line of the  Fig.7. Moment M;; on the middle line of the shell
shell depending on its thickness. depending on its thickness.

Figs. 67 show the dependence of displacements and momenta on the thickness of the shell, curve 1
corresponds to middle line of the shell being a circular segment, curve2 — part of the parabola,
curve 3 — chain curve.

In conclusion, the stress-strain state of the thin part of the structure in the case of the Girkmann
problem heavily depends on the geometrical parameters of the middle line of the shell (shape, curvature)
as well as its thickness.

4.2. A body with an inclusion

Consider a numerical example that illustrates the

application of the proposed algorithm to the ap- 2

proximate determination of the stress-strain state p

of a body with an inclusion. Let the domain . l J l J l l

Q = Q7 U Qs be a rectangle with vertices at T2 N >

the points (2, 28), (2%, x5), (x5, 25), and (x5, 28), ~ -

and let the domain s be a rectangle with ver- h :

tices at the points (", z5"), (7", 25"?), (z§, z5"?), : e

(z§,25"), where 28 = 0.5, 27" = 1, 2h"* = 2 — 3, zp ~ I h

ah? =+ 2 2¢ =2, 25 =0, and 2§ = 1 (Fig. 8). ! E

Here, all sizes of the body are referred to the di- 250 28 IJST xg | 1

mensions.

In order to compare the results, we consider
several cases of structures with inclusions of different thicknesses:
1) h=0.1 (25" = 0.15).

2) h=0.05 (25" = 0.125).
3) h=0.02 (z5" = 0.11).

Fig. 8. Body with inclusion.
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Along the straight lines x7 = :El{ and 1 = x{ the structure is fixed, and along the straight line
x9 = x5 it is loaded by the uniform normal force p = 1 MPa; the boundary of the domain  lying
on ro = :Eg is free. Young’s modulus of the material of the body €7 is equal to F; = 3300 MPa,
which corresponds to acryl, and the material of the inclusion €2y is glass fiber with Fs = 80000 MPa.
Poisson’s ratios of the materials of the body €7 and inclusion 25 are equal to 41 = 0.37 and vy = 0.22
respectively.

In the figure Fig.9 the comparison for the displacements us along the line o = xg in the case2
is shown between the numerical solution obtained using the approach from section 3 (curve 1) and
the numerical solution obtained using COMSOL5.0 (curve2). In our approach we use 116 second
order elements inside the main part (476 degrees of freedom) and 16 elements with fourth order bubble
functions (194 degrees of freedom). The solutions in COMSOL 5.0 uses 1311 triangles with 5428 degrees
of freedom. From Fig.9 we can conclude that the domain decomposition approach produces reliable
numerical solutions.

Taking into account the linearity of the problem, we solved approximately the problem in the
domain €4 only in the first iteration, and in subsequent iterations, the approximate solution of the
BEM was constructed as a linear combination of already known solutions.

—4 —4
06 x10 0= 10
4
—0.5} : —0.5¢ 4
/
/
/
L 4 L /
—1 -1 ,
N /
/
N ) A\ //
§-15¢ ] §-15¢ |
A} //
/
-2+ 4 —2F R //
\i /
\ /7
\\ //
—2.5 1 —2.5} N g o 11
——1 N o —2
—2 -7 -—--3
05 1 L5 2 05 1 L5 2
T Z1
Fig. 9. Displacement us on the curve xo = 25. Fig. 10. Displacement us on the curve zo = 24 de-

pending on the thickness of the shell.

In Fig. 10, the comparison for the displacements uo along the line xo = xg for the 3 cases (1, 2
and 3) is shown (curves 1, 2 and 3 respectively). For A = 0.1 and h = 0.05 we use 116 second order
elements inside the main part and 16 elements with fourth order bubble functions, for A = 0.02 114
second order elements inside the main part and 16 elements with fourth order bubble functions are
used. Since the physical material of the inclusion is harder than the main part of the structure, the
displacements become larger as the thickness of the inclusion decreases.

5. Concluding remarks

The approach under analysis allows to reduce computational cost due to the use of multiscale approach.
The space dimension of each subproblem is reduced by one: in a matrix part it is achieved with the
use of BEM and in a thin inclusion it is achieved with the help of Timoshenko shell theory.

The numerical schemes based on the domain decomposition method have been theoretically inves-
tigated with the Steklov—Poincare operators and the theoretical results have been obtained.

Our approach, obviously, has its limitations (BEM can be applied only for the homogeneous matrix,
shell theory requires the corresponding assumptions for stresses and displacements to hold). However,
it is efficient for thin inclusions of a certain thickness (e.g., in case of inclusion 1/10 — 1/50 of the
thickness of matrix). Besides, it provides quite a simple way for evaluating the impact of thin inclusion
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or coating on the stress-strain state of the matrix. From this prospective, the model may be applied
for solving the engineering problems.

It must be pointed out that the proposed approach may be applied to similar problems in other
modeling applications as well as for more complex problems (e.g. the ones that require nonlinear shell
theory for the description of thin inclusions or several inclusions).
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Hucnosunini aHani3 pisHomaclTabHOI MaTeMaTUYHOT MoAeEsTi NMPY>XHOro
TiNa 3 TOHKUM BKJIlOYEeHHSAM kombiHoBaHnmu MIE ta MCE

JNusik 1. 1Y, Py6ino B.2, Casysa 5. I.', Crarap A. O.12

LTvsiscoruti nayionaavrut yrisepcumem imens Isana @panxa,
8yn. Ynieepcumemcora, 1, Jlveis, 79000, Yxpaina
2 Vuisepcumem micma JI'Axeinu,
ey.n. Bemotio, Konnimo, JI'Axsina, 67100, Imanis

CTaTTio IPUCBIYEHO MATEMATHIHOMY MOJIE/IOBAHHIO DI3HOMACIITAOHUX IMPYKHUX KOH-
CTPYKIIiif, M0 CKJIAJATHCA 13 MATPHUIN Ta TOHKAX IMOKPUTTIB ab0 BKJ/IOYeHb. MaTpuiro
OIICAHO PIBHAHHIMH KJIACUYHOI TEOPil IPY2KHOCTI, JJIsi OIUCY TOHKUX YaCTHH KOHCTPYK-
1i1 BUKOpHUCTAHO Teopito oboonok Tumornrenka. Ha crisbhiit rpanuiii Mixk cepe1oBUIIAMEI
3a/1aHO i/leaJibHi YMOBU KOHTaKTy. PO3po6sieHO ajropuTM Ha OCHOBI MeTOJy TIDaHUYIHUX
€JIEeMEHTIB ¥ MaTPUIll Ta MeTO/Iy CKIHYeHHUX €JIEMEHTIB BUCOKOT'O MOPAJIKY B TOHKUX dac-
TuHaX KOoHCTPyKIGil. IIi aABa MeTroam moemHaHo 3a JOTOMOTOI0 METOIY JEKOMIIO3HINI 00-
gacteit. g imocTpaliil 3apoOHOBAHOTO MiAXOAY PO3IVISHYTO JIBA UUCJIOBI MTPUKJIAIN:
3amaqy Tuiy ['ipkMana i 337124y JJIs IPY2KHOTO Tijla 3 TOHKUM BKJIIOYEHHSAM. ¥ IIEPIIOMY
MIPUKJIAl MPOAHAII30BaHO 3aJEKHICTh HMEePeMilTeHb 1 HAIPyKeHO0-/1e(DOPMOBAHOTO CTaHy
Biz dopMu 0DOJIOHKH, ¥ APYTrOMY — 3aJIe2KHICTD IePEMIIeHb Bif TOBIUHNA BKJIIOUYEHHS.

Knwo4osi cnoBa: mMemod CKiHYeHHUT eaeMenmic, MemOod 2PAHUNHUT EACMEHINIS, Teopis
obosaonor Tumowenxa, mMeopia NPYHCHOCMS.

2000 MSC: 74-xx; 65N30; 65N38; 65N55

YAK: 531; 519.6

Mathematical Modeling and Computing, Vol.6, No.2, pp.239-250 (2019)



