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1. Introduction

A mathematical model of oscillations in the form of a narrowband process is widely used in various
fields of science and engineering: in statistical radiophysics [1-4], in the theory of communication and
telemetry [5-9], in technical diagnostics [10-13], in geophysics and oceanology [14, 15|, in statistical
hydroacoustics [16] etc. For investigation of their properties, the Hilbert transform is usually used
1 [ &)
t) = H{£(t)) = = > g, 1
o) = H{go) =+ [ 22 1)
as it does not change the amplitude of the harmonic components of the input signal £(t), but shifts
their phases by —7/2. The concept of the analytic signal

C(t) = &(t) + in(t) = u(t)e ™, (2)
was introduced on the basis of (1) along with the definitions of the envelope p(t) = [€3(t) + n*(t)] 1/2
and the instantaneous phase ¢ (t) = arctan %, and the instantaneous angular frequency
o) B0 _ €O — @
dt 12 (t) '

The frequency bandwidth Aw of the signal can be determined using the characteristics of the introduced
random processes:

Aw = ol + Ej*(t),
here E is the sign of the mathematical expectation, f[(f) is a derivative of an envelope,
o2 (t) = Elw(t)]? — [Ew(t)]? is the variance of instantaneous frequency. The value Efi?(t) defines the

w
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Covariance characteristics of narrowband periodically non-stationary random signals 277

change of the envelope power. The signal £(t) is assumed as narrowband if Aw?/ [Ew(t)]2 < 1, other-
wise — broadband. The Hilbert transform is used for both types of signals, but the envelope conception
has physical meaning only for narrowband signals [17,18].

Bedrosian’s theorem is important in practice [19]: Hilbert transform of the product of low-frequency
&1(t) and high-frequency &5(t) signals equals the product of low-frequency signal and Hilbert transform
of high-frequency signal if frequency bands do not overlap:

H{&1(#)&2(t)} = &(t) H{&a(2)}-

We choose the mean of the random process w(t) as the central frequency of the signal Ew(t) = wq
and set that ¢ (t) = wot — ¢(t). Then the analytical signal (2) can be represented in the form:

C(t) = [€elt) — i&s(t)] €,

where
Ee(t) = () cos p(t),
&s(t) = p(t) sin p(t).
Hence
£(t) = &(t) coswot + &(t) sinwot, (3)
n(t) = &(t) sinwpt — &4(t) cos wot. (4)

The quantity fi(t) = &.(t) — i€s(¢) is called a complex envelope, random processes &.(t) and &s(t)
are quadrature components of the signal. They are determined by the expressions:

Ee(t) = &(t) coswot + n(t) sin wyt,
&s(t) = &(t) sinwot — n(t) cos wot.

It follows from E.Bedrosian’s theorem, that the random process (4) is Hilbert transform of a sig-
nal £(t) if the spectra of processes &.(t) and &(t) is concentrated in the interval [wo — win, wo + W]
and wy,, <wp. In this case the expression for an envelope p(t) can be rewritten in the form
p(t) = [€(t) + E(1)] Y2 The above-mentioned narrowband signal condition is hard to apply in prac-
tice, therefore, it is usually replaced by a condition w,, < wg which is obviously much stronger than
one in the E. Bedrosian’s theorem. In this article the analysis of the dependency of the Hilbert trans-
form properties on the frequency bandwidth of the quadrature components is carried out. However,
the main attention is paid to the analysis of those new features and characteristics that it acquires, as
well as the overall narrowband signal when we move from a stationary to a periodically non-stationary
model.

2. Narrowband signal as a stationary random process

Let us suppose that a narrowband signal £(t) is described by a stationary random process with a zero
mean mg = E£(t) = 0. Then, as it follows from (1), m, = 0 too. Proceeding from the expression (1)
and the formula of the inverse Hilbert transform

for auto- and cross- covariance functions Re(u) = E£(1)E(t + w), Ry(u) = En(t)n(t + u), Rey(u) =
E&(t)n(t + u) we obtain:

Re(u) = —l/oo Md@ Rye(u) = _l/oo Rn(T)dT’

T) oo WU—T T oW —T
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R =L [ B oy = L [ B

T ) U—T ™ uU—T

It follows from these relations that Re,(—u) = —Rep(u) = Rye(u) and Re(u) = Ry(u), ie. cross-
covariance functions of the signal and its Hilbert transform are odd lag functions and have different
signs. Their autocovariance functions are equal. Taking into consideration these properties, we find
for the auto- and cross-covariance function of the quadrature components:

Re(u) = Rs(u) = Re(u) cos wou + Rey(u) sin wou, (5)
Res(u) = Re(u) sinwou — Rey(u) cos wou. (6)

It follows from formula (6) that Res(—u) = —Res(u) = Rse(u).
The covariance function of the analytical signal R¢(u) = E((t)¢(t + u) is equal to:

Re(u) = 2[Re(u) + iRey(u)] -

It is easily seen that cross-covariance function R, (u) is the Hilbert transform of autocovariance function
Re(u): Rep(u) = H{R¢(u)}. Taking into account that the transfer function of Hilbert transform
H(w) = —i for w > 0 and H(w) = i for w < 0, and also the representation

Re(u) = /_ 7 fe(w) v, (7

where f¢(w) is the power spectral density of signal £(t), we obtain:

Rep(u) =2 /000 fe(w) sinwu dw. (8)
And then -
Re(u) = 4/0 fe(w) e dw.
It follows from the last expression, that
|R¢(u)| < 2R¢(0).

The variance of the analytic signal

R¢(0) = 4/000 fe(w) dw

is the mathematical expectation of the square of the envelope signal and it is equal to the sum of the
variances of the signal and its Hilbert transform:

Re(0) = Ei2(t) = EEX(t) + En’(t).
This formula determines also the sum of variances of quadrature components .(t) and &(t):
RC(O) = RC(O) + RS(O)'

Proceeding from (5) and (6), and also formulae (7) and (8), we can find the dependencies of the
auto- and cross-covariance functions and the corresponding power spectral densities of quadrature
components on the power spectral density of the signal. Substituting (7) and (8) into (5) we obtain:

R.(u) = Ry(u) = 2/000 fe(w) cos(w — wo)u dw = 2 - fe (w+ wp) cos wu dw.

—wo
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Covariance characteristics of narrowband periodically non-stationary random signals 279

The spectral density of narrowband process is concentrated in narrow intervals [wg — Aw,wy + Aw]
and [—wp — Aw, —wp + Aw], therefore, the last integral can be rewritten in the form:
S ~
Re(w) 22 [ felw+wo) dw,
—wo

where fg(w + wp) is the component of the spectrum in the positive frequency domain shifted by the
amount —wy. Then f.(w) = fs(w) = 2 fg(w + wp), i.e. the power spectral densities of the quadrature
components are equal to the component of the spectrum of the signal in the positive frequencies domain
multiplied by 2, shifted to the left by carrier frequency wy.

After substituting (7) and (8) into (6) we obtain:

Res(u) =2 /00 fe(w) sin(w — wo)u dw = 2 - fe (w+ wp) sin(w)u dw
0 —wp
= h fe(w 4 wo) sin(w)u dw. (9)

It follows from this expression that the cross-covariance function of quadrature components is not equal
to zero only in the case when f¢(w + wp) contains an odd component. It is easily seen from (9) that
R.s(u) is odd lag function and R.s(0) = 0 if uw = 0. Thus, the quadrature components of the stationary
narrowband signal are uncorrelated at the same moments of time.

3. The Hilbert transform of periodically non-stationary narrowband signal

As it was noted above, the auto-covariance functions of the quadrature components of the narrow-
band stationary random process are equal, and their cross-covariance function is an odd lag function.
Assuming now that these conditions are not satisfied and we will analyze the covariance and spectral
properties of the Hilbert transform of such a narrowband signal.

If the mean of quadrature components m. = E.(t) and mg = E&,(t) are not equal to zero, then

me(t) = me cos wot + My sin wot.

For the mean function of the Hilbert transform we obtain:

1 [ me(t
my(t) = - / ti—(T)dT = m,sin wot — My cos wot.
—0o0

The mean function of the analytic signal (2) has the form:

1wt

me(t) = me(t) +imy(t) = me™”,

where m = m. — i ms.
The covariance function be(t,u) = E[{(t) — me(t)] [£(t + u) — me(t +u)] of periodically non-
stationary narrowband signal (3) is determined by formula [12]:

be(t,u) = B(()g)(u) + C'Q(g)(u) cos 2wpt + Ség) sin 2wpt = B(()g)(u) + Z Bg) (u)ekwot (10)
k=42
where
1
B((f) (u) = 3 [R.(u) + Ry(u)] coswou + R_,(u) sin wou, (11)
111 )
B ) = 5 |5 URelo) — R)] = iRE | (12)
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Here Bég) (u) = l[C’éé) (u) — iSég) (u)], and also R} (u) and R_,(u) are even and odd parts of the cross-

2
covariance function R, = R, (u) + R_,(u). Obviously, that B(_SQ) (u) = Eg) (u), where “ 7 is a sign of

conjugation. Thus, the random signal (3) is PNRS [11, 12,14, 15]. The quantities Bg)(u) are called

covariance components [12,15]. The zero covariance component B(()S)(u), which is a time-averaged
value of the covariance function, has all the properties of the covariance function of the stationary
random process. It is called the covariance function of the stationary approximation of a periodically
non-stationary random process [12].

Since b (t, —u) = be(t — u,u), then By (—u) = B, (u)e~ w0t Thus, the zero covariance component
is the even lag function: By(—u) = Bj(u). For the second cosine and sine covariance components from
the equality By(—u) = By(u)e™ 2“0 we obtain:

02(5)(—u) = C’ég) (u) cos 2wou — Sés)(u) sin 2wou, (13)
555)(—u) = C’ég) (u) sin 2wou + Ség) (u) cos 2wou. (14)

The instantaneous spectral density
1 [ -
fe(w,t) = . /_OO be(t,u) e du

of the signal (3) is equal to:
few.t)= 3 fT @)t

k=0,42

where ) ~
,gg)(w) = 2—/ Bg)(u) ey, (15)

i — 0o

The quantities (15) are called the spectral components of PNRS (also cyclic covariance function or cyclic
spectral densities [6]). The zero spectral components fy(w) is even frequency function: fo(—w) = fo(w).
It determines the time averaged power of PNRS. The second spectral components satisfy the equalities:

fo(=w) = folw + 2wo) = f_5(w). (16)

Proceeding from (11) and (12) we obtain:

folw) = i [fe(w + wo) + fs(w + wo) + felw — wo) + fs(w — wo)] + % [fos(w + wo) = fes(w —wo)]
Falw) = § [fuler =) = Syl —wo)] = & [fhleo —w0)] a7)
where ~
fes(w) = %/0 R s(u) cos wu du,
— _ l & — . — l & J’_
fes(w) = - /0 R_s(u)sinwudu,  f(w) - /0 RT(u) cos wu du.
Since

| fes(@)* < folw) fs(w)

then the spectrum bandwidth of PNRS is determined by the zero spectral components. Below we shall
call PNRS narrowband if

| folw), welw)—Aw,wy+ Aw],
folw) = { 0, w ¢ [wo — Aw,wp + Aw],
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Covariance characteristics of narrowband periodically non-stationary random signals 281

where Aw < wp. It is mean that the value of f.s(w) are concentrated in the interval [—wg,wp] and
for narrowband PNRS condition of the Bedrosian’s theorem is satisfied. Note that the value of the
second spectral component of narrowband PNRS as follows from (17) are concentrated in the interval
(O, 2&)0).

The auto-covariance and cross-covariance functions of the signal and its Hilbert transform are
connected by relations [20]:

1 [~ b(t+u,r1
bgn(t,u) = ;/; %d’r, (18)
1 [ bep(t+u,7)
be(t = — /LS A 19
= [ Dy (19)
1 [ be(t+u,T)
bng(t,u) = —;/; g’rﬁdT, (20)
1 [ bye(t+u,7)

Proposition1. A periodically non-stationary random signal, the covariance function of which is
determined by the relations (10)—(12), and its Hilbert transform are jointly periodically non-stationary
random processes and their auto- and cross- covariance component are connected by expressions:

B (u) = /_ Z h(u — ) B{™ (r) dr, (22)
B (u) = — /_ Z h(u—7) B (7) dr, (23)
B (u) = - /_ Z h(u—7) B (r) dr, (24)
BE (u) = /_ Z h(u — 1) B& (7) dr, (25)

where h(7) = (77)~! is the pulse response of the Hilbert transform, i.e. the covariance components

Blin) (u) and B,(;ﬁ) (u), and also B}iﬁn) (u) and B,(f) (u) are Hilbert transform pairs.
Proof. After substituting into formula (20) the representation (10) we obtain

' 1 [o° B(f)(T) '
t — tkwot __/ k zkwou‘
bnf( ,u) kZOE:ﬂe [ ) B drl|e

It follows from this equality that the cross-covariance function bnf(t’ u) varies with time periodically,
and its Fourier coefficients are determined by the formula

ikwou 00 B(O
B}in&)(u):_e / y (7) dr,

U o Ttu

hence:

B (—u) = e~ thwou / h(u —7)B (r)dr.

It’s easily seen that b, (¢, —u) = b,;(t —u,u). Then B,(fn)(—u) = B,(;ﬁ) (u)e~ w0t Taking into account
the last equality, we obtain the formula (25).
Let us substitute the cross-covariance function

be,(t,u) = Z B,(f")(u) eikwot
k=0,%2
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into formula (19). Then

eikwou 00 B(ﬁn)(T)
B,(f)(u) T / f—l—u ar,

or 0o

B,(f)(—u)eikwou = —/ h(u — T)B,(f") (1) dr.
Taking into account the equality B,(f)(—u)e"k“’o“ = B,(f)(u), we obtain formula (24).
It follows from expression (21) that

tkwou 0o B(Wﬁ)
B](;?)(u) — _e / k (T) dT,

™ oo TTu

using that B,g")(—u)eikWOU = B,(j) (u) we come to (22). Taking into consideration the relation (18), the
representation ‘
bn(t,u) — Z B](;?) (u)ezkwot
k=0,%2

and equality B,(fn) (u) =B IgnS)(—u) kw0t e arrive the formula (23). To simplify the further analysis,
we rewrite the relations (22)—(25) in the frequency domain. Fourier transforms of cross-covariance
components

2

are called cross-spectral components [12,15]. They have the following properties:

f(En ( ) i /_OO Bl(fﬁ)(u)e—ikwudw, (26)

A (w) = £ @ + ) = T (). (27)

Using (15) and (22)—(26), we obtain:

) (w) = Hw) £ (), (28)
17 (W) = ~Hw) /7 (), (29)
£ w) = ~Hw) £ (W),
£ (w) = Hw) £ (). (30)

| ]

Proposition 2. The zero covariance components of the periodically nonstationary narrowband sig-
nal (3) and its Hilbert transform are equal and their zero cross-covariance components differ only by

a sign. They are odd lag functions and are determined by the zero spectral component fég) (w) of the
signal:

B(ﬁn / ) sin wu dw.

Proof. It follows from equation (27) that fOT75 (w) = fégn)(w). Using (30) we have f(nf( ) =
—H(w) fég)(w). Substitution the last equality into (28), we come to expression fo(n( )
—H(w)H(w) ég)(w) = fég) (w) and Bén) (u) = Bég) (u). Proceeding from (30) for a zero cross-covariance

component B(()Sn) (u) we obtain:
B(()Sn) (u) = / H(w)féf) (w) eV dw = z/ sign(w)féf) (w) e“¥dw

= / fO(S)(w)(—iei““ + de ) dw = 2/ fO(S)(w) sin wu dw. (31)
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Since fég) (w) = fén) (w) and expressions (29) and (30) differ only by the sign, therefore B(()gn) (u) =
_Bénﬁ) (u). It follows from (31) that the cross-covariance components are the odd lag function. [

Let us now consider the properties of the second auto- and cross- covariance components.
Proposition 3. The second covariance components of the periodically non-stationary narrowband
signal and its Hilbert transform have the different sign Bém (u) = —Bég)(u) and their second cross-
covariance components are symmetric and related with the second covariance component of the signal
by the relation:

B (w) = BY (u) = —iB{" (u).

Proof. Taking into consideration the relations H(—w) = H(w), 2(77§)(_w) = f2(§77) (w4 2wp) and (28)

we obtain:
B(n / H (77§ zwudw _ / H (77§ w) e—iwudw
/ H(w) £ (w + 2wo) e “duw.
Now introduce the variable v = w 4 2wy. Using the equality (30), we have:
B(") = ’2w0“/ H(w — 2wp) H(w) e™ ™" duw.
Since Bén)(—u) = Bé") (u) e#2w0u  then
B(" / f2 — 2wp) H(w) e“"dw, (32)

and hence

7 (@) = ~H(w — 2u0) H(w) 37 (@)
We substitute the last equality into the formula (29). Then

£ () = H(w) H(w) H(w — 2wo) £ (w) = —H(w — 2wp) £ (). (33)
Taking into account that

1, we (—00,0],
—H(w)H(w — 2wp) = ¢ —1, w € (0,2wyq],
1, w e (2wy,0),

we rewrite the integral (32) in the form

2wo ) o8] .
B(U / fg zwudw o fz(f) (w) etwt g + fz(f) (w) WU oo
0

2wo

. 2wo .
- / 119 () et — 2 9)(,) ¢y,
. i

The second spectral component is determined by the formula (17). The spectral densities f.(w — wo),
fs(w—wp) and ff(w—wp) for narrowband PNRS are concentrated in (wg — Aw,wy + Aw), so we can
put

2wo
B (u) = — 0 £59 () e / £9(w) endes = — B ().
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Using the relation (16), (30) and (33) for the cross-covariance components we have that:
(577)( ) ,L/O [fz(f)(w-i—ZW()) e—z’wu _f2(5)( ) zwu] dw
2wo ) oo .
Bénﬁ) (u) = —i [2 f2(£) (w) e“"dw +/ [f(g) (W~ 2wp) — (5)(w)} e“"“dw] .
0 0

Hence for the narrowband process:

2wo ) o8] .
Béfﬁ)(u) — —i/ fz(f) (w) Wt g , o~ —i/ féf)(w) euuudw7
0 —00

2wo
Béﬁf)(u) _ —i/ f2(£)(w WUy / Zwudw.
0

So BE (u) = BY™ (u) = —iBS (u). =

4. Numerical results

To analyze the dependency of covariance properties for Hilbert transform on the rate of covariance
damping coefficients «a; of the signal we use the processing results of the simulated random sequences
(see Fig.1):

£(nh) = £°(nh) cos (%%h) + €% (nh) sin <2%nh> .

We have chosen the following approximations:

10 - I i I i I i I i i
1 —— &(nh) signal

8 - -
6 H n(nh) signal

: Ol -

T T T T T T T T
38800 39000 39200 39400 39600

Fig. 1. The simulated realization {(nh) and its Hilbert transform n(nh) for a; = 0.02.

Bc(u) = DCe_aC‘U|7 Bs(u) — Dse_as|u‘7 BCS(T) — ‘Dcse_ofcs‘ul7
and also the folloving values of parameters:

T=20, D.=4, Ds=1, Dc=1, mc=ms=me=0.
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The realization was simulated for the coef-
ficients a. = as = 2aes = oy, herewith we
consider cases when a; = 0.02, a» 0.04,
az = 0.08, ay = 0.1.

If we chose the bandwidth of the signal
on the basis of equality fo(wm) = 0.05fo(wo),
where wy, is the cut-off frequency, then we have
wy = 0.28wp and w,, = 0.59wy for the first
and second coeflicient values and w,, = 1.1wy,
wy, = 1.26wq for next.

Thus, in the last cases the conditions of
the Bedrosian’s theorem are not satisfied and
then we can expect of the estimators for Hilbert 0
transform of covariance component

20 T

a = 0.02
- - - a=0.04

.

04 0.8
w

Fig.2. The zero' spectral component of the signal:

1) ap = 0.02, 2) ay = 0.04, 3) a3 = 0.08, 4) aq = 0.10.
n=0

A K-1
CS (rh) 1o, .o { }
. == nnh)n|[(n+1r)h
{ &0 () K;::o (nh)n[(n + r)h]
differ from the theoretical forms. It was confirmed by the calculations, which was carried out. For the

first values «; difference between the covariance component estimators for the signal and its Hilbert
transform is not significant (see Tables1,2, Figs. 3,4).

~ 1 K-l o o
B (rh) = = D M) [(n+r)h],

cos 4T”nh
s 4w
sin Tnh

Table 1. The relative errors §[Bo(rh)] for different coefficient ;.

o] = 0.02 a9 = 0.04 a3 = 0.08 oy = 0.1
0[By(rh)] | 1.40877E-05 | 6.97E-06 | 3.22E-05 | 0.00010754
d[BS(rh)] 0.000482 0.001509 | 0.005104 0.037413
d[B5(rh)] 0.000134 0.000269 | 0.0048406 0.095018
24 o BO () |
T
T ----B{"(rh)
LY
4o [y b
RN
P N
[ S A U -
0" R Y 4 + T ¢ \~/ AT e
Loy rl Ve
| R 4
T , 1 \-l
S
-1 1: u_[ 4
VT
1l
o]V ]
0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180
rh rh
Fig.3. The estimators of the zero* covariance

Fig. 4. The deference Béo(rh) — B7y(7h)

component for the signal and its Hilbert transform. in the dependency on lag.
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Table 2. The estimators of the second covariance component.

The characteristics of The characteristics of Hilbert

a=0.02 . . Them cross-characteristics
simulated signal transform
en g () Cs (rh)
] ]
N
N
C 04
BS(rh) 04
,1—
~14
_9 4
2> rh ——— rh|| 2+H—r—————————————rh
0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180
5 (rh) 58 (rh) S (rh)
24 4 2
N
1 1
s 04
B3(rh) 0 ol
,17
-14 1
-2 i
———— rh || 2H——"+++"+n"+————irh|| H—r-r———— A rh
0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180

th

As we see from Table1 the relative error of the zero" component increases slowly as «; increas.

1 Tmax

Z [B(()&) (Tmaxh) — B((]ﬁ) (rmaxh)] ’ .

5[ B (rmaxh)] = A
[ ’ ] (Tmax + 1)hBén)(0) r=0

However the relative error of the second component estimators calculated similarly yet achieves the
value 0.07. The experimental results allow to conclude that the satisfaction of the inequality a < 3wq
provides the relative errors that are not larger than 0.04.

5. Conclusions

The covariance properties of Hilbert transform of a narrowband PNRS are analyzed in this article. It
is shown that PNRS and its Hilbert transform are jointly periodically non-stationary random processes
and their auto- and cross- covariance components are Hilbert transform pairs. The zero auto-covariance
of the signal £(¢) and its Hilbert transform 7(t) are equal and the second components differ only by sign:
B(()n) (u) = Bég) (u), Bén) (u) = —Béé) (u). The zero cross-covariance component have the different sign
B(()&n) (u) = _Bénﬁ) (u), they are odd lag functions B(()gn)(—u) = _B(()ﬁn) (u) and are determinate by one-
sided sine transform of the zero spectral component of the signal: Béfn) (u) =2 fooo ég)(w) sin wu dw.
The second cross-covariance components are symmetric Béfn) (u) = _Bénf) (u). And they are related

to the second covariance component of the signal by the equality Béfn) (u) = —z'Bég) (u). On the basis
of statistical processing of the simulated realization of the PNRS quadrature model the influence of
the damping covariance coefficients of the modulating processes on the covariance properties of Hilbert
transform was analyzed. The numerical values of the mean square errors are obtained for the covariance
component for increasing sequence of covariance damping coefficients . The empirical inequality for
damping coefficient is obtained.
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