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In this paper, we propose a model that allows us to investigate the influence of quantum
size effects and the electroneutrality condition on the spectrum of SPPs waves as a function
of metal thickness in heterogeneous dielectric/metal /dielectric structures. It is shown that
for ultrathin metal layers, the spectrum of plasmon waves has oscillatory behavior in the
domain of small wave vectors (k &~ 0.05—0.2nm~!). The amplitude of oscillations depends
on the conditions of electroneutrality for the dielectric/metal/dielectric structure.

Keywords: surface plasmon, plasmon spectrum, metal layer thickness, dielectric permit-
tivity, electroneutrality.
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1. Introduction

Investigation of the properties of atomically thin metal films (ATMF) is attracting increasing atten-
tion [1-3]. It is because such scales quantum size effects the characteristics of ATMF begin to affect
quite significantly [4]. Obviously, the mentioned effects should affect the behaviour of a spectrum
of plasmon waves in dielectric/ ATMF /dielectric structures. The evidence of this is the results of
experiments published in [6,7]. Therefore, considering all the above, a problem of constructing a
mathematical model to describe the influence of quantum size effects on a spectrum of plasmon waves
for ATMF is of current interest and needs consideration.

In this paper, we propose to improve the model [8] taking into account the electroneutrality condi-
tion [3,4,9] and to investigate its influence on the dependence of the plasmon spectrum on a thickness

of ATMF.

2. Problem formulation

The mathematical model of plasmonic waves propagation in a he- LIl Dieteetrie
terogeneous (dielectric/ ATMF /dielectric) structure (Fig. 1) is ana- 5 5
logous to the one obtained in the previous work [8]. In this model, \ n‘_ :
dielectric permittivities £1 and e3 of insulators are functions of the

time variable ¢ Q
=), e =el), ) /L
and the dielectric permittivity of ATMF

€2 = 52(T||7Z7t)7 )= (z,9), (2)

Metm £ty
EC

Fig. 1. Geometry of the structure.

depends on both ¢ and spatial coordinates 7|, z (geometry of the structure).
We assume that there are no external charges p in the contact region between dielectrics and ATMF.
In this case, the system of Maxwell’s equations [10,11] is such:
V.-D=p=0, V-B=0,
oD 3)

E=p= H=J+—
V x p=0, VX +8t’
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where D is electric flux density, B is magnetic flux density, E is electric field strength, H is magnetic
field strength, J is external electric current density. Here is the dot product, “x” is the cross
product. Also, we assume that non-local interconnection between E and D [11] vectors exists:

W

D(ry,2,t) = // dr dZ' dt'e;(r) — v, 2,2\t —t') E(r|, 2, t'), i=1,2,3. (4)

Taking into account (1) and (2), we model the permittivity in areas of the structure (see Fig.1) as
follows

er(r) — rh,z, it —t) =ei(t—t")o(r) — ril)é(z —2'),
ea(r) — rh, 2,2t —t') = ea(r) — rh, 2zt —t)6(z —2'), (5)

e3(t —t") o(r — ) o(z — 2),

/ / /
63(7“” —TH,Z,Z ,t—t)

where 0(z) is the Dirac delta function [15|. By defining the Fourier transform with respect to time

1 <z iw r > —iw
=5 [ Fweas, fw= [ foea ©)
we will obtain the following expression for e;(r) — ri %) 2t —t):
’ ’ N Q o / —i(k:,’l"H—’l"/ )—iw(t—t")
ei(rH—rH,z,z,t—t)— dw [ dkei(k,z, 2" \w)e I , (7)
(27T)3 —00 Q

where 2 = R? is the domain of the 2D vector k = (k, k).
As before [8], we will consider the case of the transverse magnetic (TM) polarization of E and H
vectors, for which [10]
E: (E:B,OaEy), H: (Ovavo)v
H(r,w) = H(z,w) e
k. is the wave vector in the direction of propagation. For the TM polarization from Maxwell’s equa-
tions (3) we obtain the following system of wave equations for H [10]

O*Hy(z,w)

922 + (kggl(w) - k‘g)Hy(z,w) = 07 (8)
% + (k‘geg(kz, zZ,w) — k:i,)Hy(z,w) =0, (9)
% + (Kges(w) — k2) Hy(z,w) =0, (10)

ko = w/c, ¢ is the speed of light in a vacuum. Further investigation of this system requires simulation
of dielectric permittivities 1(w), e2(k, z,w), e3(w).

3. Modeling of dielectric permittivity of ATMF

Consider the dielectric permittivities €1 and €3, we can limit ourselves to the high-frequency approxi-
mation [10], namely, put that

eir) =,z 2t —t') = gger(+00) 8(t — t') 6(ry — 7)) 6(2 — 2),
e3(r) — 72,2t —t') = eoez(+00) 3(t — ') d(r) — 7)) d(2 — 27),

(11)

where ¢ is dielectric permittivity of vacuum, €1 3(4+00) = const is high-frequency dielectric constant,
but to model the dielectric function of ATMF we use the approach proposed in [§].
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We model ATMF by a system of non-interacting electrons in an asymmetric rectangular potential
well of finite width. In addition, we will only take into account spatial dispersion along Z axis, therefore
T — 'rh = 0. In this case, the function e3(r — rh,z, 2’ ,w) built of the diagonal components of the

dielectric permittivity tensor has the form [1]

w2 Nmazx
20 0) = a(e) 0 = ) = (1= 0 Y (- adlnlaP Jole - ). (12
€ n=1

Here wy, = \/4mn.e?/m, is the plasma frequency [10,12], n. is an electron density in ATMF [12], kg
is the Fermi wave vectors [12,14], a,, is quantum numbers of bound states. The presence of surfaces is
described by the potential
U, if z2<0,
U(Z) =<0, if 0< 2z < Lyey, (13)
UQ, if =z = Lwell-

Here L, is a width of the potential well. The function

Y (r) = \/% e Fmi) ¢, (2). (14)

is the wave function [15] of an electron in ATMF, ¢,,(z) is the solution of the Schréodinger stationary
equation [2,4,13,15]

n? d?
—%@ﬁbn(z) + U(2) ¢n(2) = Won(2), (15)

with the Dirichlet boundary conditions
im ¢n(2) = 0. (16)

The solution of (15) with the potential (13) has the following form [4]:

ge 8%_06227 if z < 07
S1
bn(2) = C(a) { sin <az + arcsin sg)’ if 0<z< Lyeu, (17)
1

. .o /2 o2(m .
sin <aLwell + arcsin —)e Veamet(eLuwen) - if 2 > Ly,
S1

where s; = /2mU; /h, i = 1,2, C(«) is the normalising constant [4]
V2

Cla) = = = . (18)
\/Lweu + \(}XS/;_I)QQ + \(73/;312 — ésin (aLwell) Cos (aLweu + 2 arcsin %)
To find quantum numbers «,, we need to solve the equation [2,4,13]:
O Lyeyy = m™n — arcsin n + arcsin %, (19)

S1 S92
the maximum number of bound states 7,4, we will find from the condition [4]
1 . . min(sq, s . min(sq,s
Tomaz = [— (Lwell min(sy, s2) + arcsin M + arcsin M)] ,
™ S1 S92

”

where “[-]” is the ceiling function.
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In this paper, we consider two models for

06351 describing a potential well: (a) the bulk chem-
T@mOGBO ical potential is used as the chemical potential
g of ATMF; (b) the chemical potential of ATMF

is calculated as in [4]. In the second (b) case,
it is stated that the width of the potential well
10 15 20 25 30 3 40 45 depends on the penetration of electrons into the

Lsiab, aB dielectric, namely [4] Lyey = Lgiap + di + da,

Fig. 2. The Fermi wave vector as a funCtiOn Of the ﬁlm Where LSl[lb iS a geometric thickness Of ATMF
thickness. The dotted horizontal curve shows the bulk 4 d; is determined from the condition of elec-

Fermi wave vector. troneutrality and according to [5]

0.6251

3 2 3 52 52 kr
d; = — < -1 2— L in — =1,2. 20
"= Sk + 8]{7%‘Lwell Ty < k‘% + < k:%) arcsin s | ? ) (20)

The Fermi wave vector kr is unknown and should be determined from the electroneutrality condition [4]

2 1 nia:z(kz 2) (21)
= —
37"? Lsiap n—1 F "

In this case, the width of the well also depends on a concentration of electrons. The difference between
the Fermi wave vectors in both cases is depicted in (Fig. 2).

4. Dispersion relation and plasmon spectrum simulation results

e2(2,w) In Fig. 3, the behaviour of e3(z,w) is depicted. From this
0.94 figure it is seen that the dielectric function ey(z,w) dif-
fers from a constant only near the dielectric/ATMF and
092 ATMF /dielectric interfaces. Let us assume that
0.90 52(Z7 zlyw) = (52(Lwelbw) + 77A€2(z7w)) 5(’2 - Z/),
where
0.88
1 Lyeu
0.86 | | | | | €2 (Luelt; w) = T / £2(2,w) dz
0 1 2 3 4 2z, nm well 02
Nmazx
Fig.3. Dielectric permittivity of ATMF _1__“ B2 a1, (22
Lgiap = 5nm when frequency wip =4. 27 new? ; (kp Wlen()l - (22)
) 1 L'Luell 9
Gl = [ (P (23)
well JO

and Aeg(z,w) are terms that describe behaviour £2(z, w) in near-surface areas, 7 is the small parameter.
Taking this into account, we represent the solution of the equation (9) for H,(z,w) as series in powers
of

Hy(z,w) = Z " Hp(z,w) (24)
m=0

and obtain the equation for Hy(z,w) and Hi(z,w):
0?Hoy(z,w)
022
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0?Hi(z,w)
022
As in [8], when finding the influence of the thickness Lg,, of ATMF on the plasmon spectrum, we

limit ourselves to the case Hy(z,w) ~ Hy(z,w). In this case, the dispersion relation for finding the
spectrum has the form

Ly k ka/es k k
gt _ Bife b hy/eakajer v Rafer s g a9y (27)
k1/81+k2/€2k3/€3+k‘2/€2

+ (k‘gs(l/weu,w) - k:i,)Hl(z,w) = —kZnAc(z,w) Hy(z,w). (26)

that coincides with results obtained in [10]. Here €1 = e(w), €2 = €(w, Lyen), €3 = e(w).
The dielectric function of ATMF is described by the function (14)

W2 Tmas

o) = 1= 7005 > (kb= KT (28)
The simulation was carried out for the Table 1. The parameters of the structures

parameters that correspond to the struc- considered in the simulation.

tures Vacuum/Ag/Al; O3, SiOy/Ag/Al;Os, Structure €1 | &2 | U, eV | U, eV

Vacuum/Ag/Si (Table1). All these param- Vacuum/Ag/AL,Os | 1 | 9 | 9.855 | 8.505

eters we took from [3,9] and from [6] for Ag SiOg/Ag/A120.3 419 | 8755 | 8505

on Si substrate. Vacuum/Ag/Si 1| 13| 9.855 | 5.805

Fig.4 shows results for “relatively
great” thicknesses of ATMF (1000 = 1020
Bohr radius) that was compared with the

>
Drude model with negligible damping [10] :r 2 j
for Vacuum/Ag/Al5 O3, =
w2 X 0.4
— — p 0 L | NN 0.2
&lw; Lwen) = ep(w) = 1= w (29) 1000 1005 1010 1015 1020 O kz, nm™!

Lsiab, aB

Figs.5-7 show the results of simula-  Fig.4. Dependence of the plasmon spectrum on the ATMF
tion for the structures \/'acuunl/Ag/AAb037 thickness for the structure Vacuum/Ag/Al;O3 in two cases:
SiOg/Ag/Aly05 and Vacuum/Ag/Si for  for the Drude model (ep(w)) (dotted curves), for ea(Lyen,w)
ATMFs ~ 10+ 50 nm thick in Bohr radius. (solid lines).

Table 2 shows the results of comparison with [6] (column Exp.) for Vacuum/Ag/Si structure when
Lgap ~ 2.4nm or = 43.54 Bohr radius. Unfortunately, in [6] data are presented only for small wave
vectors (k; < 0.1nm™!). Nevertheless, we can see that with increasing of the wave vector k, the dif-
ference between simulation and experiment increases too. As we mentioned before, for Vacuum/Ag/Si
structure there is almost no difference between two considered models. But still, we have provided
data for both models.

Table 2. Comparison with the experiment for Vacuum/Ag/Si structure for L, &~ 2.4 nm.

ks ~ 0.028 nm~! ky ~0.049nm™!

ks (a) (b) | Exp. ks (a) (b) | Exp.
0.02731 | 1.272 | 1.272 | 0.62 | 0.04824 | 1.774 | 1.776 | 0.8
0.02753 | 1.279 | 1.280 | 0.62 | 0.04847 | 1.778 | 1.780 | 0.8
0.02776 | 1.287 | 1.288 | 0.62 | 0.04870 | 1.781 | 1.784 | 0.8
0.02799 | 1.294 | 1.295 | 0.62 | 0.04892 | 1.785 | 1.787 | 0.8
0.02822 | 1.302 | 1.303 | 0.62 | 0.04915 | 1.789 | 1.791 0.8
0.02844 | 1.309 | 1.310 | 0.62 | 0.04938 | 1.792 | 1.795 | 0.8
0.02867 | 1.316 | 1.317 | 0.62 | 0.04961 | 1.796 | 1.798 | 0.8
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kz = 0.05, nm~!

0 15 20 25 30 35 40 45 50
Lgiap; aB
S>3 kz = 0.2, nm~!

- 7 —1
4 0 0 0 ks nm 10 15 20 25 30 35 40 45 50
Lsiabs aB Lgiap; aB

Fig. 5. Dependence of the plasmon spectrum on the ATMF thickness for the structure Vacuum/Ag/Al;O3 in
the cases (a) (dotted curves) and (b) (solid curves).

ke = 0.05, nm~—1!
% 2.2 B PN S
;2
2
1.8 | | | | | |
10 15 20 25 30 35 40 45 50
lealn ap
S kz = 0.2, nm~—!
: 0.4 3
0 \ 0.2
10 20 30 40 50 0 kz,nn1*1 10 15 20 25 30 35 40 45 50
leab: ap lealn ap

Fig. 6. Dependence of the plasmon spectrum on the ATMF thickness for the structure SiO3/Ag/Al;O3 in the
cases (a) (dotted curves) and (b) (solid curves).
kz = 0.05, nm~—1!

‘ 0 15 20 25 30 35 40 45 50
lealn aB
kz = 0.2, nm~—!

10 15 20 25 30 35 40 45 50
Lsiab; aB Lgiab; aB

Fig. 7. Dependence of the plasmon spectrum on the ATMF thickness for the structure Vacuum/Ag/Si in the
cases (a) (dotted curves) and (b) (solid curves).

5. Conclusions

The conducted analysis shows that for films with a thickness of ~ 1020 ML, the influence of quantum
effects is noticeable when wave vector k; 2 0.1 nm~! [2,4]. The dependence of the plasmon spectrum
on the film thickness has a distinct oscillating character for Vacuum/Ag/Al;,O3, SiO2/Ag/Al;O3 sand-
wiches with a gradual decrease in the amplitude of oscillations with increasing thickness. But for
Vacuum/Ag/Si oscillations are much less observable.

Taking into account the discreteness of the Fermi wave vector and the conditions of electroneutrality
for small thicknesses gives the shift of the oscillation peaks with a general tendency towards a decrease in
the plasmon spectrum frequency peaks compared with the case when the wave vector depends only on a
concentration of electrons in ATMF for Vacuum/Ag/AlyO3, SiO2/Ag/AlyO3. For Vacuum/Ag/Si the
difference between two models almost negligible. Also, there is significant dependence of the spectrum
on the dielectric media surrounding ATMF. For “relatively thick” films, the difference between the
models becomes less noticeable, and both charts slowly approach the Drude model from below.
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Bnaus eneKTpOHeMTpaanOCTl MEeTaNIeBoro npoLwapky Ha

NJ1a3MOHHUNA CNeKTp y CTPYKTypax ,D,le}'leKTpVIK—METa}'I—,D,Ie}'IeKTpVIK

Kocrpo6iit I1. I1., Mapkosuu b. M., [Toavoswuii B. €.

Havionarvruti ynisepcumem “JIvsiscoka nosimexnixa’,
eyn. C. Bandepu, 12, JIvsis, 79013, Yxpaina

YV poboTi 3ampOTIOHOBAHO MOJIEJb, SIKA JIa€ 3MOTY MOCJIIUTH BIUIUB KBAHTOBOPO3MIDHUX
edeKTiB Ta yMOBHU ejleKTpOoHeHTpaabHOCTI Ha crekTp SPPs xBmip sk dyHKIT TOBIH-
HU MeTaJly B FeTEePOTeHHUX CTPYKTypax “miesekTpuk—merasa—mgienekTpuk’. Ilokazano, mo
JUIsI HAJTOHKUX MeTaJIeBAX IIPOMIAPKIB CIEKTP IJIa3MOHHUX XBHJIb IIPOSIBJISAE OCIUJIAIIHHY
HoBeIiHKY B 06s1acTi Manx XBHIboBuX BekTopis (k ~ 0.05 — 0.2am~1). Ammrityma oc-
TSN 3a7€2KUTh BiJl YMOB €JIeKTPOHEUTPAJIBLHOCTI [JIsi CTPYKTYPH “IieJIeKTPUK—MeTaI—
JiesIeKTpuK .

Knto40Bi cnoBa: noseprresuts naasmot, Cnekmp naadmMona, MosuUHG MEMAALE020 Uil-
Y, deAEKMPUUHA NPOHUKHICTIG, eAeKMPOHETMPAALHICTIVD.
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