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The dynamical systems given by integro-differentiation models with K-symmetric K-po-
sitive-definite operator are considered. The variational-gradient method was applied to
those models. The analysis showed that the implementation of this method does not re-
quire knowledge of the operator spectrum, in addition, it has a better convergence rate
and is more resistant to disturbances than gradient methods. The theorem is proved in
this paper, which allows us to draw conclusions about the effectiveness of the application
of the variational-gradient method for the research of control problems. Investigation of
an integro-differential model with a K-positive-definite K-symmetric operator using the
variational-gradient method will increase the efficiency of information processing in the
processes of control and research of dynamic systems. Application of the variational-
gradient method to the control tasks will allow expanding the range of tasks under consid-
eration. It is noted that the development of modern technologies entails an increase in the
complexity of control objects, an increase in the quality requirements and the accuracy
of control due to the increase in the cost of control error. This makes to be essential
further development and improvement of methods that solve the problems of optimal con-
trol, for example, unmanned aerial vehicles. As the model example, the application of the
variational-gradient method to the models of automated control systems for unmanned
aerial vehicles is considered.
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1. Introduction

The development of modern simulation techniques has created the prerequisites for the creation and
research of highly effective systems, which are usually focused on digital algorithms for processing
information, using modern microprocessors, neurocomputers, processors with fuzzy logic and other
modern technological advances.

In modern simulation of continuous processes, the representation of dynamical systems in the
state space is increasingly used. The description of dynamic systems is extremely diverse: it can
be implemented using differential equations, discrete mappings, graph theory, the theory of Markov
chains, etc. The choice of one of the methods describes a particular type of mathematical model of
the corresponding dynamic system [1–4].
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The paper assumes that the model is described using an integro-differential equation. This allows
knowing the initial state to predict the future state of the dynamic system. The description of dynamic
processes and systems using the differential equations makes it easy to carry out their digital modeling
applying approximate methods and design universal algorithms for information processing in order to
optimally evaluate the parameters of systems and processes. The optimal estimations are necessary
for organization of control in systems of automatic control of modern models [5, 6], and in informa-
tion measuring systems for obtaining reliable data on measured physical quantities, for predicting
behavior of investigated phenomena and systems, and increasing the failure-resistance of information
processing [7–9].

The construction and implementation of the system of differential equations has become one of the
most effective tools for modeling complex dynamic systems [9, 10]. The complexity of modern models
makes the apparatus of approximate computations virtually indispensable in this situation. Thanks
to the development of numerical methods and the growth of computing power of modern technology,
it was possible to take into account not only the most significant characteristics but also secondary
factors in the models, which, in turn, has led to an increase in the accuracy of the models.

The most commonly used methods are variational, projection, gradient, difference. However, the
size and complexity of modern models require huge resource costs for their implementation. These
models include: an electromechanical tracking system for reproducing the angle of rotation; temper-
ature stabilization system in the space orbital station compartment, digital air traffic control system,
etc. [11–13].

In connection with this methods that are the synthesis of variational and gradient methods were
recently developed. The obtained methods have a better convergence rate and are more resistant to
disturbances than gradient methods. This allows you to reduce the estimated costs, which in turn saves
time and memory to implement the model in practice. Such methods include the variational-gradient
method [14–17].

2. The problem statement

We consider the application of the variational-gradient method to dynamic systems of automated
control, which are described by integro-differential models with K-positive-definite K-symmetric op-
erators.

Let the dynamic model be described by the boundary value problem:

Au(t) = u(m)(t) + c1(t)u
(m−1)(t) + . . .+ cm(t)u(t) +

m
∑

j=0

∫ b

a

Hj(t, ξ)u
(j)(ξ) dξ = f(t), t ∈ [a, b], (1)

Ul(u) =

m−1
∑

j=0

(

αlju
(j)(a) + βlju

(j)(b)
)

= σl, l = 0,m− 1, (2)

where αlj , βlj , σl and 0 6 l, j 6 m− 1 are known values, and ci ∈ C([a, b]), i = i,m.
Operator A : D(A) → H is defined on a set D(A) =

{

u : u(m) ∈ L2[a, b], Ul = σl, l = 0,m− 1
}

. Let
operator A is linear K-positive-definite and K-symmetric [18], so there is an operator K : D(K) →
L2[a, b], that is as follows:

Ku(t) = u(n)(t) + a1(t)u
(n−1)(t) + . . .+ an(t)u(t) +

n
∑

j=0

∫ b

a

Dj(t, ξ)u
(j)(ξ) dξ, t ∈ [a, b],

Ul(u) = σl, l = 0,m− 1.
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In addition, the following conditions are met:

∃α, β > 0:

∫ b

a

(Au)(t)(Ku)(t) dt > α

∫ b

a

u2(t) dt, ∀u ∈ D(A), (3)

∫ b

a

(Ku)2(t) dt 6 β

∫ b

a

(Au)(t)(Ku)(t) dt, ∀u ∈ D(A), (4)

∫ b

a

(Au)(t)(Kv)(t) dt =

∫ b

a

(Ku)(t)(Av)(t) dt, ∀u, v ∈ D(A). (5)

Assume that there is an operator B : D(B) → L2[a, b] — D(B) = D(A):

Bu(t) = u(m)(t) + d1(t)u
(m−1)(t) + . . .+ dm(t)u(t) +

m
∑

j=0

∫ b

a

Gj(t, ξ)u
(j)(ξ) dξ = g(t), t ∈ [a, b], (6)

Ul(u) = σl, l = 0,m− 1, (7)

That is linear K-positive-definite and K-symmetricand for (6), (7) it‘s easy to find solution ∀g ∈
L2[a, b].

Let the relation is held:

∃γ, δ > 0: 0 < γ 6 δ < ∞, ∀u ∈ D(A),

γ

∫ b

a

(Bu)(t)(Ku)(t) dt 6

∫ b

a

(Au)(t)(Ku)(t) dt 6 δ

∫ b

a

(Bu)(t)(Ku)(t) dt. (8)

Then the investigation of the integro-differential model (1), (2) is equivalent to finding the minimum
of a quadratic functional:

F (u) =

∫ b

a

(Au)(t)(Ku)(t) dt − 2

∫ b

a

f(t)(Ku)(t) dt. (9)

Thus, in the execution of (3)–(8), the dynamic model (1), (2) has a unique generalized solution [18],
which we shall finding from the condition of the minimum of a quadratic functional (9).

3. Variational gradient method for the investigation of integro-differential control
models

We consider the integro-differential model (1), (2). Let {ϕi : i > 1} ⊂ D(A) is a sytem linearly
independent elements and H0 is a subspace created by {ϕi : i > 1}. Let u0 ∈ {u : u(m) ∈ L2[a, b], Ul =
σl, l = 0,m− 1} is an arbitrary initial approximation, and we assume that the (k−1)-st approximation
is found. Then we will look for the k-th according to the scheme:

uk(t) = xk(t) +
n
∑

i=1

ϕi(t)a
k
i , t ∈ [a, b], (10)

here xk is determined from equality

Bxk(t) = Buk−1(t) + τkrk(t), t ∈ [a, b], (11)

Ul(u) = σl, l = 0,m− 1, k > 1, (12)

here τk is some unknown parameter, rk = f(t)− (Auk−1)(t) is residual.
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Unknown parameters τk and aki we seek from the condition of a quadratic functional (9) minimum.
Since it is easy to find a solution for the problem (6), (7), there exists a Green’s function [19] for the
problem:

(BRk)(t) = rk(t), t ∈ [a, b], Ul(u) = 0, l = 0,m− 1, k > 1. (13)

So,

Rk(t) =

∫ b

a

G(t, ξ)rk(ξ) dξ (14)

and the variational-gradient method (10)–(12) is as follows:

uk(t) = uk−1(t) + τkRk(t) +

n
∑

i=0

ϕi(t)a
k
i , t ∈ [a, b]. (15)

From the condition of the functional (9) minimum, after transformations, taking into account (10)–
(15), we obtain a system of linear algebraic equations for the determination of unknown parameters τk
and aki :

τk

∫ b

a

(ARk)(t)(KRk)(t) dt+

n
∑

i=1

aki

∫ b

a

(ARk)(t)(Kϕi)(t) dt =

∫ b

a

rk(t)(KRk)(t) dt, (16)

τk

∫ b

a

(ARk)(t)(Kϕi)(t) dt+

n
∑

j=1

akj

∫ b

a

(Aϕj)(t)(Kϕi)(t) dt =

∫ b

a

rk(t)(Kϕi)(t) dt, i = 1, n. (17)

As operator A is linear K-positive-definite and K-symmetric, then the system of algebraic equations
(16), (17) has a unique solution for unknown τk and aki .

From

rk+1(t) = f(t)−Auk(t) = f(t)−A(uk−1(t) + τk(B
−1rk)(t) + wk(t)) = rk(t)− τk(ARk)(t)−Awk(t)

and from (17) it follows that

∫ b

a

rk(t)(Kϕi)(t) dt = 0, k > 2, i > 1, t ∈ [a, b]. (18)

An amendment wk we will find in a form:

wk(t) =

n
∑

i=1

(bki − τkc
k
i )ϕi(t). (19)

Then approximation (10) will take the form:

uk(t) = uk−1(t) + τkRk(t) +
n
∑

i=1

(bki − τkc
k
i )ϕi(t), (20)

Where parameters bki and cki are determined from systems:

n
∑

i=0

bki

∫ b

a

(Aϕj)(t)(Kϕi)(t) dt =

∫ b

a

rk(t)(Kϕj)(t) dt, j = 1, n, (21)

n
∑

i=0

cki

∫ b

a

(Aϕj)(t)(Kϕi)(t) dt =

∫ b

a

(ARk)(t)(Kϕj)(t) dt, j = 1, n. (22)
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After the transformations to determine the parameter τk an equation (16) will look like:

τk

∫ b

a

(ARk)(t)

(

(KRk)(t)−

n
∑

i=1

cki (Kϕi)(t)

)

dt =

∫ b

a

(KRk)(t)

(

rk(t)−

n
∑

i=1

bki (Aϕi)(t)

)

dt. (23)

Note, that if k = 1 the system of equations (21) will have only zero solution. If to demand from
the initial approximation u0 to satisfy the condition:

∫ b

a

r1(t)(Kϕi)(t) dt = 0, ∀i > 1. (24)

than the system of algebraic equations (21) will have only trivial solution after performing the first
iteration.

From the formula
∫ b

a

(KRk)(t)(Axk)(t) dt =

∫ b

a

rk(t)(Kyk)(t) dt

it follows that an equation (23) can be reduced to more convenient form to determine the unknown
parameter τk:

τk

∫ b

a

(ARk)(t)

(

(KRk)(t)−
n
∑

i=1

cki (Kϕi)(t)

)

dt =

∫ b

a

rk(t)

(

(KRk)(t)−
n
∑

i=1

cki (Kϕi)(t)

)

dt. (25)

4. Substantiation of the variational-gradient method convergence

Theorem 1. When the conditions (5)–(8) are fulfilled, the variational gradient method (10)–(17)
converges to the solution of the dynamic model (1), (2) and the rate of convergence is characterized
by estimates:

‖u∗ − uk‖B 6

√

η

γ
qk−1‖u∗ − u1‖B, k > 2, (26)

‖u∗ − uk‖B 6

√

1

γσ

∥

∥B−1(f −Auk)
∥

∥

B
, k > 2, (27)

where q = η−σ
η+σ

; γ 6 σ 6 η 6 δ.
Proof. On the set of operator definition area, we define a new scalar product [20]:

[u, v] = (Bu,Kv), u, v ∈ D(B). (28)

For this scalar product and set D(B), all axioms of the Hilbert space will be fulfilled, so they can be
considered as a valid Hilbert space. Consider the closure of the set D(B) in metric (28) and we will
call it the energy space HB . Linear set D(B) is dense in the energy space HB. Denote the element’s
norm u in the space HB as ‖u‖B , so that

‖u‖2B = [u, u], u ∈ D(B). (29)

Bisides that

G = B−1A, (30)

g = B−1f. (31)
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And let’s consider an equation:
Gu = g. (32)

The linear operator G is symmetric, positive-definite and bounded in HB. It followes from (30)
and transformations:

[Gu, v] = [B−1Au, v] = (Au,Kv) = (Ku,Av) = (Av,Ku)

= (BB−1Av, Ku) = [B−1Av, u] = [u,B−1Av] = [u,Gv]. (33)

And inequality (8) takes the form:

γ ‖u‖2B 6 [Gu, u] 6 δ ‖u‖2B , u ∈ HB. (34)

As operator G is symmetric positive-definite and bounded in HB, an equation (32) has a unique
generalized solution and solving equation (32) is equivalent to finding a minimum of a quadratic
functional:

F (u) = [Gu, u]− 2[g, u]. (35)

Consider the notation (30), (31) and perform certain transformations, then the variational gradient
method (10)–(17) will take the form:

uk = uk−1 + τkvk +wk, wk ∈ H0 ⊂ HB, (36)

here vk = g−Guk−1 is the residual, and the system of linear equations (16), (17), for definition τk and
wk is equivalent to the ratios:

[Guk, vk] = [g, vk], (37)

[vk − τkGvk −Gwk, v] = 0, ∀v ∈ H0. (38)

Thus, the research of the dynamic model (1) by the variational-gradient method (10)–(17) in the
space H is equivalent to research the model (30) by the method (36)–(38) in the energy space HB .
From (24) it follows that

[vk, v] = 0, ∀v ∈ H0, k > 2. (39)

Really, [vk, v] = [g −Guk−1, v] = (Bg −BGuk−1,Kv) = (f −Auk−1,Kv) = 0, ∀v ∈ H0, k > 2.
So the system (38) with k > 2 will be as:

[τkGvk +Gwk, v] = 0, v ∈ H0. (40)

As linear operator G is symmetric positive-definite and bounded in HB, then there is self-adjoint
positive-definite operator S : HB → HB such that:

G = S2. (41)

Let operators P and P̂ are the orthogonal projection operators [21] of the space HB into the
subspace H0 and Ĥ = SH0 respectively, and denote the projection operators:

Q = I − P, Q̂ = I − P̂ , (42)

where I is identity operator in HB. Note that system (39) and (40) is equivalent to:

P (g −Guk−1) = 0, k > 2, (43)

P (τkGvk +Gwk) = 0, k > 2. (44)
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From the definition of residual vk it follows that:

vk = g −Guk−1 = G(u∗ − uk−1), (45)

where u∗ ∈ HB is a generalized solution of (32).
According to (41) and (45) equations (43) and (44) are equivalent to relations:

P̂S(u∗ − uk−1) = 0, k > 2, (46)

τkP̂Svk + P̂Swk = 0, k > 2. (47)

It comes from (43) and transformations:

P (g −Guk−1) = PG(u∗ − uk−1) = PSS(u∗ − uk−1)

= P̂S(u∗ − uk−1) = 0, k > 2, ∀u ∈ HB. (48)

Similarly from (44) we have:

PG(τkvk + wk) = PSS(τkvk + wk) = P̂S(τkvk + wk), k > 2, ∀u ∈ HB.

For operator P̂ , it follows that

P̂Swk = Swk, wk ∈ H0, k > 2.

And relationship (47) looks like:
Swk = −τkP̂Svk, k > 2. (49)

Let’s introduce an operator
W = Q̂GQ̂. (50)

Linear operator W reflects HB onto the subspace Ĥ⊥. It’s symmetric so an inequality holds:

σ ‖u‖2B 6 [Wu,u] 6 η ‖u‖2B , ∀u ∈ HB, (51)

γ 6 σ 6 η 6 δ. (52)

So, ∀u, v ∈ HB we have

[Wu, v] = [Q̂GQ̂u, v] = [GQ̂u, Q̂v] = [Q̂u,GQ̂v] = [u, Q̂GQ̂v] = [u,Wv],

So, the operator W is a symmetric.
From inequality (34), ∀u ∈ HB , we have:

[Wu,u] = [Q̂GQ̂u, u] = [GQ̂u, Q̂u] 6 δ‖Q̂u‖2B . (53)

Similarly:
[Wu,u] = [Q̂GQ̂u, u] = [GQ̂u, Q̂u] > γ‖Q̂u‖2B . (54)

From relationships (53), (54), we can conclude that there exists constant σ and η, for which the
condition (52) holds, satisfying the inequality (41).

Taking into account (36), (49), (42), (45), (41), (46) and (40) we get:

S(u∗ − uk) = S(u∗ − (uk−1 + τkvk + wk)) = S(u∗ − uk−1)− τkSvk + τkP̂Svk

= S(u∗ − uk−1)− τkQ̂SG(u∗ − uk−1) = S(u∗ − uk−1)− τkQ̂GS(u∗ − uk−1)

= Q̂S(u∗ − uk−1)− τkWS(u∗ − uk−1) = (Q̂− τkW )S(u∗ − uk−1), k > 2.
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So:
S(u∗ − uk) = (Q̂− τkW )S(u∗ − uk−1), k > 2. (55)

We draw attention to the fact that the quadratic function (35) could be represented as:

F (u) = ‖S(u− u∗)‖2B − ‖Su∗‖2B , ∀u ∈ HB,

where u∗ is the generalized solution of the equation (32).
So we get:

F (u) = [Gu, u]− 2[g, u] = [Gu− g, u] − [g, u]

= [G(u− u∗), u] − [Gu∗, u] = [S(u− u∗), Su]− [Su∗, Su]

= [S(u− u∗), Su]− [Su∗, Su∗] + [Su∗, Su∗]− [Su∗, Su]

= [S(u− u∗), Su]− [Su∗, S(u− u∗)]− ‖Su∗‖2B

= ‖S(u− u∗)‖2B − ‖Su∗‖2B .

From (53) it follows:

‖S(u∗ − uk)‖
2
B 6

∥

∥

∥
(Q̂− τW )S(u∗ − uk−1)

∥

∥

∥

2

B
, k > 2, ∀τ ∈ R.

From (55), we get:

‖S(u∗ − uk)‖
2
B 6

∥

∥

∥
(Q̂− τW )S(u∗ − uk−1)

∥

∥

∥

2

B

6

∥

∥

∥
(Q̂− τW )

∥

∥

∥

2(k−1)

B
‖S(u∗ − u1)‖

2
B , k > 2, ∀τ ∈ R.

The numeric parameter τ is chosen so that the operator Q̂ − τW has the lowest possible norm.
As the spectrum of a linear operator W lies on the segment [σ, η], so the operator’s norm Q̂− τW is
minimal if:

τ =
2

η + σ
.

and:

q =
∥

∥

∥
Q̂− τW

∥

∥

∥

B
=

η − σ

η + σ
.

In addition we got an estimation:

‖S(u∗ − uk)‖ 6 qk−1‖S(u∗ − u1)‖B , k > 2, ∀τ ∈ R. (56)

From the definition of the projection operator Q̂ and from the formulas (51), (50), ∀u ∈ Ĥ⊥ it
follows:

σ ‖u‖2B 6 [Wu,u] = [Q̂S2Q̂u, u] = [SQ̂u, SQ̂u] = [Su, Su] = ‖Su‖2B . (57)

Similarly from (34) and an operator definition Q:

∀u ∈ ĤB : [Q̂SQu, Q̂SQu] = [Qu,SQ̂SQu]

= [Qu,S2Qu] = [GQu, Qu] 6 δ ‖Qu‖2B ,

[Wu,u] = [Q̂S2Q̂u, u] = [SQ̂u, SQ̂u] = ‖SQ̂u‖2B 6 η ‖u‖2B . (58)

We can conclude that there exists η such that holds an inequality ‖Q̂SQu‖2B 6 η‖Qu‖2B .
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An estimate (26) we get from the formulas (34), (41), (56), (46), (58) and (39):

‖u∗ − uk‖
2
B 6

1

γ
[G(u∗ − uk), u

∗ − uk] =
1

γ
‖S(u∗ − uk)‖

2
B 6

1

γ
q2(k−1) ‖S(u∗ − uk)‖

2
B

=
1

γ
q2(k−1)

∥

∥

∥
Q̂S(u∗ − u1)

∥

∥

∥

2

B
6

η

γ
q2(k−1) ‖u∗ − u1‖

2
B , k > 2.

To get estimate (27), we have to take into account relationships (34), (41), (46), (57), (39), (45),
(31):

‖u∗ − uk‖
2
B 6

1

γ
[G(u∗ − uk), u

∗ − uk] =
1

γ
‖S(u∗ − uk)‖

2
B 6

1

σγ
‖G(u∗ − uk)‖

2
B =

=
1

σγ
‖g −Guk‖

2
B 6

1

σγ

∥

∥B−1(f −Auk)
∥

∥

2

B
, k > 2.

�

From the estimates (25), (26) it is clear that the variation-gradient method converges better than
gradient-type methods. In the case B = K = I and the operator A is bounded, positive-definite,
symmetric then the method (10)–(17) degenerates into an ordinary variation gradient method for a
positive-definite, bounded, and symmetric operator [15].

5. Numerical experiment

The issue of research the tasks of controlling unmanned aerial vehicles and constructing the optimal
flight path is given a lot of attention [2, 6, 13, 16, 17, 22]. Since unmanned aerial vehicles become more
autonomous, critical and complex systems require prior forecasting and analysis to minimize costs. The
development of technologies entails an increase in the complexity of control objects, an increase in the
quality requirements and the accuracy of control due to the increase in the cost of control error. This
makes further development and improvement of methods that solve the problem of optimal control of
unmanned aerial vehicles. Therefore, their development and application to the problems of analysis of
models of automated control systems of unmanned aerial vehicles is a relevant and perspective task.

The dynamical model of control of a light unmanned aerial vehicle of mass m was considered. Its
motion is described by a system of three ordinary differential equations of the first order. With the
appropriate choice of control forces (Fr, Fϕ), equations of this type describe the flat motion of an
aircraft in phase variables (r, ṙ, ϕ̇), where (r, ϕ) is the output polar coordinate system. Under these
conditions, the integro-differential model of the aircraft movement is described by the equations:

{

m(r̈ − rϕ̇2) = Fr

m(rϕ̈+ 2ṙϕ̇) = Fϕ

(59)

Let the governing forces be:

Fr = m
[

µ2
2r

2 − rϕ̇2 − (µ1 + µ2)(ṙ + µ2r) + g(ϕ̇)
]

,

Fϕ = m
[

(2ṙ − µ3r)ϕ̇+ r2
]

,
(60)

here µ1, µ2, µ3 are constants and g(ϕ̇) is a governing function. Then performing the replacement of
variables:

x1 = ṙ + µ2r,

x2 = r,

x3 = ϕ̇,
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the initial equations of the trajectory of motion of an unmanned aircraft can be written in the form of
a three-dimensional system:











ẋ1 = −µ1x1 + g(x3),

ẋ2 = −µ2x2 + x1,

ẋ3 = −µ3x3 + x2,

which is the main object of research. The obtained system of equations is reduced to the ordinary
differential equation of the third order:

y′′′ + (µ1 + µ2 + µ3)y
′′ + (µ1µ2 + µ1µ3 + µ2µ3)y

′ + µ1µ2µ3y = g(y) (61)

with unknown variable y(t) = x3(t).
We will conduct a comparative experiment in order to demonstrate the real possibilities of the

variation-gradient method in comparison with the gradient method in the research of the integro-
differential model of the motion of an unmanned machine (59), (60).

To do this, consider the problem of remote control of a lightweight aircraft, which is described by
the system (59) and the control forces:

Fr = m

[

5r2 − rϕ̇2 + 56− 24t2 − 4

∫ 1

0
G(t, ξ)ϕ̇(ξ) dξ

]

,

Fϕ = m[2ṙϕ̇+ r2].

(62)

The core of the integral part of the equation has the form:

G(t, ξ) =

{

ξ, 0 6 ξ 6 t,

ξ − 1, t 6 ξ 6 1.
(63)

Under conditions ϕ̇(0) = ϕ̇(1) = (1) = 0. According to (61) and (59), (62) we get a problem:







y′′′(t)− 5y′(t) + 4

∫ 1

0
G(t, ξ)y(ξ)dξ = 56− 24t2,

y(0) = y(1) = y′′(1) = 0.

(64)

In the course of the experiment, the steepest descent method (gradient method) and variational-
gradient methods for the integro-differential model (64), (63) with a K-positive-definite K-symmetric
operator were used to build the trajectory of the unmanned aircraft.

The problem (64), (63) satisfies the conditions of the theorem on the convergence of the variation-
gradient method for equations with K-positive-definite K-symmetric operators if

Ky(t) =

∫ t

0
y(ξ) dξ,

{

By(t) = y′′′,

y(0) = y(1) = y′′(1) = 0.

So the system (59), (64), (63) describing the integro-differential model of motion of the apparatus
has a unique solution, as well as methods of the steepest descent and the variation-gradient method
for this task converge.

For the equation (64), (63) the exact solution can be obtained analytically:

ϕ̇ = y(t) = −0.2529233637e2t + 4.3030627419et + 11.6969372581e−t − 15.7470766363e−2t − 12t,
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which is depicted in Fig. 1.
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Fig. 1. A graph of the exact solution of the differential equation – the rate
of change of the angle of rotation of the UAV.

From the equation of change, using found ϕ̇, the desired flight path of an unmanned aircraft was
found, which corresponds to the flight task and has the form (Fig. 2):

x = (−0.5058e2t + 4.3031et − 11.6969e−t + 31.4942e−2t − 12)

× cos(−0.12645e2t + 4.3031et − 11.6969e−t + 7.87355e−2t − 6t2);

y = (−0.5058e2t + 4.3031et − 11.6969e−t + 31.4942e−2t − 12)

× sin(−0.12645e2t + 4.3031et − 11.6969e−t + 7.87355e−2t − 6t2);

For the implementation of the steepest descent method and the variational-gradient method, com-
putation a mathematical package Derive A Mathematical Assistant was used.
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Fig. 2. Trajectory of UAV.

As the coordinate functions the sequence {ϕi(t) = ti(t− 1)3}i>1 ⊂ H0 was considered. To build an

approximations n = 2 was proposed that is two coordinate functions were considered ϕ1(t) = t(t− 1)3

and ϕ2(t) = t2(t− 1)3, as an arbitrary function for the initial approximation y0 = t(t− 1)3 was taken
which satisfies the initial conditions.

The results are below in Tables 1, 2.
When solving this problem by the variation gradient method, after the first iteration, we obtained

an solution of problems with accuracy ε = 10−4. To obtain such accuracy with the gradient method,
we needed to make four iterations.
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Table 1. The method of the steepest descent.

x

y
|y∗ − y1| |y∗ − y2| |y∗ − y3| |y∗ − y4|

0 0 0 0 0
0.25 0.0691565 0.017482 2.77067 · 10−4 3.26538 · 10−4

0.5 0.089972 0.018708 0.00185044 4.352977 · 10−4

0.75 0.1194197 0.014608 8.49059 · 10−4 3.5819054 · 10−4

1 0 0 0 0

Table 2. Variation gradient method.

t

y
|y∗ − y1| |y∗ − y2| |y∗ − y3|

0 0 0 0
0.25 8.688108 · 10−4 5.94684 · 10−7 9.920092 · 108

0.5 8.284705 · 10−4 1.6588193 · 10−6 6.572201 · 10−7

0.75 4.087585 · 10−4 9.157572 · 10−6 1.402053 · 10−6

1 0 0 0

The conducted experiment showed that the finding of the solution by the variation-gradient method
allows reducing arithmetic calculations by at least 60% in comparison with the method of the steepest
descent.

x

y

2 · 10−12

1.5 · 10−12

1 · 10−12

5 · 10−13

5 · 10−14 1 · 10−13 1.5 · 10−13

0

0

Fig. 3. The graph of the first approximations. 1) Exact solution ( );
2) The first approximation with VGM ( ); 3) The first approximation

with MFD ( ).

Graphs of the first approximations on the segment were constructed to visualize the effectiveness
of the variation gradient method [0; 2.5 · 10−13] (Fig. 3). In the chart, the blue color shows the exact
solution, the red first approximation is constructed according to the variation gradient method, and
the green one is an approximation constructed by the method of the steepest descent.

At the same time, it should be noted that in practice it is not always possible to construct an
adequate model in a linear analytical form. This complicates the use of variation gradient. Therefore,
the further development of the theory of variational-gradient methods consists in the extension of these
methods to broader classes of models.

6. Conclusion

According to the estimates obtained in the theorem, the variation-gradient method has a high con-
vergence rate, is resistant to disturbances and does not require knowledge of the boundaries of the
spectrum of the integro-differential operator. Therefore, the research of an integro-differentia model
using the variation-gradient method for a K-positive-definite, K-symmetric operator will increase the

Mathematical Modeling and Computing, Vol. 6, No. 2, pp. 344–357 (2019)



356 MashkovO.A., Sobchuk V. V., BarabashO.V., DakhnoN.B., ShevchenkoH.V., Maisak T. V.

efficiency of information processing in the processes of control and research of dynamic systems. Appli-
cation of the variation-gradient method to the control tasks will allow extending the range of problems
considered.

[1] Barabash O. V., Dakhno N. B., Shevchenko H. V., NeshcheretO. S., Musienko A. P. Information Technology
of Targeting: Optimization of Decision Making Process in a Competitive Environment. International
Journal of Intelligent Systems and Applications. 9 (12), 1–9 (2017).

[2] Mashkov O. A., Al-Tameemi Raheem Qasim Naser, Lami Juhi Hussein, Kosenko V. R. Application informal
approach to contriol complex dynamic systems. Control, navigation and communication systems. 4, 31–37
(2015), (in Ukrainian).

[3] Kucherov D. P. On some methods and algorithms for calculating matrix exponential in problems of control
system dynamics analysis. Upravlyayushchie Sistemy i Mashiny. 11–17 (2001), (in Russian).

[4] Chakraborty A., Konar A. Mathematical Modeling and Analysis of Dynamical Systems. In: Emotional
Intelligence. Studies in Computational Intelligence. Vol. 234. Berlin, Heidelberg, Springer (2009).

[5] Barabash O., Kravchenko Y., Mukhin V., Kornaga Y., Leshchenko O. Optimization of Parameters at SDN
Technologie Networks. International Journal of Intelligent Systems and Applications. 9 (9), 1–9 (2017).

[6] Gramajo G., Shankar P. An Efficient Energy Constraint Based UAV Path Planning for Search and Coverage.
International Journal of Aerospace Engineering. 2017, Article ID 8085623, 13 pages (2017).

[7] Mashkov O. A., Mamchur Yu. V. Analytical estimation of the quality of the control process on the simulators
of a remote pilot airplane with algorithm based on the solution of the reverse dynamics problems. Aerospace
technologies. 2, 59–62 (2017).

[8] Obidin D., Ardelyan V., Lukova-Chuiko N., Musienko A. Estimation of functional stability of special pur-
pose networks located on vehicles. 2017 IEEE 4th International Conference Actual Problems of Unmanned
Aerial Vehicles Developments (APUAVD), Kiev. 167–170 (2017).

[9] Barabash O., Lukova-Chuiko N.,Sobchuk V., Musienko A. Application of Petri Networks for Support of
Functional Stability of Information Systems. 2018 IEEE 1st International Conference on System Analysis
and Intelligent Computing, SAIC 2018 - Proceedings. Kiev. 167–170 (2017).

[10] Boichuk O., Holovats’ka I. Boundary-Value Problems for Systems of Integrodifferential Equations. Journal
of Mathematical Sciences. 203 (3), 306–321 (2014).

[11] Perestyuk M. O., Kasyanov P. O., Zadoyanchuk N. V. On Faedo–Galerkin method for evolution inclusions
with Wλ0

-pseudomonotone maps. Memoirs on Differential Equations and Mathematical Physics. 44,
105–132 (2008).

[12] Tuyrin V., Barabash O., Openko P., Sachuk I., Dudush A. Informational support system for technical state
control of military equipment. 2017 IEEE 4th International Conference Actual Problems of Unmanned
Aerial Vehicles Developments (APUAVD), Kiev. 230–232 (2017).

[13] Kucherov D., Kozub A. Model of UAV as agent of multiagent system. 2018 IEEE 9th International Con-
ference on Dependable Systems, Services and Technologies (DESSERT), Kiev. 343–347 (2018).

[14] Kucherov D., Kozub A. Rasstrygin A. Setting the PID Controller for Controlling Quadrotor Flight: a Gra-
dient Approach. 2018 IEEE 5th International Conference on Methods and Systems of Navigation and
Motion Control, MSNMC. 90–93 (2018).

[15] Luchka A. Yu., Noschenko O. E., Tuhalevskaya N. I. Variational Gradient Method. USSR Computational
Mathematics and Mathematical Physics. 24 (4), 1–6 (1984).

[16] Barabash O., Dakhno N., Shevchenko H., Sobchuk V. Integro-Differential Models of Decision Support Sys-
tems for Controlling Unmanned Aerial Vehicles on the Basis of Modified Gradient Method. 2018 IEEE 1st
International Conference on System Analysis and Intelligent Computing, SAIC, 94–97 2018.

[17] Barabash O. V., Dakhno N. B., Shevchenko H. V., Majsak T.V. Dynamic models of decision support systems
for controlling UAV by two-step variational-gradient method. 2017 IEEE 4th International Conference on
Actual Problems of Unmanned Aerial Vehicles Developments, APUAVD. 108–111 (2017).

[18] Petryshyn W. V. On a class of K-p.d. and non-K-p.d. operators and operator equations. Journal of
Matheamatical analysis and applications. 10 (1), 1–24 (1965).

Mathematical Modeling and Computing, Vol. 6, No. 2, pp. 344–357 (2019)



Improvement of variational-gradient method in dynamical systems of automated control . . . 357

[19] Lutsenko A. V., Skorik V. A. Funkcija Grina i ee primenenie. Har’kov, Har’kovskij nacional’nyj universitet
im. V.N. Karazina (2002), (in Russian).

[20] Kadets V. A Course in Functional Analysis and Measure Theory. Springer, Cham (2018).

[21] Lenkov S. V., Khoroshko V. O., Dakhno N. B. Odnokrokovyi variatsiino-hradiientnyi metod shchodo matem-
atychnykh modelei kompleksnykh system zakhystu informatsii. Visnyk Kyivskoho natsionalnoho univer-
sytetu imeni Tarasa Shevchenka. Viiskovo-spetsialni nauky. 22, 10–13 (2009), (in Ukrainian).

[22] Mashkov O. A., Durniak B. V., Mamchur Yu. V., Timchenko O. V. Syntez alhorytmu prohramnoho keruvan-
nia na trenazheri dystantsiino pilotovanoho litalnoho aparata na osnovi alhorytmichnoi protsedury rishen-
nia zvorotnoi zadachi dynamiky (stokhastychna postanovka). Modeliuvannia ta informatsiini tekhnolohii.
82, 166–176 (2018), (in Ukrainian).

Удосконалення варiацiйно-градiєнтного методу в динамiчних
системах автоматизованого управлiння iнтегро-диференцiйними

моделями

Машков О. А.1, Собчук В. В.2, Барабаш О. В.3, Дахно Н. Б.3, Шевченко Г. В.3, Майсак Т. В.4
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4Київський нацiональний економiчний унiверситет iменi Вадима Гетьмана,
проспект Перемоги, 54/1, Київ, 03057, Україна

Розглянуто динамiчнi системи, що заданi iнтегро-диферецiйними моделями з K-си-
метричним K-позитивно визначеним оператором. До зазначених моделей застосо-
вано варiацiйно-градiєнтний метод. Проведений аналiз показав, що для реалiзацiї
цього методу не потрiбно знання спектра оператора, крiм того, у нього вища швид-
кiсть збiжностi та стiйкiсть до збурень порiвняно з градiєнтними методами. В роботi
доведено теорему, яка дає змогу зробити висновки про ефективнiсть застосування
варiацiйно-градiєнтного методу для дослiдження завдань управлiння. Дослiдження
iнтегро-диференцiйної моделi з K-позитивно визначеним K-симетричним оператором
за допомогою варiацiйно-градiєнтного методу дозволить пiдвищити оперативнiсть
опрацювання iнформацiї в процесах управлiння i дослiдження динамiчних систем.
Застосування варiацiйно-градiєнтного методу до задач управлiння розширить коло
задач, що розглядаються. Оскiльки розвиток сучасних технологiй спричинює зрос-
тання складностi об’єктiв управлiння, пiдвищення вимог до якостi й точностi управ-
лiння внаслiдок зростання цiни управлiнської помилки, необхiднi подальший розви-
ток та удосконалення методiв, якi вирiшують завдання оптимального управлiння,
наприклад, безпiлотними лiтальними апаратами. На модельному прикладi розгляну-
то застосування варiацiйно-градiєнтного методу до моделей систем автоматизованого
управлiння безпiлотними лiтальними апаратами.

Ключовi слова: автоматизоване управлiння, варiацiйно-градiєнтний метод, ди-
намiчнi системи, iнтегро-диференцiйнi моделi, оптимiзацiя управлiння.
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