odeling
MATHEMATICAL MODELING AND COMPUTING, Vol.6, No. 2, pp. 344-357 (2019) I\/I @P”ti"g

athematical

Improvement of variational-gradient method in dynamical systems of
automated control for integro-differential models

Mashkov O. A.', Sobchuk V. V.2, Barabash O. V.2, Dakhno N. B.?, Shevchenko H. V.3,
Maisak T. V.4

L State Ecological Academy of Postgraduate Education and Management,
35, build. 2 Vasylia Lypkivskoho Str., 03035, Kyiv, Ukraine
2 Lesya Ukrainka East European National University,
9 Potapova Str., 43000, Lutsk, Ukraine
3 State University of Telecommunications,
7 Solomyanska str., 03110, Kyiv, Ukraine
4 Kyiv National Economic University named after Vadym Hetman,

54/1 Peremohy Ave., Kyiv, 03057, Ukraine
(Received 15 May 2019; Revised 11 July 2019; Accepted 11 July 2019)

The dynamical systems given by integro-differentiation models with K-symmetric K-po-
sitive-definite operator are considered. The variational-gradient method was applied to
those models. The analysis showed that the implementation of this method does not re-
quire knowledge of the operator spectrum, in addition, it has a better convergence rate
and is more resistant to disturbances than gradient methods. The theorem is proved in
this paper, which allows us to draw conclusions about the effectiveness of the application
of the variational-gradient method for the research of control problems. Investigation of
an integro-differential model with a K-positive-definite K-symmetric operator using the
variational-gradient method will increase the efficiency of information processing in the
processes of control and research of dynamic systems. Application of the variational-
gradient method to the control tasks will allow expanding the range of tasks under consid-
eration. It is noted that the development of modern technologies entails an increase in the
complexity of control objects, an increase in the quality requirements and the accuracy
of control due to the increase in the cost of control error. This makes to be essential
further development and improvement of methods that solve the problems of optimal con-
trol, for example, unmanned aerial vehicles. As the model example, the application of the
variational-gradient method to the models of automated control systems for unmanned
aerial vehicles is considered.

Keywords: automated control, variational-gradient method, dynamic systems, integro-
differential model, optimization of control.
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1. Introduction

The development of modern simulation techniques has created the prerequisites for the creation and
research of highly effective systems, which are usually focused on digital algorithms for processing
information, using modern microprocessors, neurocomputers, processors with fuzzy logic and other
modern technological advances.

In modern simulation of continuous processes, the representation of dynamical systems in the
state space is increasingly used. The description of dynamic systems is extremely diverse: it can
be implemented using differential equations, discrete mappings, graph theory, the theory of Markov
chains, etc. The choice of one of the methods describes a particular type of mathematical model of
the corresponding dynamic system [1-4].
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The paper assumes that the model is described using an integro-differential equation. This allows
knowing the initial state to predict the future state of the dynamic system. The description of dynamic
processes and systems using the differential equations makes it easy to carry out their digital modeling
applying approximate methods and design universal algorithms for information processing in order to
optimally evaluate the parameters of systems and processes. The optimal estimations are necessary
for organization of control in systems of automatic control of modern models [5, 6], and in informa-
tion measuring systems for obtaining reliable data on measured physical quantities, for predicting
behavior of investigated phenomena and systems, and increasing the failure-resistance of information
processing [7-9].

The construction and implementation of the system of differential equations has become one of the
most effective tools for modeling complex dynamic systems [9,10]. The complexity of modern models
makes the apparatus of approximate computations virtually indispensable in this situation. Thanks
to the development of numerical methods and the growth of computing power of modern technology,
it was possible to take into account not only the most significant characteristics but also secondary
factors in the models, which, in turn, has led to an increase in the accuracy of the models.

The most commonly used methods are variational, projection, gradient, difference. However, the
size and complexity of modern models require huge resource costs for their implementation. These
models include: an electromechanical tracking system for reproducing the angle of rotation; temper-
ature stabilization system in the space orbital station compartment, digital air traffic control system,
etc. [11-13].

In connection with this methods that are the synthesis of variational and gradient methods were
recently developed. The obtained methods have a better convergence rate and are more resistant to
disturbances than gradient methods. This allows you to reduce the estimated costs, which in turn saves
time and memory to implement the model in practice. Such methods include the variational-gradient
method [14-17].

2. The problem statement

We consider the application of the variational-gradient method to dynamic systems of automated
control, which are described by integro-differential models with K-positive-definite K-symmetric op-
erators.

Let the dynamic model be described by the boundary value problem:

Au(t) = u™ () + e (Ou V() + ..+ et +Z/ H(t,&u)(€)de = f(t), tela,b], (1)

H

m—

(Oél] + 5lj ( )) = 0y, l= 07m - 17 (2)
7=0

where oy, B, 07 and 0 < 1, j < m — 1 are known values, and ¢; € C([a,b]), i = i, m.
Operator A: D(A) — H is defined on a set D(A) = {u: u™ € Lofa,b],U; = 07,1 =0,m — 1}. Let

operator A is linear K-positive-definite and K-symmetric [18], so there is an operator K: D(K) —
Ls[a,b], that is as follows:

Ku(t) = u™ (&) + ay()u™ "V (t) + ... + an(t +Z/ D;(t,&)u)(€)de, t € a,b],
Ul(u) =05, 1=0,m—1.
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In addition, the following conditions are met:

Ja, 8> 0: /ab(Au)(t)(Ku)(t) dt > a/ab u’(t)dt, Yu e D(A), (3)
/ (KuP) < 8 / (OO, Yue DA, ()
/a (A () (Ko) () di = / (K@) (o) (&) dt, v € D(A). (5)

Assume that there is an operator B: D(B) — Lafa,b] — D(B) = D(A):
Bu(t) = u™ () + dy (D™D (t) + .. + o (E)ut) + i / it (€ de = g(t), t € [ab], (6)
Uw) = o, 1=0m =T, "~ )

That is linear K-positive-definite and K-symmetricand for (6), (7) it‘s easy to find solution Vg €
L2 [a, b] .
Let the relation is held:

7,0 >0: 0< v < < o0, Vu e D(A),

b b b
7/ (BU)(t)(Ku)(t)dt</ (Au)(t)(KU)(t)dt<5/ (Bu)(t)(Ku)(t)dt. (8)

Then the investigation of the integro-differential model (1), (2) is equivalent to finding the minimum
of a quadratic functional:

b b
F(u) =/ (Au)(t)(Ku)(t) dt—2/ f)(Ku)(t) dt. 9)

Thus, in the execution of (3)—(8), the dynamic model (1), (2) has a unique generalized solution [18§],
which we shall finding from the condition of the minimum of a quadratic functional (9).

3. Variational gradient method for the investigation of integro-differential control
models

We consider the integro-differential model (1), (2). Let {¢;: i > 1} C D(A) is a sytem linearly
independent elements and H is a subspace created by {¢;: i > 1}. Let ug € {u: u(™ € Ly[a,b],U; =
oy, = 0,m — 1} is an arbitrary initial approximation, and we assume that the (k—1)-st approximation
is found. Then we will look for the k-th according to the scheme:

up(t) = zp(t) + Y _pi(t)ak, t€ fa,b], (10)
=1

here xj, is determined from equality

Bz (t) = Bup_1(t) + mri(t), t € [a,b], (11)
U(u)=0;, 1=0m-1, k>1, (12)

here 7y, is some unknown parameter, r, = f(¢) — (Aug—1)(t) is residual.

Mathematical Modeling and Computing, Vol.6, No.2, pp.344-357 (2019)



Improvement of variational-gradient method in dynamical systems of automated control . .. 347

Unknown parameters 7 and a we seek from the condition of a quadratic functional (9) minimum.
Since it is easy to find a solution for the problem (6), (7), there exists a Green’s function [19] for the

problem:
(BRy)(t) =r(t), tea,b], Ufu)=0, I=0m—-1, k>1. (13)

So,
b
- / Gt (€ de (14)

and the variational-gradient method (10)—(12) is as follows:
up(t) = up_1(t) + T Ry (t) + Z it t € [a,b]. (15)

From the condition of the functional (9) minimum, after transformations, taking into account (10)—
(15), we obtain a system of linear algebraic equations for the determination of unknown parameters 7
and af:

b

b n b
n (AROU RN de+ 3ol | ArOE )@ & = [ noE R (16)

a

b
- / (AR (Ko) (1) dt + 3 ab / (A () (K ) (£) dt = / (Kt dt, =T (17)

7=1

As operator A is linear K-positive-definite and K-symmetric, then the system of algebraic equations
(16), (17) has a unique solution for unknown 73, and a¥.
From

rha1(t) = f(t) — Aug(t) = f(t) — Alup—1(t) + 76 (B7 ) (t) + wie(t)) = rio(t) — Te(ARR)(t) — Awy(t)

and from (17) it follows that
b
/ r(t)(Ke)(t)dt =0, k>2, i>1, te€]la, bl. (18)
An amendment wj; we will find in a form:
wi(t) = Y (bF = mef)pi(t)- (19)
Then approximation (10) will take the form:

ur(t) = wp_1(t) + TRe(t) + > (0F — mcf)pi(t), (20)
i=1

Where parameters bf and cf are determined from systems:

b

Zbk / (Up)OEe)@ dt= [ n@(Ee)Od, j=Tn (21)
b

S / (A, (O (K 03)(8) dt = / (AR(O(K ;) () dt, j=Tom. (22)

i=0 e e
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After the transformations to determine the parameter 7 an equation (16) will look like:

b
Tk/ (ARy)(t) < KR)( ZC (Kpi)(t ) / (KRy)(t < Zbk (Ap;)(t >dt (23)

Note, that if £ = 1 the system of equations (21) will have only zero solution. If to demand from
the initial approximation ug to satisfy the condition:

[ nowawa=o, vis1 (9

than the system of algebraic equations (21) will have only trivial solution after performing the first
iteration.
From the formula

b b
/ummmmw@wz/mwmmmw

it follows that an equation (23) can be reduced to more convenient form to determine the unknown
parameter 7g:

Tk/b(ARk)(t)<KRk ZC (K ;) (t > _/b ()<KRk Zc (Ki)(t >dt (25)

a

4. Substantiation of the variational-gradient method convergence

Theorem 1. When the conditions (5)—(8) are fulfilled, the variational gradient method (10)—(17)
converges to the solution of the dynamic model (1), (2) and the rate of convergence is characterized
by estimates:

" el < f”%m wll k32, (26)
lu* —ugll g < \/ HB (f — Auyg) HB, k>2, (27)
Whereq—"+a,7 o<n<o.

Proof. On the set of operator definition area, we define a new scalar product [20]:
[u,v] = (Bu, Kv), wu,v € D(B). (28)

For this scalar product and set D(B), all axioms of the Hilbert space will be fulfilled, so they can be
considered as a valid Hilbert space. Consider the closure of the set D(B) in metric (28) and we will
call it the energy space Hp. Linear set D(B) is dense in the energy space Hp. Denote the element’s
norm w in the space Hp as ||u|| 5, so that

Jull = [u,u], ue D(B). (29)

Bisides that
G =B A, (30)
=B !f. (31)
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And let’s consider an equation:

Gu=g. (32)

The linear operator G is symmetric, positive-definite and bounded in Hp. It followes from (30)
and transformations:

[Gu,v] = [B™' Au,v] = (Au, Kv) = (Ku, Av) = (Av, Ku)
= (BB 'Av, Ku) = [B~'Av,u] = [u, B~1 Av] = [u, Gv]. (33)
And inequality (8) takes the form:
vllulf < [Gu, o] <6 ullf, e Hp. (34)

As operator G is symmetric positive-definite and bounded in Hp, an equation (32) has a unique
generalized solution and solving equation (32) is equivalent to finding a minimum of a quadratic
functional:

F(u) = [Gu,u] — 2[g, u). (35)

Consider the notation (30), (31) and perform certain transformations, then the variational gradient
method (10)—(17) will take the form:

Up = Ug—1 + TV +wg, wi € Hy C Hp, (36)

here vy = g — Guy_1 is the residual, and the system of linear equations (16), (17), for definition 75 and
wy, is equivalent to the ratios:

[Guk7 Uk] = [97 Uk]a (37)
[’Uk — TkG’Uk — ka,?}] = O, Yov € H(). (38)

Thus, the research of the dynamic model (1) by the variational-gradient method (10)—(17) in the
space H is equivalent to research the model (30) by the method (36)—(38) in the energy space Hp.
From (24) it follows that

[vg,v] =0, YveE Hy, k=2 (39)

Really, [vg,v] = [g — Gug—1,v] = (Bg — BGug_1, Kv) = (f — Aug—1, Kv) =0, Vv € Ho, k > 2.
So the system (38) with k£ > 2 will be as:

[TkGu + Gug,v] =0, v € Hy. (40)

As linear operator GG is symmetric positive-definite and bounded in Hp, then there is self-adjoint
positive-definite operator S: Hg — Hp such that:

G =52 (41)

Let operators P and P are the orthogonal projection operators [21] of the space Hp into the
subspace Hy and H = SHy respectively, and denote the projection operators:

Q=I-P, Q=I-P, (42)
where I is identity operator in Hp. Note that system (39) and (40) is equivalent to:

P(g — Guk_l) = 0,
P(TkG’Uk + ka) =0,

k> 2, (43)
k> 2.

AV
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From the definition of residual vy it follows that:
v =g — Gug—1 = G(u" — ug—1), (45)

where u* € Hp is a generalized solution of (32).
According to (41) and (45) equations (43) and (44) are equivalent to relations:

PS(u* —up_1) =0, k>2, (46)
. PSuvy, + PSwy, =0, k>2. (47)
It comes from (43) and transformations:
P(g — Gug—1) = PG(u* —up—1) = PSS(u* — ug_1)
= PS(u* —up_1) =0, k>2, VYuecHp. (48)
Similarly from (44) we have:
PG(Tk’Uk +wg) = PSS(TkUk + wy) = PS(Tkvk +wy), k=2, Yue Hp.
For operator ]5, it follows that
Pka = ka, w, € Hy, k> 2.
And relationship (47) looks like: X
ka = —TkPS’Uk, k = 2. (49)
Let’s introduce an operator o
W = QGQ. (50)
Linear operator W reflects Hg onto the subspace HL. Its symmetric so an inequality holds:
ollul% < Wu,u] <nllully, Yue Hp, (51)
y<o<n<o (52)
So, Yu,v € Hp we have
(Wu,v] = [QGQu,v] = [GQu, Qv] = [Qu, GQu] = [u, QGQu] = [u, W],
So, the operator W is a symmetric.
From inequality (34), Yu € Hp, we have:
Wa,u) = [QGQu,u] = [GQu, Qu] < 8l|Qul}. (53)
Similarly: o o R
(Wu,u] = [QGQu,u] = [GQu, Qu] > 7]|Qul}. (54)

From relationships (53), (54), we can conclude that there exists constant ¢ and 7, for which the
condition (52) holds, satisfying the inequality (41).
Taking into account (36), (49), (42), (45), (41), (46) and (40) we get:

S(u* —ug) = S(u* = (up—1 + Trvp + wi)) = S(u* — up_1) — TRSvk + TP Sy
=S(u* —ug_1) — TkQSG(u* —up_1) =S —up_1) — TkQGS(u* — Up—1)
= QS(u* —up_1) — WS (u* —u_q1) = (Q — 7 W)S(u* —ug_q1), k=2
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So:

S(u* —ug) = (Q —mW)S(u* —uk—1), k=2. (55)
We draw attention to the fact that the quadratic function (35) could be represented as:

F(u) = [|S(u—u")|G — |Su*l5,  Yue Hp,

where u* is the generalized solution of the equation (32).

So we get:
[GU,U] - 2[9,'&] = [Gu - g,U] - [gau]
[G(u — u"),u] — [Gu*,u] = [S(u—u"), Su] — [Su*, Su]
= [S(u — u¥), Su] — [Su*, Su™] + [Su*, Su*| — [Su*, Su]
S0~ u), ] — [Su*, S — )]~ |50

|

[S(u —u")[|5 — [15u*|3 -

From (53) it follows:
. 2
IS = up)l < (@ = TW)S@ —we)|| . k>2, wrer.
From (55), we get:

. 2
st —uly < (@~ 78t —we)

2k

<J@- )V isw —wl. k2 vrer

B

The numeric parameter 7 is chosen so that the operator Q — 7W has the lowest possible norm.
As the spectrum of a linear operator W lies on the segment [0, 7], so the operator’s norm @ — 7W is

minimal if: 5
T = .
n+o
and:
~ n—o
o, - 252
1 HQ T B n+o
In addition we got an estimation:
IS(u* =)l < " HS(u* —w)lp, k=2, VreER. (56)

From the definition of the projection operator Q and from the formulas (51), (50), Yu € H' it

follows: ) ) ) R
o llullf < [Wu,u] = [QS*Qu,u] = [SQu, SQu] = [Su, Su] = ||Sul/%. (57)

Similarly from (34) and an operator definition Q:

Vu € Hp: [QSQu, QSQu] = [Qu, SQSQu]
= [Qu, S*Qu] = [GQu, Qu] <4 |Qu%,

(Wu,u] = [Q5%Qu, u] = [SQu, SQu] = ||SQullE < lu]F - (58)

We can conclude that there exists 7 such that holds an inequality ||Q.S Qul|% < n||Qul|%.
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An estimate (26) we get from the formulas (34), (41), (56), (46), (58) and (39):

* 1 — *
15 (u* — w5 < ;qz(k VIS (u* — )l
S~y k>

To get estimate (27), we have to take into account relationships (34), (41), (46), (57), (39), (45),
(31):

1 1 ) 1 )
I —upll < ZIG(" —w),ut —w] = = S — w3 < — |Gu* —w)l =
By g "oy b

1 1 _ 2
ZO_—WHQ—GukHngaHB Yf—Aw)| . k=2

n

From the estimates (25), (26) it is clear that the variation-gradient method converges better than

gradient-type methods. In the case B = K = I and the operator A is bounded, positive-definite,

symmetric then the method (10)—(17) degenerates into an ordinary variation gradient method for a
positive-definite, bounded, and symmetric operator [15].

5. Numerical experiment

The issue of research the tasks of controlling unmanned aerial vehicles and constructing the optimal
flight path is given a lot of attention [2,6,13,16,17,22|. Since unmanned aerial vehicles become more
autonomous, critical and complex systems require prior forecasting and analysis to minimize costs. The
development of technologies entails an increase in the complexity of control objects, an increase in the
quality requirements and the accuracy of control due to the increase in the cost of control error. This
makes further development and improvement of methods that solve the problem of optimal control of
unmanned aerial vehicles. Therefore, their development and application to the problems of analysis of
models of automated control systems of unmanned aerial vehicles is a relevant and perspective task.
The dynamical model of control of a light unmanned aerial vehicle of mass m was considered. Its
motion is described by a system of three ordinary differential equations of the first order. With the
appropriate choice of control forces (F,F,), equations of this type describe the flat motion of an
aircraft in phase variables (r,7,¢), where (r,¢) is the output polar coordinate system. Under these
conditions, the integro-differential model of the aircraft movement is described by the equations:

m(it — r$?) = F, (50)
m(rg + 2rp) = F,
Let the governing forces be:

EF.=m [,u%rz — 1% — (1 + p2)(F + par) + 9(9)] .

Fy=m (27 — pgr)p + 7], (60)

here py, pa, g are constants and g(¢) is a governing function. Then performing the replacement of

variables:

T = 7‘,—’_,“2747
o =T,

l‘3=<,b,
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the initial equations of the trajectory of motion of an unmanned aircraft can be written in the form of
a three-dimensional system:

i = —mr + g(3),

Ty = —poT2 + 1,

&3 = —p3T3 + T2,
which is the main object of research. The obtained system of equations is reduced to the ordinary
differential equation of the third order:

Y+ (1 + po + pg)y" + (pape + paps + pops)y + ppopsy = 9(y) (61)

with unknown variable y(t) = x3(t).

We will conduct a comparative experiment in order to demonstrate the real possibilities of the
variation-gradient method in comparison with the gradient method in the research of the integro-
differential model of the motion of an unmanned machine (59), (60).

To do this, consider the problem of remote control of a lightweight aircraft, which is described by
the system (59) and the control forces:

1
F.=m [572 —r? 4+ 56 — 2412 — 4/ G(t,€)p(€) dg] )
0

(62)
F, = m[27¢ +17).
The core of the integral part of the equation has the form:
£, 0<E<t,
G(t,§) = (63)
Under conditions ¢(0) = ¢(1) = (1) = 0. According to (61) and (59), (62) we get a problem:
1
(0 =5y (0)+4 [ Gt eule)d =56 - 217
0 (64)

y(0) =y(1) =y"(1) =0.

In the course of the experiment, the steepest descent method (gradient method) and variational-
gradient methods for the integro-differential model (64), (63) with a K-positive-definite K-symmetric
operator were used to build the trajectory of the unmanned aircraft.

The problem (64), (63) satisfies the conditions of the theorem on the convergence of the variation-
gradient method for equations with K-positive-definite K-symmetric operators if

Ky(t) = /0 y(€) d,

{ By(t) =y",
y(0) =y(1) =y"(1) = 0.

So the system (59), (64), (63) describing the integro-differential model of motion of the apparatus
has a unique solution, as well as methods of the steepest descent and the variation-gradient method
for this task converge.

For the equation (64), (63) the exact solution can be obtained analytically:

¢ = y(t) = —0.2529233637¢" + 4.3030627419¢" + 11.6969372581e " — 15.7470766363¢ 2 — 12t,
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which is depicted in Fig. 1.

¥
1.8
1.6
1.4+
1.2
1.0 1
0.8 1
0.6
0.4 -
0.2 1
O T T T T T T T T T
0 01 02 03 04 05 06 07 08 09 t

Fig.1. A graph of the exact solution of the differential equation — the rate
of change of the angle of rotation of the UAV.

From the equation of change, using found ¢, the desired flight path of an unmanned aircraft was
found, which corresponds to the flight task and has the form (Fig. 2):

x = (—0.5058¢* 4 4.3031e’ — 11.6969¢ " + 31.4942¢ 7% — 12)

x cos(—0.12645¢*" + 4.3031e’ — 11.6969¢ " + 7.87355¢ %" — 6t2);
y = (—0.5058¢%" + 4.3031e! — 11.6969¢ " + 31.4942¢ 2 — 12)

x sin(—0.12645¢*" + 4.3031e' — 11.6969¢ " 4 7.87355¢ % — 6t2);

For the implementation of the steepest descent method and the variational-gradient method, com-
putation a mathematical package Derive A Mathematical Assistant was used.

x
4.0
3.5 A
3.0
2.5
2.0 A
1.5 A
1.0 ~
0.5

0 T T T T T
0 2 4 6 8 10 t

Fig. 2. Trajectory of UAV.

As the coordinate functions the sequence {¢;(t) = t*(t — 1)3}2-21 C Hy was considered. To build an
approximations n = 2 was proposed that is two coordinate functions were considered ¢ (t) = t(t — 1)3
and @y(t) = t2(t — 1)%, as an arbitrary function for the initial approximation yo = t(t — 1)® was taken
which satisfies the initial conditions.

The results are below in Tables 1, 2.

When solving this problem by the variation gradient method, after the first iteration, we obtained
an solution of problems with accuracy ¢ = 10~*. To obtain such accuracy with the gradient method,
we needed to make four iterations.
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Table 1. The method of the steepest descent.

. Y lv* —u1| | lv* — yol ly* — ys| ly* — ya
0 0 0 0 0
0.25 | 0.0691565 | 0.017482 | 2.77067 - 10~* | 3.26538 - 10~*
0.5 | 0.089972 | 0.018708 | 0.00185044 4.352977 - 1074
0.75 | 0.1194197 | 0.014608 | 8.49059 - 10~* | 3.5819054 - 10~*
1 0 0 0 0
Table 2. Variation gradient method.
’ Y ly* — 1 ly* =y ly* — ys3
0 0 0 0
0.25 | 8.688108 -10~* | 5.94684 - 10~ 7 9.920092 - 10®
0.5 | 8.284705-10~* | 1.6588193 - 10~ | 6.572201 - 10~7
0.75 | 4.087585-10~* | 9.157572-10~6 | 1.402053 - 106
1 0 0 0

The conducted experiment showed that the finding of the solution by the variation-gradient method
allows reducing arithmetic calculations by at least 60% in comparison with the method of the steepest
descent.

T
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1.5- 10712 77
= ~
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1107124 e
= ~
. =~ ~
510713 Za
///’/
=
0 T T T
0 5-10714  1.10713 1.5-10713 Y
Fig. 3. The graph of the first approximations. 1) Exact solution ( );
2) The first approximation with VGM (-------- ); 3) The first approximation
with MFD (—— — —).

Graphs of the first approximations on the segment were constructed to visualize the effectiveness
of the variation gradient method [0;2.5 - 107!3] (Fig.3). In the chart, the blue color shows the exact
solution, the red first approximation is constructed according to the variation gradient method, and
the green one is an approximation constructed by the method of the steepest descent.

At the same time, it should be noted that in practice it is not always possible to construct an
adequate model in a linear analytical form. This complicates the use of variation gradient. Therefore,
the further development of the theory of variational-gradient methods consists in the extension of these
methods to broader classes of models.

6. Conclusion

According to the estimates obtained in the theorem, the variation-gradient method has a high con-
vergence rate, is resistant to disturbances and does not require knowledge of the boundaries of the
spectrum of the integro-differential operator. Therefore, the research of an integro-differentia model
using the variation-gradient method for a K-positive-definite, K-symmetric operator will increase the
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356 Mashkov O. A., Sobchuk V. V., Barabash O.V., Dakhno N. B., ShevchenkoH. V., Maisak T. V.

efficiency of information processing in the processes of control and research of dynamic systems. Appli-
cation of the variation-gradient method to the control tasks will allow extending the range of problems
considered.
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! Hlepoicaena exonoziuna axademis nicAAOUNAOMHOT OCEIMU Ma MeHEOHCMENMY,
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PosristnyTo muramidHi cucremu, 1o 3aaHi iHTerpo-audepeniitanvu Mogeasmu 3 K-cu-
MeTpu4HUM K -TI03UTHBHO BU3HA4YEHUM oleparopoM. Jlo 3a3HadeHuX MOjesieil 3acToCo-
BaHO BapiarmiitHo-rpajieHTHHil MeTos. IlpoBesenuit anasiz moxkasas, IO I peai3aril
OI'0 METOJY He IOTPIOHO 3HAHHS CIEKTPAa OIEePaTOopa, KPIM TOro, Y HHOI'O BHINA INBUJI-
KiCTb 3012KHOCTI Ta CTIHKICTD 0 30ypEeHb MOPIBHAHO 3 TPAJIEHTHUMHI MeTomaMu. B pobori
JIOBEJIEHO TEOPEMY, fKa J1a€ 3MOIYy 3POOMTH BUCHOBKH PO €(EKTUBHICTH 3aCTOCYBAHHS
BapialiitHO-TPaJi€HTHONO METOJIY JJIs JIOCTIJIKEHHs 3aBJaHb yOpaBsinag. JlocirimKkenas
inTerpo-audepentiitaol mojesi 3 K-1103uTUBHO BU3HAUEHUM K -CHMETPUIHUM OIIEPATOPOM
3a JIOIIOMOI'OIO0 BapialliftHO-IPa/IIEHTHOTO METO/Y JO3BOJIUTH IIJIBUIIUTH OIEPATUBHICTH
ompaIoBants iHGOpMaIii B mporecax yIpaBJIiHHS 1 JOCTIIPKEHHS JTAHAMIYHUX CHACTEM.
3acTocyBaHHs BapialliifHO-IPAJIIEHTHOIO METOLY JI0 3aJad yIPABJIHHS PO3IIUPUATH KOJIO
3a1a4, Mo po3nIAnalnThca. OCKITbKA PO3BATOK CYYACHUX TEXHOJIOTIN CIIPUYUHIOE 3POC-
TAHHS CKJIATHOCTI 00’€KTIB yIpaBJIiHHA, MiIBUIEHHS BUMOT JI0 SKOCTI i TOYHOCTI yIpaB-
JIIHHSI BHACJIIJIOK 3POCTAHHS I[HU YIPABIIHCHKOI TOMUJIKN, HEOOXiTHI TOIa b PO3BU-
TOK Ta YJIOCKOHAJIEHHS METOJIiB, #AK1 BUPINIYIOTH 3aB/JaHHS ONTUMAJIBHOTO YIPABJIHHH,
HAIPUKJIAT, OE3MIOTHIME JIiTaIbHUMA anaparamu. Ha MomeibHOMY MPUKITaIl PO3TIISTHY-
TO 3aCTOCYBaHHS BapiaIlifHO-TPAIIEHTHOTO METOJTY JI0 MOJIe/Iell CHCTeM aBTOMATH30BAHOTO
yIpaBIiHHs O0e3MUIOTHUMHA JITAJTbHUME alapaTaMHy.

Kno4oBi cnoBa: asmomamu3osane ynpasainma, eapiayitino-zpadichmmuutl memood, ou-
HAMIYHT Cucmemu, tHmezpo-dudeperuiting Modeat, onmumMi3ayis YnPasATHH.
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