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The stress-strain state of a functionally gradient isotropic thin circular cylindrical shell
under local heating by a flat heat source has been investigated. For this purpose, a
mathematical model of the classical theory of inhomogeneous shells has been used. A
two-dimensional heat equation is derived under the condition of a linear dependence of
the temperature on the transverse coordinate. The solutions of the non-stationary heat
conduction problem and the quasi-static thermoelasticity problem for a finite closed cylin-
drical pivotally supported shell have been obtained by means of methods of Fourier and
Laplace integral transforms. Numerical results are presented for the metal-ceramic com-
posite used to restore the integrity of human tooth crowns.

Keywords: thermoelasticity, functionally gradient materials, temperature load, cylindri-
cal shell.
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1. Introduction

Composite cylindrical shells, as important elements of many modern constructions, are often subjected
to rapid-action temperature fields that can cause significant stresses and deformations. Therefore,
the calculation of temperature stresses in such structures is an important scientific task that is still
of interest of engineers. Especially in recent decades, the attention has been paid to the shell of
an inhomogeneous structure [1-3] (laminated and functionally gradient (FG)), which, due to good
thermal-resistant and rigid properties, became irreplaceable in modern technologies.

The temperature stresses in the elements of structures of FG materials were studied on the basis
of both three-dimensional equations of thermoelasticity [4,5] and two-dimensional ones [6-8]. The
equations of interrelated thermoelasticity [6] and numerical methods of calculation [6,9] were also
used. The more detailed overview of the various models is given in the papers [10,11].

The purpose of this paper is to investigate the influence of parameters of heterogeneity on the stress-
strain state of an isotropic circular cylindrical shell under its local heating by heat sources distributed
along the guiding arc using the equations of thermal elasticity and conductivity of the classical shell
theory.

2. The problem formulation and the basic equations

Let us consider an inhomogeneous isotropic circular cylindrical shell with the length ! and the constant
thickness 2h. The points of the shell belong to a cylindrical coordinate system x, 6, z, where x is the
axial coordinate, 6 is the circle coordinate, z is the radial coordinate. The origin of the coordinates is
located on the middle surface with the radius R.

Let the shell be heated by sources of heat, which are the arbitrary functions of spatial coordinates
and the time. The force load is absent. We investigate the thermoelastic state of the shell on the basis
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of the equations of the classical Kirchhoff-Love theory [12]|, which for a nonuniform material, we write
in terms of displacements wu, v, w

Liu+ Ligv + Ligw = b;, 1=1,2,3. (1)
Here, the differential operators L;; (L;; = Lj;) and the absolute terms b; have the form

L =A (84 + (1 -v)/(2R*)33,), Liz=(A(1+v)/2+ B/R) /R,
L3 =vA/R0O — BO, (03, + 1/R?3,),
Loy = (1 —v)(A+4B/R+4D/R?) /20}, + (A+2B/R + D/R?) /R*93,,
Lys = (A+ B/R) /R?3y — (B+ D/R) /R*83,y — (B+ (2 —v)D/R) /R3,,.
Ly = A/R?* = 2B(v05, + 1/R?*83,) /R + D (9111 + 2/ R?010 + 1/R'3995) ,
by = A'O\Ty + B'/h o\ Ty,
by = (A'+ B'/R) /ROT1 + (B' + D'/R) / (Rh) T3,
by = (A'/R — B' (0, + 1/R%03,)) Ty + (B'/R — D' (0}, + 1/R?03,)) /hT>,

where
1 h 1 h
{A,B,D}:—2/ E(z){l,z,z2}dz;{At,Bt,Dt} = / E(z)at(z){l,z,z2}dz;
1—v —h 1—v —h
T-—%_l/hti—ld (=12 (=T + Ty =Ly o=,
i — 2hi o z z — L 4) — 41 h 2 l_axa 2_89’

E(2) is a modulus of elasticity; a!(z) is the coefficient of thermal linear expansion; v is the Poisson’s
coefficient; ¢ is the increase in temperature.

The system of equations (1) with the boundary conditions [12] forms the boundary value problem
of temperature stresses for isotropic inhomogeneous cylindrical shells in terms of displacements.

The integral temperature characteristics 73, T, of the absolute terms of the system (1) we determine
from the corresponding equations of heat conduction under the boundary conditions imposed on the
surfaces and on the edges of the shell. Under the equal conditions of heat exchange on the surfaces
z = th of the shell, the equations of heat conduction have the following form

A
A_(l)Tl + A_(2)T2 + ﬂTg — C(l)aTTl — C(g)aq—Tg — 2@Z(T1 — tz) = —Wlt,

Rh
Ay oo Ae) i .
A(Q)Tl + A(g)TQ — WTQ + ETQ — Co0,. Ty — C(g)aq—TQ — 20,1 = —WQ,

where Ay = Ay) (0 + 035/ R?); {Aw), Cpiy, Wi} = ffh {A(2),ce(2),w } (%)Z_1 dz, (1=1,2,3); 0, =
8%; A(z) coefficient of thermal conductivity; c.(z) is the specific heat; ¢, is the ambient temperature
on the surfaces z = +h; «, is the heat transfer coefficient; wy(z, 0, z,7) is the density of heat sources;
T is a time variable.

3. Method of solving

For unambiguity of the solution of systems of equations of thermoelasticity (1) and of thermal conduc-
tivity (2), we impose the following boundary conditions on the edges z =0 and = = I:

v=w=0, Ou/dx=0*w/dz*=0, (3)
Ty =T, =0, (4)

Mathematical Modeling and Computing, Vol. 6, No. 2, pp.367-373 (2019)



Functionally gradient isotropic cylindrical shell locally heated by heat sources 369

as well as homogeneous initial conditions for temperature characteristics:
{11, Ta} ;o =0, (5)
Let the shell is heated by the heat sources, whose functions we write in the following form
Wiz, 0,7) = Wi (z,0) - Wi (1) (i=1,2).

Assume also that the ambient temperature on the surfaces is zero, and the specific heat of the shell
material is constant. Then, applying to the system of equations (2) the Laplace integral transformation
with respect to time and the double finite Fourier transform with respect to coordinates in accordance
with conditions (4), (5), we obtain the expressions of the Fourier coefficients for the integral temperature
characteristics

2

R? Z (pi — 94) QunnZ1i(7") + 392Q2mn Z2i (1")
Imn YRS )
2hAg | —~ bi — Dj
i (©)
2
T R? 3 (pi — 91) Q2mnZ2i(T") + 93Q1mn Z1:(7")
mn = 5 Na Z . )
0 i1 Pi — Dy
where
+ : — ga)* .
pi=2 5 %y FUK/% +92935 g1 =P (pi +m?) + Bi/6%
g2 = Bo (s +m®) = B1/6; g3 = 3pa (u +m?);
91=3 (B3 (s, +m?) + (61 + Bi) /6% — $2/5) ;
Uy = %; Bi = O‘)%Oh; T = Ci—%g; 6 = %; B; = 212%; Ag is a characteristic coefficient of thermal
conductivity;

ko (Y[ . . TN 1, m=0
Qjmn_ﬁ/o _WW]-(a:,@)sme-cosdea:dH, k‘o—{ 9% mAO

Zji(r") = /0 W7 (v)e Py (j,i=1,2).

The temperature characteristics in terms of the Fourier coefficients are expressed by formulas

{Th, Tr} = Z Z {T1mns Tomn } sin 7Tl—na: - cosmb. (7)

n=1m=0

The solution of the system of equations of equilibrium (1) which satisfies the boundary conditions (3),
in the known temperature field (7) we determine also by means of the method of finite dual Fourier
transformation with respect to the coordinates x, . Then the components of the displacements u, v, w
in terms of the Fourier coefficients we obtain in the following form

u = E E U, cOs Tw-cosmH,

n=0m=0

v= E E Vinn sin T sin mé, (8)
n=1m=1

w = E E W Sin Tx -cosmd.
n=1m=0
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By means of the known components of displacement (8) and the integral characteristics of the
temperature field (7), we determine the internal efforts Ny, Na, .S, moments M, My, H and stresses o0;;
according to the formulas:

N A Av —-B Bvr ou At B!

Ny . Av A -Bv B (821) + w)/R At T Bt T
M, B B -D Dv O w B[P DR
M, B B -Dv D (8yv — 02, w)/ R? B Dt

(3)-5(8 ) (i)

(=5 00 D) [ m = (ool )] - 257

E(z)
2(1+v)

19 = [01v + Bou/R + 22(01v — 8%2“’)/R] : (9)

4. Analysis of numerical results

Numerical investigations is performed for a shell that is heated by heat sources constant in the thickness,
which are distributed uniformly along the arc of the circle |#] < n in the distance z = zy. Then

wi(,0,2,7) = w6 (x — x0) (S—(6 + 1) = 54(6 —n)) S4(7),

where w* = const; 27 is the central angle of the heating arc; d(z) is the Dirac’s function; Si(z) are
asymmetric unit functions.

The shell is made of functionally gradient composite of metal-ceramic, for which we assume that the
Poisson’s ratio and the specific heat are constant, and the modulus of elasticity E(z), the coefficient
of linear thermal expansion a!(z), and the coefficient of thermal conductivity \(z) vary according to
the power law depending on the coordinate z [6]:

B = Bt (B B) (55 43) o) =l ol —a) (54 2)
AZ) = A+ (e = M) (% + %)k (10)

where k is the parameter of heterogeneity, which characterizes the change of the properties in the
thickness of the shell; ¢ and m are indices that indicate the belonging of quantities to ceramics or
metal.
Physical and mechanical properties of ceramics (ZrOs) and of metal (Ti-6A1-4V) we take as fol-

low [6]:

metal: v=0.3; B, =66.2GPa; o, =10.3-1076°C~1; )\, = 181 W/(m -°C);

ceramics: v =0.3; E. = 117GPa; ol = 7.11-1075°C~1 X\, = 2.036 W/(m -°C).
For other parameters, we put the following values: h/R =0.05, [/R =3, n=n/2, zg =1/2, t, = 0,
Bi=0.2.

For these parameters, we have calculated the dimensionless temperature characteristics T, = 2’2”51,
: o Amw ’ AmN; : ’_ Am M,
deflections w' = RR2al o normal efforts N; = TSl o bending moments M, = Erhial w7 and

% depending on the circular coordinates 6 for z = /2 and such values
of parameters of heterogeneity: k& = 0;2;5 and k = oco. It is obvious that with the decrease of the

parameter k, the proportion of ceramics in the direction of thickness increases and the shell becomes

normal stresses o} =
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more rigid since the modulus of elasticity of ceramics is larger than that one of metal. With the
increase of k, the proportion of metal increases. The zero value of the parameter k corresponds to a
homogeneous shell made of ceramics, and that which is infinitely great corresponds to a homogeneous
shell made of metal.

The changes of the average temperature 7] and radial deflection w’ are illustrated in Fig. 1.
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Fig. 1.

It can be seen from the figure that the average temperature for all materials is constant along the
arc of the action of the sources, and the greatest value is achieved for ceramics. In transit to the
unheated section, it drops sharply to the ambient temperature. The deflections gradually change from
the greatest positive values in the heating area to the negative values in the unheated section. The
maximal deflections reduce with an increase of the proportion of ceramics.
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Fig. 2.

In Fig. 2, the changes of normal efforts N and N} are shown. They are of oscillating nature. The
effort N{ in comparison with other parameters of stressed state has a feature that in the boundary
zone between heated and unheated sections, they attain the same maximum compressive and tensile
values. The maximal N} for all k in the heating area is compressive, and for k=0 it is more than three
times greater than for k = oc.

Fig. 3 illustrates the monotonous nature of the change of bending moments M| and M along the
guide arc. The maximal positive values for ceramics are greatest and they decrease with the increase
of the proportion of metal in the composite.

In Fig. 4, the dependence of normal stresses o} and o) on the circular coordinate on the surface of
the shell z = h is shown. It can be seen that the heterogeneity of the material can significantly change
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both the quantitative picture of the stress state and the qualitative one: the maximal o) for k=0 is
negative, and for k = oo it is positive.

5. Conclusions

Using the Kirchhoff-Love’s linear theory of shells, we have investigated the stress-strain state of an
isotropic functionally gradient closed circular cylindrical shell with the finite length, which is heated
by a flat linear heat source acting along the guiding arc, whose edges are pivotally supported and of
zero temperature. The physical and mechanical properties of the shell material are assumed to be
arbitrary functions of the transverse coordinate. The quasistatic thermoelasticity problem has been
solved by means of the finite double Fourier transform method with respect to the surface coordinates
and by the Laplace integral transform with respect to time. Parameters of the stress-strain state have
been calculated for a shell made of metal-ceramics composite, for which the modulus of elasticity, the
coefficient of thermal linear expansion, and the coefficient of thermal conductivity vary in the thickness
according to the power law. Numerical results describing the influence of the inhomogeneity parameter
on the temperature field and on the stress-strain state of the shell are presented in the form of graphs.
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Hocuimxeno HanpykeHo-IedopMoBaHuil cTaH (QyHKIIOHAIBHO-TPAIIEHTHOI 130TPOITHOT
KPYTOBOI TOHKOT IMWIIHAPUIHOI OOOJIOHKH 33 JIOKAJIHFHOTO HATPIBAHHSI IJIOCKUM JI2KEPEJIOM
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3iCTATUIHOI 381841 TEPMOIPYKHOCTI /I CKIHY€HHOI MapHipHO OMEPTOl 3aMKHEHOT ITUJIiH-
ApudHOl 060710HKK. UHCIOB] pe3ysibTaTH HABEIEHO JJIs KOMIIO3UTY MeTajl-KepaMiKa, 110
BUKOPUCTOBYETHCS JJIsI BiITHOBJICHHS ITiJTiICHOCTI KOPOHOK 3y0iB JIIOIUHM.
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