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In this work shows that the classical oscillations of the ratio of neighboring members of the 
Fibonacci sequences are valid for arbitrary directions on the plane of the phase coordinates, 
approaching, to a maximum, the solutions to the characteristic quadratic equation at a given point. The 
values of the solutions to the characteristic equation along the satellites are asymptotically close to their 
integer values of the corresponding root lines. 
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Introduction 
Many processes and phenomena are modeled by the separation of characteristics systems into parts 

in certain ratios. In electrical and dynamic systems, the structuring of systems is implemented by serial and 
parallel, multilayer coatings, and the like. In such systems, mathematical models are justified on the basis 
of the laws of conservation of energy, charge, and light flux [1, 2]. 

A well-known approach is that in addition to conservation laws, the system structuring model is 
complemented by a target limitation – the separation of the additive parameter L by the golden ratio (GP). 
Its essence is that the point of one-dimensional separation with the coordinate into two unequal parts 
satisfies the proportion 
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in the form of known numbers of Phidias and [1]. These numbers are the roots of the quadratic equation 
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and according to the theorem of Vieta satisfy the so-called “golden” combinations 
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and representation in the form of chain fractions
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and patterns of raising to the degree of: 
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The basis of "golden proportion" is based on methods of additivity and multiplicity. Indeed, when 
the numerator of each fraction is replaced by the denominator of the previous fraction, and the denominator 
by the sum of the numerator and denominator of the same fraction, then we obtain: 
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and you can write a sequence of numbers: 
1 1 2 3 5, , , , ,...
1 2 3 5 8

      (10) 

Sequence (10) is interesting in that in each number of the numerator and denominator, starting from 
the third, is represented as the sum of the two preceding adjacencies – the Fibonacci numbers. 
If you take three consecutive terms ( ), ( 1), ( 2)u n u n u n+ + , then the ratio 
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are adjacent fractions of the number t  for which recurrence is established on the basis of (9) 
( 1) ( 1) ( ) 1n n nt t t+ + + = .     (12) 

Therefore, if the Phidias number 1 5
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approximated by a suitable fraction p
q

, then we obtain a sequence consisting of relations of adjacent 

Fibonacci numbers 1 1 2 3 5, , , , ,...
1 2 3 5 8

. 

On the other hand, the gold section method is used to create optimization algorithms, which 
implements the geometry of separation over the GR uncertainty interval. Although such an 
algorithm has a fairly high computational efficiency, it is not optimal for a given number of 
calculations of the objective function. Indeed, with the symmetric arrangement of the points of 
calculation of the values of the objective function, the GR method can be combined with the known 
dichotomy method and an optimal algorithm can be constructed in which the length of the last 
uncertainty interval is equal to: 
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Therefore, at the boundary 0e ® , the lower bound is equal to the smallest uncertainty interval for a 
given number of calculations of the objective function. In formula (13) there are Fibonacci numbers 

NF that appear when solving the second order recurrence relation [3–6] 
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the characteristic equation of which is also the quadratic equation of type (7). 
Therefore  is known [4]  that the roots of equation (1) ,f F  (Phidias numbers) are the boundaries of 
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neighboring numbers of second-order recurrence sequences 
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This paper shows that on a plane of phase coordinates ( , )p q  along parallel directions to root lines 
(satellites) 
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neighboring elements of a generalized sequence { }( , , )F p q n  (in the notation of Horadam [7, 8]) 
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are equal to the value of the roots ( , )х p q±  of the general characteristic equation  
2( , ) ( , )х p q p х p q q= × +      (20) 

of sequences (19).  
 

Results and their discussion 

Each quadratic function (20) corresponds to a point with coordinates ( , )р q  on a plane of phase 
coordinates ( , )p q , where the solutions are valid given 0p ³  (second) and 0pá  (third) quadrants. In the 
first 0, 0p q³ ñ ) and the fourth 0, 0p qá ñ  quadrants, there are areas with a negative discriminant D , 
where the solutions are imaginary. The true solutions are 

( ) 2( , ) 1 , 4
2
рх p q D D р q± = ± = - .    (21) 

In the points ( , )p q , where the discriminator D  greater than zero is not an exact square, the solutions 

(21) are quadratically irrational. The best known of them is at the point 1, 1p q= ± = - , where 5D =  and 
the regularity is realized (1). The discriminant is the exact square along the directions of the root lines (17), 
so along them the solutions (21) are integers.  

The problem of finding a general term of a numerical sequence satisfying (19) is equivalent to the 
problem of solving the linear differential equation of the second order [7]:  

( , , 2) ( , , 1) ( , , ) 0F p q n p F p q n q F p q n+ - × + - × =    (22) 
with the characteristic equation of (20). Therefore, the general solution to equation (22) depends on the solution 
of the characteristic equation (20). Given a discriminant 0D ¹ , the roots (20) set two solutions ( , )x p q±  and 



P. Kosobutskyy 30 

the geometric progression { } ( , )n
nF с x p q± ±= ×   will satisfy (9) only given the equation (20) is a characteristic 

one of sequence (22). Then for a fixed pair (0), (1)F F , there is always one pair of numbers с±  and 
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Taking into account the initial conditions 
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we get that the formula for calculating an arbitrary element (19): 
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Since given the values of fixed numbers (0) 0, (1) 1F F= = , a function ( , ) 1p qX = , the ratio (26) 
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Taking into account inequality ( , ) ( , )х p q х p q- +á , то ( , )lim 0
( , )

s

s

х p q
х p q

-

®¥
+

æ ö
®ç ÷

è ø
, we arrive at the 

conclusion that the boundary of relations (26) or (27)  
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is the root of the characteristic equation (20) at the point with the given phase coordinates ( , )p q , which is 
consistent with [10] and with a one-to-one correspondence between irrational numbers and boundless chain 
fractions [12]. 

To confirm this conclusion, Fig. 1 shows graphical dependences of numerical calculations of values 
(28) along the phase directions of the first left | | | 2 |lq р= +  (Fig. 1(a)) and the first right | | | | 1rq р= -   
(Fig. 1 (b)) satellites of the first 1K =  root line. We see that the regularity (28) is valid for arbitrary values 

of phase coordinates. Similar regularities are valid for the ratio ( , , 2)lim
( , , 1)n

F p q n
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 along the direction of the 

root line, where the solutions to equation (20) take the integer values , and for higher orders of root lines 
and their satellites along all directions on the plane of phase coordinates ( , )p q  in the second and third 
quadrants.    
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The boundary values of the ratio ( , , 2)lim
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 are different, since the boundaries (21) are 

different at different phase points ( , )p q . As follows from Fig. 2(a), given the directions of the root lines 
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shown in Fig. 2(b), with increasing coefficients ,p q , the values of the solutions ( , )х p q+  asymptotically go 

towards the integer values of the corresponding lines along the root 
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is valid for the directions of all root lines.  
The formulated conclusion is confirmed by elementary transformations:  
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Fig. 2. The oscillation of the ratio 
( 1)
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 along the phase direction of the first 1K =  root line (а);  

The illustration of the boundaries to which the solutions to characteristic equations of the second  
order recurrence sequence approach asymptotically with the increase of coefficients ,p q . Here number 1 and 2 

according first 1K =  and  second 2K =  root line; indexes ,R L  according right | | | |rq р=  and left phase  

satellites of the root line  and   Z  according root line (b) 
 

Conclusion 

The study shows that the classical oscillations of the ratio of neighboring members of the Fibonacci 
sequences are valid for arbitrary directions on the plane of the phase coordinates, approaching, to a 
maximum, the solutions to the characteristic quadratic equation at a given point. The values of the 
solutions to the characteristic equation along the satellites are asymptotically close to their integer values of 
the corresponding root lines. 

 
1. Kosobutskyy P.  Modelling of electrodynamic Systems by the Method of Binary Seperation of Additive 

Parameter in Golden Proportion. Jour. of Electronic  Research and Application, 2019,3(3), р. 8–12,   
2. Kosobutskyy P. et.al.  Physical principles of Optimization of the Static  Regime of a Cantilever-Type Power-

effect Sensor with a Constant Rectangular Cross Section.  Jour. of Electronic  Research and Application, 2018,  
2(5), р. 11–15.  

3. Vorobyov N. Fibonacci Numbers. Moscow,1961.  
4. R. Dunlap. The golden ratio and Fibonacci numbers. World Scientific Publishing Co. Pte. Ltd. 1997  
5. Vajda S. (1989) Fibonacci & Lucas Numbers, and the Golden Section. Theory and Applications. Ellis 

Horwood limited. 
6. Koshy T. (2001) Fibonacci and Lucas numbers with application, A Wiley-Interscience Publication: New 

York.  
7. Horadam A. Basic Properties of a Certain Generalized Sequence of Numbers. Fibonacci Quarterly, 

3.3(1965), рр. 161–176. 
8. Larcombe P. Horadam Sequences: A Survey Update and Extension , Bulletin of the ICA, Vol. 80 (2017), 

99–118. 



On the universal regularity of the numbers of generalized recurrence sequence and solutions… 33 

 

9. F. Gatta,  A. D’amico. Sequences {Hn} for which Hn+1/Hn approaches the Golden Ratio. Fibonacci 
Quarterly, 46/47.4 (2008/2009), рр. 346–349. 

10. Ozvatan M., Pashev O. Generalized Fibonacci Sequences and Binnet-Fibonacci Curves. 
arXiv:1707.09151v1 [math.HO] 28 Jul 2017. https://arxiv.org/pdf/1707.09151.pdf  

11. Szakacs T. K-order Linear Recursive Sequences and the Golden Ratio. Fibonacci Quarterly, 55.5 (2017), 
рр. 186–191. 

12. Shneider R. Fibonacci numbers and the golden ratio. VarXiv:1611.07384v1 [math.HO] 22 Nov 2016. 
 
 

 
П. С. Кособуцький 

Національний університет Львівська політехніка 
 

ПРО ЗАКОНОМІРНОСТІ ФОРМУВАННЯ РЕКУРЕНТНИХ ПОСЛІДОВНОСТЕЙ { }na   

І  { }nb   В ДЕКОМПОЗИЦІЇ n
n nj a j b= × +  
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У роботі досліджено закономірності відношень коефіцієнтів  ,n na b  послідовностей { }na  і  

{ }nb , які формуються в процесі степеневого перетворення (декомпозиції) виду n
n nj a j b= × +  в 

ділянці додатних і від’ємних показників .n  
Ключові слова: пропорція нерівного поділу цілого, декомпозиція, рекурентні послідовності 

чисел Фібоначчі, формула Біне  
 

 
 
 
 
 
 
 
 
 
 

 
 


