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Currently topology optimization is widely used by engineers for different practical prob-
lems. Researches by different authors offer algorithms of using cellular automata in these
problems, and most recent publications introduce a mesh-refinement procedure to decrease
numerical efforts. In this article, we propose to apply a mortar finite element method for
solving topology optimization problems using cellular automata. This methodology en-
ables us to handle the non-conforming meshes, which can arise in the refinement process.
We present a formulation of the algorithm and analyse its computational complexity by
applying to a test problem.
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1. Introduction

In different engineering problems one can run into a task to choose a design of an element or a part.
Sometimes it is not a difficult task, but if, for example, the mechanical behaviour is not obvious, or the
material is expensive, then a slight difference in design may result in a significant amount of money,
or even leads to a failure of a construction. Then one needs to find a structural design that is optimal
for a certain design criterion while satisfying other constraints, i. e. to solve a structural optimization
problem [3]. Based on the geometrical feature that is parametrized, the structural optimization problem
can be classified into [2]:

— size optimization: parametrizing variable is one-dimensional, e. g. thickness of a plate;
— shape optimization: parametrizing variable represents the boundary of the domain;
— topology optimization: parametrizing variable represents connectivity of a domain.

The last class of problems is the most general and, therefore, the most complicated to solve. Moreover,
perfect mathematical solutions sometimes are too difficult to implement in real life. But recent rapid
development of 3-D printing technologies provides more possibilities to transform optimal solutions
into real objects.

Topology optimization is usually formalized in one of the following two formulations [4]:

— stress constrained problem: minimize volume fraction while satisfying stress constraints;
— minimum compliance problem: minimize compliance for a given volume fraction.

Most of the solving methods are applicable to both formulations, so usually only the minimum compli-
ance formulation is discussed. Current research also considers the minimum compliance formulation.

Since the problem formulation implies void and non-void regions in an initial domain, the problem
is discrete by its nature. To transform a discrete problem into a continuous one, Bendsoe [7] offered to
introduce some virtual density of a material, which can be in the interval between 0 (no material, i.e.
void) to 1 (material is present). Penalization was introduced to minimize regions with undesired values
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in the middle of this interval. Nowadays this method is known as SIMP method (Solid Isotropic Mi-
crostructure (or Material) with Penalization for intermediate densities) and is widely used for topology
optimization.

Inou et al. [8] offered to use the cellular automata (CA) concept for the optimal structural design.
CA principle is to consider local neighbourhood to change cell’s state. This easily can be used in
SIMP procedures. On the other hand, CA discretization naturally can be considered as finite element
mesh, and the finite element method (FEM) is the most widely used technique for solving elasticity
problems. These benefits leaded to a variety of topology optimization algorithms, which use FEM, CA
and SIMP concepts. Bochenek and Tajs-Zielinska developed this technique to be applied to irregular
grids [9], and later introduced an automatic mesh refinement algorithm [10]. In the current article,
we extend this methodology by introducing mortar finite elements [14], which allow solving elasticity
problems with non-conforming meshes. We present the formulation of the algorithms and the analysis
of computational complexity.

2. Topology optimization problem formulation

Let us consider an elasticity problem in a plane strain formulation. An elastic body is defined by domain
Ω with boundary Γ. Mass forces f are applied in Ω, and the boundary force densities t are applied at

Γt ⊂ Γ. Let us define u to be a displacement vector; ε =
(

ε11, ε22,
1
2ε12

)T
is a vector, composed of

the constitutive components of the strain tensor; σ =
(

σ11, σ22,
1
2σ12

)T
is a vector, composed of the

constitutive components of the stress tensor.

Γ Γt

tΩmat =?

Ω

Fig. 1. Topology optimization problem.

The topology optimization problem in the minimum
compliance formulation is to find subdomain Ωmat ⊂ Ω of
a predefined (normalized) volume 0 < M < 1 with mini-
mal total compliance under the predefined load. We derive
the topology optimization formulation from the standard
elasticity problem for the domain Ω. The easy and effec-
tive way to define subdomain is to introduce the design
variable d̄(x), x ∈ Ω:

d̄(x) =

{

1, x ∈ Ωmat,

0, x /∈ Ωmat.
(1)

For the proper elastic behaviour of the body we assume that the design variable influences the initial
problem through the variable stiffness tensor:

K̄(x) = d̄(x)K∗, (2)

where K∗ is a real, constant stiffness of the material. Then compliance (i.e. strain energy) can be
defined as:

C̄(Ω) =

∫

Ω
uT K̄ u dΩ. (3)

Now we formalize the equilibrium state of the object. Let us denote by B the matrix, which
connects the strain tensor components with the displacement [12]

ε = B u. (4)

Then we can introduce traditional energy bilinear form and a load linear form:

ā(u, v) =
1

2

∫

Ω
εT (u)σ(v) dΩ =

1

2

∫

Ω
uTBT K̄ B v dΩ, l(u) =

∫

Ω
f u dΩ+

∫

Γt

t u dΓt.
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A weak form of the equilibrium equation will be the following:

ā(u, v) = l(v), v ∈ V, (5)

where V = H1(Ω).
The topology optimization problem in the minimum compliance formulation can be formulated as:

find d̄0 ∈ L̄M (Ω),

such that d̄0 = argmin C̄(Ω),

where u satisfies ā(u, v) = l(v), v ∈ V,

(6)

where L̄M (Ω) is defined as:

L̄M (Ω) =

{

d̄ ∈ L1(Ω):

∫

Ω
d̄(x) dΩ =M ; d̄(x) ∈ {0, 1}, x ∈ Ω

}

. (7)

Since d̄ can have only 0 or 1 values, this problem is discrete. As we mentioned in previous section, to
transform it into a continuous form, one can use the SIMP. For this aim, instead of d̄(x), we introduce
d(x), which can have real values in the interval [0, 1], but also we add penalization for non 0 or 1 values.
Similar to (5), linear space for d(x) we give as follows:

LM (Ω) =

{

d ∈ L1(Ω):

∫

Ω
d(x) dΩ =M ; 0 < dmin 6 d(x) 6 1, x ∈ Ω

}

, (8)

where dmin (small floating point number, usually around 0.001) is introduced to preclude stiffness
singularities [7].

Penalty is introduced in a natural way, as it is described, e.g., in [2]:

K(x) = dp(x)K∗. (9)

Here, p is a penalty parameter. In real problems calculations, it was investigated that p > 3 provides
penalization behaviour of the calculation scheme.

Let us also denote by a(·, ·) and C the bilinear form and compliance, derived from K instead of K̄:

a(u, v) =
K∗

2

∫

Ω
dpuTBTB v dΩ, (10)

C(Ω) = K∗

∫

Ω
dpuTu dΩ. (11)

In the end, we obtain the following formulation of the topology optimization problem:

find d0 ∈ LM (Ω),

such that d0 = argminC(Ω),

where u satisfies a(u, v) = l(v), v ∈ V.

(12)

3. Cellular automaton and topology optimization algorithm

As we mentioned in the previous sections, cellular automata are already well-known tools for solving
topology optimization problems. Similarly, the finite element method is widely used to solve elasticity
problems. To be more precise, considering topology optimization problem in the form (12), CA are
applied to line 2 (the minimization part), and FEM is applied to line 3. Let us formalize the CA
methodology first.
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A continuous-value 2D cellular automaton can be described as (see e.g. [11]):

— a lattice of N cells in 2D space;
— a set of N real values that represent the local state of each cell at each time step;
— a transition rule, that describes evolution of the states in time, based on the states of the neighbour

cells.

In the case of application to the topology optimization problem, the whole domain Ω is divided into
cells, and the (approximated) design variable is used as the local state value of a cell. The transition
rule is the most flexible part here, and the great number of modifications can be created by tuning the
rule.

Fig. 2. Neighbourhood illustration.

Let Ω be divided into N cells ω1, . . . , ωN .
We denote the set of all the cells as T =
{ωi}i=1,...,N . Let us define x1, . . . , xn to be the
nodes of this lattice. Every cell ωi is accompa-
nied with the neighbourhood (see Fig. 2):

T (ωi) = {ωj ∈ T : ωj ∩ ωi 6= ∅} . (13)

As one can see, this definition is a form of the
Moore neighbourhood [11].

To apply CA methodology, we introduce
piecewise constant approximation of the design
variable:

d(x)|ωi
≈ di. (14)

In other words, di is an unknown constant de-
sign variable value at the cell Ωi. This value will

be subject to CA cell update rule. The rule usually is derived from some global considerations. In
our case this consideration is: eliminate local peak compliances in the body. From the nature of the
problem we know, that local increasing of stiffness (or, in our case, of design variable) leads to local
decreasing of compliance. Thus, our rule is: if compliance in the neighbourhood of the cell is greater
than average in the body, then increase the design variable in the cell; otherwise, decrease it. This rule
is applied iteratively. Formally, for every cell ωi the rule is as follows:

d
(k+1)
i = d

(k)
i +

α

|T (ωi)|

∑

ωj∈T (ωi)

sign

(

C(k)(ωj)

|ωj|
−
C(k)(Ω)

|Ω|

)

. (15)

Here | · | denotes the number of cells in a set, or the area of a domain or a subdomain; α ∈ (0; 1) is
some constant step of a change; sign(·) is a signum function; ·(k) denotes the value of the function at
iteration number k.

The initial distribution of d(x) we take as uniform: ∀x ∈ Ω: d(0)(x) = M , thus d
(0)
i = M , i =

1, . . . , N .
The update rule (15) may cause the total volume of the material to deviate from M . To compensate

this, after updating all the cells, we normalize the design variable in the domain Ω:

d
(k+1)
i :=

M |Ω|
∑N

j=1 |ωj| d
(k+1)
j

d
(k+1)
i . (16)

Thus, we arrive at the topology optimization algorithm in the following form.
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Algorithm 1 Topology optimization algorithm.

Require: M,α,E;
1: initialization: uniform distribution of d(x) in Ω;
2: repeat

3: solve FEM (i.e. find u(x));

4: update CA cells (i.e. calculate d
(k+1)
i according to (15));

5: normalize design according to (16)

6: until
∑N

j=1 |ωj |
(

0.5− |0.5− d
(k)
j |
)

< E |Ω|.

As one can see, the algorithm stops, when design variable is close enough to 0 or 1 almost everywhere
in Ω. Constant E corresponds to the level of precision.

4. Finite Element Method for non-conforming meshes

Both CA and FEM methods prescribe discretization of the domain. It is natural to consider finite
elements as cells of the automaton and vice versa. We support this concept in an extended form
— considering that elements-cells can be of any polygonal form, not only rectangular. Thus in the
following we will use the name “finite element” (or just “element”) for the discretization parts, keeping
in mind that they are cells of the automaton at the same time. Consequently, lattice of cells and mesh
of finite elements denote the same discretization of the domain.

The elasticity problem (line 3 in (12)) is continuous in regard to space variable x. Following the
finite element method (see e.g. [13]), to make it discrete, dependent on the values in nodes xi, we
introduce approximation of the functions based on the mesh. Classically it is the locally polynomial
continuous approximation. But our aim is to introduce an adaptive topology optimization algorithm,
and adaptation prescribes, that different parts of the domain may have different diameter of the mesh.
The researcher then has to choose: either to introduce specific procedures to keep the conformity of the
mesh, or to use specific modifications of the FEM to be able to utilize non-conforming mesh. We choose
the second solution, namely the mortar FEM, described e.g. in [14]. Thus, we assume, that Ω is divided
into subdomains Ωi, i = (1, . . . , N∗) and inside of each subdomain the mesh is conforming (see Fig. 3).

Ω1 Ω2

Γ12

Fig. 3. Interface between
two subdomains with inter-

nally conforming mesh.

Let us denote byN i the number of nodes in Ωi. We denote by Γij — inter-
faces between Ωi and Ωj. Within every subdomain Ωi we associate with
every node xij ∈ Ωi of the mesh the isoparametric FEM basic function
φij [13]. Similarly, within every interface Γij with every node xkl ∈ Γij

we construct one-dimensional polynomial FEM basic functions ψkl. For
exact form of the φij and ψkl functions we refer to [15]. Let us also

introduce finite-dimensional approximation spaces V̂ =
∏N∗

i=1 span {φij}

and Λ̂ =
∏

Γij 6=∅
span {ψkl}. Thus, we consider approximation of u in

the form:

u(x) ≈ ũ(x) =

N∗

∑

i=1

N i
∑

j=1

φij(x)uij , (17)

where uij = u(xij). Similarly, every function λ ∈ Λ̂ can be given as:

λ(t) =
∑

Γij 6=∅

∑

kl:xkl∈Γij

φkl(t)λkl. (18)

This approximation may be discontinuous across Γij . To ensure optimal approximation properties,
according to the mortar FEM, we add a weak continuity condition, which in a discrete form will be:

∫

Γij

(

ui(t)− uj(t)
)

λ(t) dt = 0, ∀λ ∈ Λ̂. (19)
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Here ui = u|Ωi . We use Lagrange multipliers to implement this condition (see [14] for the details). For
this aim we introduce bilinear form:

b(µ, u) =
∑

Γij 6=∅

∫

Γij

(

ui(t)− uj(t)
)

µ(t) dt, µ ∈ Λ̂. (20)

Since across the interfaces there can arise the discontinuity of the displacements, we need to modify
the strain energy bilinear form:

â (u, v) =
1

2

N∗

∑

i=1

∫

Ωi

uTBTKB v dΩi. (21)

Thus, solving the elasticity problem with mortar FEM is formalized as follows:

find (û, λ̂) ∈ (V̂ , Λ̂) such that:

â (û, φij) + b
(

λ̂, φij
)

= l (φij) ; i = (1, . . . , N∗), j = (1, . . . , N i),

b(ψkl, û) = l(v); Γij 6= ∅, xkl ∈ Γij.

(22)

Taking into account (17) and (18), problem (22) leads to the system of the linear algebraic equations
on uij and λkl:

N∗

∑

i=1

N i
∑

j=1

uij(φij , φrs) +
∑

Γij 6=∅

∑

kl

λkl(ψkl, φrs) = l(φrs); r = (1, . . . , N∗), s = (1, . . . , N r),

N∗

∑

i=1

N i
∑

j=1

uij(ψrs, φij) = 0; rs : xrs ∈ Γkl, Γkl 6= ∅.

(23)

Therefore, considering Algorithm 1, line 3 “solve FEM” means solving system (23), and use (17) to
find the approximated value of the displacements function.

5. Adaptive strategy

Since the Algorithm1 is iterative, the efficient implementation of the FEM is strongly affecting the
performance of the Algorithm. One of the methodologies to increase efficiency of the FEM is the mesh
adaptation. Generally, there exist three types of the mesh adaptation:

— h-adaptation is local change of the size of the finite element;
— p-adaptation is local change of the order of the approximation functions;
— r-adaptation is local change of the positions of the nodes of the mesh.

H-adaptation proved to be the most effective and is the most widely used. In this paper we investigate
only this type, and, therefore, refer to it as just “adaptation”.

Let us recap, that the SIMP procedure prescribes iterative solving of the elasticity problem in the
domain, which is a priori larger that the final optimal form. In the void regions there still exists the
mesh, and the nodes there increase the size of the system (23). It is natural to aim to keep the mesh in
the void regions coarse. The same logic (though to a lesser extent, since we want the approximation to
be fine enough) can be used to the non-void regions. Thus, we aim to carry out the mesh refinement in
the “border” regions, which are neighbouring purely void and purely non-void regions. Thus we apply
the following refinement rule:

refine ωi, if:

∀ωj ∈ T (ωi) : |di − dj | > η.
(24)
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where η is a positive constant.
Thus we arrive to the following adaptive topology optimization algorithm:

Algorithm 2 Adaptive topology optimization algorithm.

Require: M,α,E, η;
1: initialization: uniform distribution of d(x) in Ω;
2: initialization: coarse mesh in Ω;
3: repeat

4: define subdomains Ωi with locally uniform mesh;
5: solve FEM (i.e. calculate uij by solving (23));

6: update CA cells (i.e. calculate d
(k+1)
i according to (15));

7: normalize design according to (16)
8: adapt mesh according to (24);

9: until
∑N

j=1 |ωj |
(

0.5− |0.5− d
(k)
j |
)

< E |Ω|.

6. Numerical investigation

t = (0;−1)

Fig. 4. L-form test problem.

Fig. 5. Mesh refinement principle.

Numerical investigation of the algorithms was made using the
test problem, illustrated in Fig. 4. Material parameters are:
Young modulus equals 21000, Poisson coefficient equals 0.3. We
use rectangular finite elements with bilinear approximations.
The mortar FEM allows using any method of mesh refinement,
so we choose the uniform dividing of the rectangular element
into four new elements, as shown at Fig. 5. Empirically we take
the following values of the parameters: M = 0.5, α = η =
0.1, E = 0.05. We solve the problem with both Algorithm1
and Algorithm2. For the Algorithm1, which is non-adaptive,
we choose the mesh size empirically. To compare the results,
we take this mesh size as the minimal size of the element in
Algorithm2. Thus, if the size of the element is less or equal
that this minimal value, no refinement will be made regardless to (24). Convergence of the topologies
are illustrated at Fig. 6 and Fig. 7. We see, that both algorithms converge to almost same topology.

Fig. 6. Topology convergence for the test problem solved with Algorithm 1.

We see, that adaptive algorithm requires more iterations, than the non-adaptive. This is explained
by the fact, that on first iterations with coarse mesh the material is redistributed on relatively large
areas. Meanwhile in the non-adaptive algorithm the redistribution is relatively precise from the very
first iterations.

Total compliance of the object is minimized throughout the process, which one can see from Fig. 8.
The curves are very close for the two algorithms. In the end, both algorithms produce topologies with
almost same total compliance.
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Fig. 7. Topology convergence for the test problem solved with Algorithm 2.

For the computational efficiency investigation we compare total number of degrees of freedom
(d.o.f.) in the discretized problems according to both algorithms (Fig. 9). For the adaptive algorithm
both FEM basic functions and mortar functions are taken into account. To reach the optimal topology,
Algorithm1 utilizes 62720 d.o.f in total, whereas Algorithm2 utilizes 52000 d.o.f. The benefit of
adaptivity is not as great as one can expect. The reason is, that, starting from the 4th iteration, both
algorithms solve the problem with same order of d.o.f. number. In this situation, the bigger number of
iterations for the Algorithm2 influences greatly the total number of d.o.f. To overcome this problem,
the coarsening procedure should be introduced for the mesh neighbourhood with same 0 or 1 value of
the design variable. In other words, if in some region all the cells are void, or all are non-void, there
is no need for large cells, and the neighbour cells can be united into one bigger cell.
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Fig. 8. Total compliance of the L-form domain. Fig. 9. Total amount of degrees of freedom in the FEM
system.

7. Conclusion

The SIMP is an effective in solving topology optimization problems, and can be easily implemented
with cellular automata. Naturally combining this methodology with finite element method allows us
to use other procedures, like mesh adaptation. The mortar finite element method helps to solve elas-
ticity problems on non-conforming meshes. As we had shown, utilizing the mesh adaptation strategy
decreases slightly the total number of degrees of freedom in the problem. However, the effect can be
increased if the coarsening procedure is introduced for fully void or non-void regions. The algorithm
described in this article can be easily extended to other types of cell neighbourhoods, FEM approxi-
mation types, cell update rules, and mesh refinement rules. There is no restriction on the form of the
cells (finite elements).
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Розв’язування задач топологiчної оптимiзацiї за допомогою
клiтинних автоматiв та мортарного методу скiнченних елементiв

ЯщукЮ.О.1, Тайс-ЗєлiнськаК.2

1Львiвський нацiональний унiверситет iменi Iвана Франка,

вул. Унiверситетська, 1, 79000, Львiв, Україна
2Кракiвська Полiтехнiка,

ал. Iвана Павла II, 37, 31-864, Кракiв, Польща

Топологiчна оптимiзацiя широко використовується iнженерами для розв’язування
рiзноманiтних практичних задач. Дослiдження рiзних авторiв пропонують застосо-
вувати клiтиннi автомати до цих задачах, а у бiльшостi останнiх публiкацiях до-
дають також процедури згущення сiтки для зменшення обчислювальних затрат. У
цiй статтi запропоновано використати мортарний метод скiнченних елементiв для
розв’язування задачi топологiчної оптимiзацiї з використанням механiзму клiтинних
автоматiв. Це дозволяє розв’язувати задачу на нерiвномiрнiй сiтцi, яка може виник-
нути в процесi згущення. Подано формулювання алгоритму та проаналiзовано його
обчислювальну складнiсть на тестовiй задачi.

Ключовi слова: топологiчна оптимiзацiя, метод скiнченних елементiв, клiтиннi

автомати, адаптацiя сiтки, мортарнi функцiї.
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