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We present a local convergence analysis of the Gauss—Newton—Kurchatov method for solv-
ing nonlinear least squares problems with the decomposition of the operator. The method
uses the sum of the derivative of the differentiable part of the operator and the divided
difference of the nondifferentiable part instead of computing the full Jacobian. A theorem,
which establishes the conditions of convergence, radius, and the convergence order of the
proposed method, is proved [1]. However, the radius of convergence is small in general
limiting the choice of initial points. Using tighter estimates on the distances, under weaker
hypotheses [2], we provide an analysis of the Gauss—-Newton-Kurchatov method with the
following advantages over the corresponding results [1]: extended convergence region; finer
error distances, and an at least as precise information on the location of the solution. The
numerical examples illustrate the theoretical results.
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1. Introduction

Let us consider the problem of finding an approximate solution of the nonlinear least squares problem

1 T
min - F(z) F(z), (1)
where the residual function F' : D C RP — R™, m > pis nonlinear in z, F' is continuously differentiable,
and D is an open convex set in RP.

A large number of problems in applied mathematics and also in engineering are solved by finding
the solutions of the problem (1). They are, for example, solving overdetermined systems of nonlinear
equations, estimating parameters of physical processes by measurement results, constructing nonlinear
regressions models for solving engineering, problems dynamic systems, etc. The used solution methods
are iterative — when starting from one or several initial approximations, a sequence is constructed that
converges to a solution of the problems (1).

The known methods of the Gauss—Newton type [3-6] are used to solve the problem (1), which have
derivatives of function in their iterative formulas. However, in practice, problems with calculations of
derivative arise. In this case, we can use iterative-difference methods [3,7-10] that do not require the
calculation of the matrix of derivatives and often are not inferior over the Gauss—Newton method at
the order of convergence and the number of iterations. But sometimes the nonlinear function consists
of differentiable and non-differentiable parts. Then a nonlinear least squares problem arises

min % (F(z) + G(@) (F(x) + G(2)), 2)

where the residual function F + G: D C RP — R™, m > p, is nonlinear in z, F' is continuously
differentiable, G is continuous function, differentiability of which, in general, is not assumed, and D is
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Local convergence analysis of the Gauss—Newton—Kurchatov method 249

an open convex set in RP. Although it is possible to apply iterative-difference methods for solving a
nonlinear problem (2), but it is also possible to construct iterative methods that take into account the
decomposition of the residual function. In this case, when solving nonlinear equations, methods [11-16]
were constructed as combinations of the Newton method [4,5,17,18] and iterative-difference methods
of chord (secant) and Kurchatov [3-5,7,8,10,19,20|.

In the paper [1|, we proposed a method for solving a nonlinear problem of least squares with a
non-differentiable operator (2) constructed on the basis of the Gauss—Newton method method [4, 5]
and the Kurchatov type method [8,10,15]. We studied its local convergence under Lipschitz conditions
and showed its effectiveness in comparison with other methods using test problems.

2. Preliminaries

To find a solution of the problem (2) we consider the Gauss—Newton-Kurchatov method [1]:

Tni1 =T — (A, An) T AL (Fan) + Gan)),

3
A, = Fl(zn) + GQ2xy — Tp—1,Tn-1), n=0,1,..., 3)

where F’(x,,) is matrix of Jacobi of F'(z); G(2zy, —Zn—1,Tn—1) is the divided difference of the first order
of functions [21], and the points 2z, — z,_1, Tn—1, Lo, £_1 are initial approximations. Method (3) is
a combination of the Gauss—Newton method [4,5] and the Kurchatov type method [8, 10, 15].

If m = p, method (3) reduces to the Newton—Kurchatov method for solving the nonlinear equation
F(z)+ G(z) =0 [12,13,16]:

T4l = Tp — Ar_Ll(F("En) + G($n))’

4
A, = F'(zp) + G222y — xp—1,2pn-1), n=0,1,... @

Setting in (3) A, = F'(xy,) + G(xp,xn—1), we obtain a combination of the Gauss-Newton method [4,5]

and the Secant type method [7,10] of the form [1]

Tn+l = Tn — ijl(F(gjn) + G(ﬂj‘n)),

5)
Ap = F'(zp) + G(xn, 2n—1), n=0,1,... (5)

We need the following Lipschitz conditions.

Definition 1. We say that the Fréchet derivative F' satisfies the center Lipschitz conditions on D,
if there exist Ly > 0 such that for each x € D

[F' (@) = F'(a")|| < Lo |lz — 27, (6)
where z* € D solves problem (2).

Definition 2. We say that divided differences G(-,-) and G(-,-,-) satisfy the special Lipschitz con-
ditions on D x D and D x D x D, if there exist My > 0 and Ny > 0 such that for each x,y € D

IG(z,y) = G(u,v)|| < Mo( [l = ull + |y = vIl), (7)

and
1G(u, 2,y) — G(v,2,9)|| < Nollu—ov. (8)

Let B > 0 and « > 0. Define function h on [0, +00)
h(t) = B [(2a + (Lo + 2Mp)t + Not?] [(Lo/2 + Mo)t + Not?] . (9)

Mathematical Modeling and Computing, Vol.7, No.2, pp.248-258 (2020)



250 Argyros|. K., ShakhnoS. M., YarmolaH. P.

Suppose that equation h(t) = 1 has at least one positive solution. Denote by ~ such the smallest
solution. Set Dy = D N Q(z*, 7).

Definition 3. We say that the Fréchet derivative F' satisfies the restricted special Lipschitz condi-
tions on Dy, if there exist L > 0 such that for each x,y € Dy

[F'(z) = F'(y)|| < Lz —y] (10)

Definition 4. We say that divided differences G(-,-) and G(-,-,-) satisfy the special Lipschitz con-
ditions on Dy x Dy and Dy x Dy x Dy, respectively, if there exist M > 0 and N > 0 such that for each
z,Y,u,v € Dy

1G(z,y) = Glu, )| < M(|lz —ull + [ly — ]| (11)

and

”G(u7x7y) - G(anvy)u < N ”u - ?}” : (12)

The following condition together with (7) and (8) have been used instead of the preceding ones in the
study of such iterative methods [15].

Definition 5. We say that the Fréchet derivative F' satisfies the Lipschitz conditions on D, if there
exist L1 > 0 such that for euch x,y € D

[F'(@) = F'(y)]| < La [l — y] (13)

Let Q(x*,3r,) = {x: ||z — 2*|| < 3r.}.

3. Convergence analysis of the iterative process (3)

Further, we improve Theorem 1 [1].

Theorem 1. Let the function F + G : RP — R™ be continuous on the open subset D C RP,
F' continuously differentiable in this domain, and let G be a continuous function. Assume that the
problem (1) has a solution z* in the domain and there exists the inverse operator (A} A,)™" = [(F'(z*)+

G(z*,z*)) T (F'(z*) + G(z*,2*))]"" and
(AL A7 < B.
Estimates (6), (7), (8), (10), (11), (12) hold and -y given by (9) exists,
|F (") + G| <, |[F'(2") + Ga*,2")|| < o (14)
B(L+2M)n < 1, (15)
Q(z*,3r,) C D,
where r, is unique positive zero of the function q, given by
q(r) =B [(a+ (L +2M)r + AN7?) ((L/2 + M)r + 4N7?) + (L + 2M + 4N7)7]
+ B [20 + (Lo + 2My)r + 4Nor?] [(Lo + 2Mo)r + 4Nor?] — 1. (16)

Then for g, z_1 € Q(x*,r,) the iterative process (3) is well defined, the sequence {x,},n =0,1,...,
generated by it, remains in the open subset Q(z*,r,), and converges to the solution x*. Moreover, the
following error estimates hold for n = 0,1, ...

|zn+1 = 2*|| < Cul|zn — @[ + Co 20 — 2 |* + Cs |20 — 2™ + Cu w1 — 27| |z — 2™, (17)
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where

g(r) = B[1 - B (2a + (Lo + 2Mo)r + 4Nor?) (Lo + 2Mo)r + 4Nor?)] ™",
C1 = g(r)(L+2M)n, Cy = g(ra)Nn,
Cy = g(r)(L/2+ M) (o + (L + 2M)r, + 4N72) (18)
Cy = g(r.)N (a+ (L +2M)r, + 4N72).
Proof. According to the intermediate value theorem on [0, 7], the function ¢ for a sufficiently large r
and by (15) has a positive zero denoted by r.. But ¢’(r) > 0 for r > 0. So, this root is the only one

on [0, 7].
By assumption xg,x_1 € Q(z*,r,). Then we have

1220 — 21 = 27| < flzo — 27| + [lzo — 21| < [lwo — 27| + [lzo — ™| + [Jw—1 — 27| < 37

So, 2xg — x_1 € Q(x*,3r,).
Let us denote A,, = F'(xy,) + G(2x,, — Tp—1,%n—1). Let n =0 and we will get this estimate:
I - (ATA4) ™ AT Ao = (AT 4)™ (AT 4. — AT )]
(AT A) THAT (A — Ao) + (AT = AJ) (Ao — AL) + (AT — AD)AL) |
(AL A)THI (AL A = Aol + [[ AT = Ag [[[[ A0 — Ad]l + (| AL — Ag [[[|A«]])
Bla 4. - Ao|| + AT — 47 [l 40— A.]| + all AT — AT ) 19)

//\ N

Using (8), we get
|G (229 — 2—1,2-1) — G(20,70)|| = [G(220 — 7-1,2-1) — G(z0, 7-1) + G(20, 7-1) — G(20, 0|
= [|G(2x0 — 21,21, m0) (w0 — 1) — G(x0, T—1,Z0)(To — 21|
< No[lzo — 21| (20)
and
1G(2z0 — 2—1,2-1) — G(z0,2")|| = |G(230 — 21, 2-1) — G(20, T0) + G(0, T0) — G(20, 27|
< No [lwg — @1 [|* + Mo [|lzo — =7 (21)
We use the inequalities (7), (20), (21):
4o — Aull = || (F'(w0) + G(2x0 — x—1,2_1)) — (F'(z*) + G(a*,z")) ||
= ||F'(z0) — F'(z*) + G(2x0 — 21, 2_1) — G(x0,2%) + G(wp,z") — G(z*, z")|
< Llwg — 2| + N wo — 21 [|* + 2M lzg — z*||
= (Lo +2M) ||zo — 2*|| + No [lwo — x| . (22)

Then
| Aol < || Aol + |40 — Au]| < @+ (Lo + 2Mo) [|zo — *|| + No [|lmo — z—1 | (23)

Then we obtain from the inequality (19) and the definition r, (16)
HI - (AIA*)—lAJAOH <B [2a ¥ (Lo + 2Mo) ||z0 — || + No ||zo — x_l\ﬂ

(Lo +2M0) llzg = a*[| 4+ No o — a1 ]

X
< B [2a + (Lo + 2Mo)r. + 4Nor2] [(Lo + 2Mo)r, + 4Nor?]
h(ry) < 1. (24)
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According to the Banach’s theorem on the inverse operator [5], there exists (Ag Ag)~! and from (24)
we have

H(AO AQ 1H go = B{l — B [2a + (L() + 2M0) HLE() — LE*H + NO Ha;o — $_1H2}
-1
X |(Lo +2Mo) |z — 2| + No o — 2 1]°] }
< g(ry) = B{1 — B [2a + (Lo + 2Mo)rs + 4Nor7] [(Lo + 2Mo)r. + 4Nor2] }~

1

Consequently, the iteration x; is well defined.
Then let us show that z; € Q(z*,7,). Using the equality

Al (F(z*) + G(z*)) = 0,
we will obtain an estimate
|lx1 — 2™ = on -z - (A(TAO)_l(Ag (F(z0) + G(z0)) — Al (F(z*) + G(z*)) H

< 1= (AT Ao [ - 48 (0 - [ F o - e

- G(xo,x*)> (20 — %) + (A — A*T)(F(ZE*) + G(m*))} H

Hence, taking into account (21), (23) and inequalities

HAO — /1 F'(z* 4+ t(wo — 2*))dt — G(zo,2")

0

< 5L lzo = 2|l + M o — & + N [|zo — o1
< 3L lkeo — "+ M llao — 2| + N(llzo — 2*]| + lz1 — 2*)?
we will obtain
o1 — 2*|| < B{ (a 4 (L +2M) ||zo — 2| + N ||z — x_1H2>
x (5L lw0 — 2l + M llzo — *[| + N o — w1[1* ) lfzo — |
+ (L +2M) o — 2| + N flzo =21 ) |
x{ [2a+ L+2M)H:1:0—:1:||+N||:1:0—:1:1H]
< (L 20) flzo — 2 4+ N g — i) }
= go{ (0 (L +2M) o — 2| + N [lzg — =1 |*)
x (5L llmo — %l + M llao — a*]| + N flzo — 1]z — |

0 (L +2M) llzo — 2| + N flzo — 1)) }
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< g(r)[ (a+ (L+2M)r, +4N73) ((L/2 + M)r, + 4Nr?)
+(L+2M + 4N7‘*)77] To = P(re)Ts = T,

where
p(r) = g(r) [(a + (L + 2M)r + AN7?)((L/2 + M)r + AN72) + (L + 2M + 4Nr)n].

Hence, z1 € Q(z*,r,) and inequality (16) is true for n = 0.

Assume that z,, € Q(x*,r,) for n =0,1,... k, and the estimate (17) for n =0,1,...,k — 1, where
k >1 is an integer, holds. Further, we prove that x,1; € Q(z*,r,), and the estimate (17) holds for
n==k.

Define
17— (AJAD)TTAL Al = ||(A] A)~HA] Ay — AL A
= H(ATA MAT (A = A + (A] — AD (A — A) + (A] —AD A
<A A)THIIAL A — Apll + I1AT = ALIIAR — Al + 14T — ATIIAL)
< Blall A, = Al + 47 = AL Ak = Adl + el AL — Ag])
<B [2@ + (L +2M)||z — z*|| + Njxg — :Ek_1||2]

x [(L/2+ M)ay — 2| + Nz — zp-1f’]

< B[2a+ (L +2M)r, + 4N72] [(L + 2M)r, + 4N77] = h(r,) < 1.

Thus, (A} Ay)~! exists and

(AL Ari) ™Y S ar = B{l - B [204 + (Lo + 2Mo) ||lzx — ™| + No [|2x — fﬂk—lHﬂ
x [(Lo/2+ M) ok — )+ No la — a1 7]} < o).
Therefore, the iteration xy1 is well defined, and we can get in turn
o1 =2l = ||or — 2" = (AT AN TN AL (F(x) + Glaw) — AL (F(") + G(a"))|

1
< H — (AgAk)_IH H—A,I <Ak — / F'(m* + t(z — a:*))dt — G(mk,x*)> (xg — ")
0
+ | = (A A) T[4 = AD(Fe*) + G(a)]|
g{ o+ (L +200) ok — )| + N oy — 21|

x| (L/24 M) o = 2| + N o = @] o — o
0 (L +2M) oy = 2% + N g = 21 ]°) |
<gr){ o+ (L+2M) Jag = 2" + N oy — 21 ]?]
X |(£/2+ M) ok = 2*| + N |z — o | o — 2|
0 (L +20) ||z = &) + N g = 2y al”) } < plra)re =7,

Le. 1 € Q(a*,ry), and estimate (17) holds for n = k.
Consequently, the iterative process (3) is well defined, z,, € Q(z*, r,) for all n > 0, and estimate (17)
holds for all n > 0.
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Further, we prove that x,, — x* for n — oo. Define functions a and b on [0, r]:
a(r) = g(r)((L +2M + 3Nr)n + (r)((L/2 + M)r +4N7r?)),  b(r) = g(r)Nr, (25)

where ¢(r) = o+ (L + 2M)r + 4Nr2
According to the choice r,, we have

a(ry) =20, b(re) =0, a(re) +0b(rs) = 1. (26)

Using the estimate (17), the definition of constants C;, i = 1,2, 3,4, as well as the functions a and b,
for n > 0, we obtain

|ns1 — ¥ < (C1 + Car + 4Cur) ||l — 2|
+Cy (e = "I + 2l|wn-1 — 2| lzn — 2| + 201 — ")
< (C1 +3Cory + Csry + ACu12) ||z — 2*|| + Cory ||Tp—1 — 27|
= a(ry) [n = 2| + b(r) llzn-1 — 2. (27)

Similarly to [8], we prove that under the conditions (25), (26) the sequence {z,} for n — oo
converges to x*.

First of all, for a real number r, > 0 and initial points xg, z_1 € Q(z*,r,) there exists a real number
r’ such that 0 < ' < ry, zg,z_1 € Q(z*,7’). Then all the above estimates for the sequence {z,} are
valid, if replaced r, by /. In particular, from (27) for n > 0, we obtain

[2n41 = 27| < allen — ™[+ bllzn =27, (28)

where a = a(r’), b = b(r’).

Clearly, we also have
a>0, b>20, a+b<alry)l|z,—a||+0b(r)||zn-1 — 2] < 1.

Define sequences {6,,}, {pn}:

_ Nlzn — 27 _
HN_T’ n=-1,0,1,..., (29)
pP-1 :6—17 Po :907 Pn+1 :apn+bpn—l7 n:071727”"
We divide the two parts of inequality (28) into 7’ and obtain 6,11 = af,, + 00,1, n =0,1,2,.. ..
By definition of the sequence {p,}, we have
0<60,<pn, n=-101,.... (30)
For the sequence {p,}, the explicit formulas are known
Pn = wWIA] +Fw2y, n=-1,0,1,..., (31)
where
) _a—+Va?+4b ) _a++Va?+4b
1— 2 ) 2 = 2
and . .
Ay po— p-1 _p—1— AL po
W1=-—"7 -1 W= 1 -1
)‘2 - )‘1 )‘2 - )\l
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Note that
24+4(1 - 2 —
0<\Aﬂ<\)x2\<a+ a’+4(1—a) a+ a_
2 2
Taking into account (30) and (31), we conclude that {6,,} — 0 as n — oco. Therefore, we conclude that
Ty, — ¥ as n — oo. n

Remark 1. If Lo =L = Ly, My = M and Ny = N, our results are specialized to the corresponding
ones [1]. Otherwise they constitute an improvement. As an example let ¢, g1, C’ll, 021, C’%, C’i, rl
used in [1], denote the functions and parameters, where Ly, L, M, N are replaced by L1, L1, My, Ny,
respectively. Then, since Lo < Ly, L < Ly, M < My, N < Ny and since Dy C D, we have q(r) < q1(r),
g(r) < gi(r), C1 < C}, C2 < C3, C3 < CL, Cy < CF, s0 r! <r., and the new error bounds are tighter
than the corresponding ones (23) [1] .

Moreover, we have

B(Lo+2My)n<1 = B(L+2M)p<1

but not vice versa, unless if Ly = L and My = M.

Hence, the new sufficient convergence criteria for method (3) are weaker. These advantages are
obtained under the same computational cost as [1], since in practice the new constants are special cases
of the previous ones.

Corollary 1. In the case of zero residual, the convergence order of the iterative process (3) is
quadratic.

If n = 0, we have a nonlinear least squares problem with zero residual in the solution. Then the
constants C1 = 0 and Cy = 0 and (17) reduces to

|21 — 2" < Cs lan — 2*|* + Ca fwn — 2| o — | . (32)

It follows from the inequality (32) that the order of convergence (3) is not higher than quadratic.
Consequently, there exist a constant C5 > 0 and a positive integer N such that for all n > N

lz = 2*|| = Cs |z — 2*].

By
|zn — 2| < |lTn—1 — 2",

we have )
llzn — xn—l”z < (Hxn — " + [ln—1 — 27| ) <4||Tp1 — 33*”2 )

and from (32) we have

|21 =2 < Cs llzn — 2*|* + 4Cy lwn—r — 2*|* |20 — 2|

G
Cs

< Csllzy — 2*||* + 4= |2 — 2*||* = Cs |l — |-

Consequently, the convergence order of the iterative process (3) is quadratic.

As we see from the estimates (17) and (18), the convergence of the iterative process (3) essentially
depends on the terms containing the values n, a, L, M and N.

For problems with zero residual in the solution (7 = 0), the quadratic convergence of the iterative
process (3) is established.

For problems with a small residual in the solution (7 is “small”) and with weak nonlinearity (c,
Lo, L, M and N are “small”), the convergence of the iterative process is linear. In the case of large
residual (7 is “large”) or for strongly nonlinear problems («, Lo, L, M and N are “large”), the iterative
process (3) cannot converge at all.
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4. Results of numerical experiment

On several test cases, we compare the convergence rates of the Gauss-Newton-Kurchatov method (3),
the Gauss-Newton-Secant method (5) and the Secant-type difference method [7,10]

Tpy1 = — (A] An)TAL (F(2n) + Gla)),

(33)
Ap = F(zp,tp-1) + G(zp,xp—1), n=0,1,...,
and the Kurchatov-type difference method [8,10]

A, = F(233n - $n—17$n—1) + G(2$n - xn—lyxn—l)y n=0,1,....

We tested methods on nonlinear systems with a non-differentiable operator with zero and non-zero
residual. The classical Gauss-Newton method and the Newton method cannot be applied to solve
these problems.

Solution results are of the accuracy € = 10~®. The additional approximation was chosen as follows:
x_1 = xg — 10™%. The calculations were carried out until the conditions were fulfilled

|xnt1 — znl| <e and HA:L (F(zn) + G(zn)) || <,

with f(x) = gﬁ%(F(ﬂ:) + G(x)) T (F(z) + G(x)).
Example 1. [3,11,14], p =2, m = 2:

3x3z9 + 23 — 14 |21 — 1],
ol + 123 — 1+ |2a,

(27, x5) ~ (0.89465537, 0.32782652), f(z*) = 0.

Example 2. p=2,m=3:
3%%%2—1-%‘%—14—’%1—1‘,

of+ s — 1+ |2a,

‘33% - 332\ 5
(%, %) ~ (0.74862800, 0.43039151), f(z*) ~ 4.0469349 - 102
Example 3. p=3, m =10:
Fy(z) 4+ Gi(x) = e "%t — e7Ti%2 — pa(e™" — e710) — |ry(2y + 20) — V1 — ri3),
{ ri=01i, i=1,...,m,
(wh, 23, 2%) ~ (—1.10717473, 4.62615368, 0.50038327), f(z*) ~ 1.79449337 - 102,

Table 1 shows the results of the numerical experiment. In particular, the investigated methods are
compared in terms of the number of iterations performed to find a solution with a given accuracy.
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Table 1. Number of iterations for solving of the test problems.

Example xo Kurchatov-type Gauss—Newton— Secant—type | Gauss—Newton—
m-d (34) Kurchatov m-d (3) | m-d (33) Secant m-d (5)
(1, 0.1) 6 5 7 5
1 (3, 1) 12 9 12 10
(0.5, 0.5) 12 10 15 10
(1,0.1) 17 14 31 11
2 (3, 1) 23 18 44 15
(0.5, 0.5) 17 14 24 13
(-0.9, 4.3, 0.4) 6 6 13 7
3 (-0.5, 4, 1.5) 23 10 39 14
(-3, 5.8, 2.5) 17 10 19 11

5. Conclusions

It follows from the theoretical results, practical calculations, and comparison of the results obtained
that the combined differential-difference (3) and (5) methods converge faster than the Kurchatov type
method (34) and the Secant type method (33). As it has been proved, in the case of zero residual, the
method (3) has a quadratic order of convergence and does not require the calculation of derivatives
from a non-differentiable part of the operator. Then the method (3), as well as the method (5), are
effective methods for solving nonlinear least squares problems with non-differentiable operator.
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AHani3 nokanbHoi 30i>xkHocTIi meToay MNaycca—HbloToHa—KypuaToBa

Aprupocl. K.1, Hlaxuo C. M.2, dpmomnal. 1.2

I Vuisepcumem Kemepona,
Jloymon, OK 73505, CIIIA
2 JIvsiscoruti nayionasvhuti ynisepcumem imeni Ieana Ppanxa,
sys. Ywnisepcumemcovra, 1, 79000, Jlveis, Yxpaina

Y pobori peicTaBIeHO aHAJI3 JoKaabHOI 36i2kHOCTI MeToy ['aycca—HpioTona—Kypaarosa
JI7IsT PO3B’I3aHHS HeJIHITHUX 32184 PO HANMEHIIT KBaIPaTH 3 JJEKOMITO3HUITIEIO OIIepaTopa.
Mero BukopucTOBYE CyMy MOXimMHOI Bij qudepeHIIHOBHOT YaCTHHU OTIePaTOPAa 1 TOIICHY
pisHUIO Bif HemudEpeHIiioBHOT YaCTUHA 3aMiCTh OOUNC/IeHHS TOBHOTO sikobiana. loBe-
JIEHO TeopeMy, sTKa BCTAHOBJIIOE YMOBH, PAJILyC Ta TOPSIOK 30i?KHOCTI METO/LY, 3aIIPOIIOHO-
BaHoro y [1]. Oguak pajiyc 361KHOCTI, B 3arajJlbHOMY BUNIAJIKY, HEBEJHUKHH, [0 OOMEXKYE
BUOIp MOYATKOBUX TOYOK. BUKOPHUCTOBYIOUN OIMBIN UiTKi OIIHKU MOXUOOK IPHU CJIAOIITUX
rimoresax [2], nHaBemeno anasiz merony Faycca—Hprorona—Kypuarosa 3 Takumu mepesara-
MU Iepe]l BiAnoBianuMu pesysabraramu y [1]: mupina obaacrs 361kHOCTI, TOUHINT OIIHKY
MOXUOOK i, MpUHANMHI, TOTHIIIA iH(OPMAIIisI IIPO MiCIle pO3TAILYBAHHS TOYHOTO PO3B’I3KY.
HucenbHi TPUKIAIN TiATEPIKYIOTH TEOPETUIHI Pe3yIbTATH.

Kntouosi cnosa: memod Iaycca—Hvromona—Kypuamosa, sokasvra 36iichicms, noxiona
Dpewe, ymosa Jlinwuus, yenmpasvra ymosa Jlinwuys, obaacms 361atcHocmi.
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