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A combination of asymptotic methods in nonlinear mechanics with basic techniques of
perturbation theory to study a mathematical model of the nonlinear oscillation system is
proposed in the paper. The system under consideration describes the torsional vibrations
of an elastic body, where its elastic properties are under the nonlinear law. The relation-
ships presented as the ordinary differential equations are obtained due to the proposed
procedure. Therefore, the main parameters of the single-frequency oscillations and the
resonance conditions can be determined. There are proposed applications of the obtained
results to the optimization problem concerning the processing equipment.
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1. Introduction

The main aim of the paper is the application of the nonlinear mechanics single-frequency method
combined with the main ideas of the perturbations methods and the periodic Ateb–functions to the
new classes of the dynamic systems. The considered mathematical models of the dynamic systems
relate to the oscillation processes of the elastic bodies. That is why they can be described by the
boundary problems for the nonlinear partial differential equations. The peculiarity of these models
is the fact that in spite of the possibility of Fourier method application to construct the sets of the
single-frequency solutions, the dynamic process of the systems is not isochronous. This process can be
studied by the periodic Ateb–functions [1–4].

Our interest in this research is motivated by the possibility of creation of new materials with the
elastic properties described by the nonlinear relationships, as well as by the ineffectiveness of the
numerical simulation for their analysis. This ineffectiveness is especially exhibited while investigating
such important phenomena as resonance. The question is even to describe the existence conditions of
the resonance via the numerical simulation not to mention about its distinctive features. It is explained
by the anisochronous unperturbed process. The example of torsional vibrations of the elastic body,
where the elastic properties are close to the power law σ = kεν0+1

1 , where σ is body elasticity, ε1 is
relative deformation, ν0 + 1 is the nonlinearity factor, ν0 > −1 is analyzed to demonstrate the main
issues of the general procedure. The ordinary differential equations that describe the main parameters
of the single-frequency oscillations for the first approximation of the asymptotic solution are obtained.

2. Bibliography and aim of the work

Single- and multi-frequency oscillations of the one-dimensional mechanical systems, where the elastic
properties of the material can be approximated by the linear or close to the linear elasticity law
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are well studied for the engineering calculations [5–7]. The principle of oscillation superposition is
correct for these systems in case of the linear elasticity law. The asymptotic methods of the nonlinear
mechanics [8–10] are effective to investigate the case of quasi-linear (close to the linear) elasticity
law. Dynamic systems with strong nonlinear elasticity law possess the particularities that complicate
the application of the mathematical methods. The particularities are the following: the principle
of oscillations superposition is not accomplished for these dynamic systems; oscillations processes in
these systems are characterized by dependence of the dynamic process period on amplitude; analytical
solution of the unperturbed equations in the completed form can be obtained in the particular cases
only; general analytical approach to study the perturbed systems analogs is unavailable.

Thus, the aim of the paper is to develop the procedure to study the dynamic processes of some
classes of the systems with the distributed parameters. The mathematical models of these systems
can be represented by the mixed problems for the close to the quasi-linear hyperbolic type equations.
This type of boundary problems are considered under some restrictions, in particular, longitudinal or
torsional vibrations of the elastic bodies [11–16], the dynamic processes of bodies “chain” interacting
between them under the nonlinear forces [17], other nonlinear oscillations models [18]. To solve the
pointed questions partially let us suppose: the nonlinear elastic features of the body material can be
approximated by some power or close to its dependence. Then the application of the special periodic
Ateb–functions [19, 20] allow constructing the solutions of the unperturbed analogs corresponding
differential equations. The main ideas of perturbation methods [21, 22] or the asymptotic methods of
the nonlinear mechanics [8, 23] are effective for the systems with the small perturbed values.

3. Mathematical model. General procedure

Let us describe a mathematical model of the torsional oscillations of a nonlinear elastic body. To
obtain this model one can consider “dynamic equilibrium” of conditionally preferred element of the
elastic body in the constant cross-section with uniformly distributed mass along its length. It is well-
known [24], that an angle of torsion for this body φ(x, t) in the arbitrary section by the coordinate x
in the general case is described by dependence φ(x, t) = g(M), M is torsional moment. The function
g(M) is determined experimentally and can be approximated with the sufficient accuracy degree by
the dependence g(M) = GJ(∂φ/∂x)ν+1, where G is the modulus of the second order elasticity, J is the
inertia moment of the body cross-section with respect to the section neutral axis. The parameter ν,
approximating the nonlinear elastic properties of the body material in the wide deformation diapason,
must satisfy the condition ν+1 = 2m+1

2n+1 , m,n = 0, 1, 2, . . .. The case of ν = 0 corresponds to the linear
law. The main dynamic equation in this case for the elastic body element between the sections x and
x+ dx would be the following

ρJφtt =
∂

∂x

(

GJ

(

∂φ

∂x

)ν+1
)

,

where ρ is the body material density. Taking into account resisting forces with the small values and
other dissipative forces, the obtained equation transforms to

φtt − α2(φx)
νφxx = εf(φt, φx, φtxx) (1)

with the boundary conditions
φ(0, t) = εϕ0, φ(l, t) = −εϕ0. (2)

In the equation (1), the function φ(x, t) is the torsion angle of the elastic body, α2 = (ν + 1) G
ρ
,

ε is the small parameter, indicating that the maximum value of the right-hand side of the equation
(2) (known analytic function εf(φt, φx, φtxx)) is the small value in comparison with the maximum
value of the second term in the left-hand side of the equation, ϕ0 is the known constant (±εϕ0 are
the torsion angles of the ends of the body with the length l). That is why the unperturbed analog of
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the equation (1), i.e. the equation Ψtt − α2(Ψx)
νΨxx = 0 is of a hyperbolic type one. Therefore, the

periodic solution [11] exists under the homogeneous first-type boundary conditions. The solution of
the set problem with the perturbed boundary conditions, taking into account the restrictions in the
right sides in the relationships (1) and (2), one can find as [9]

φ(x, t) = Ψ(x, t) + θ(x, t), (3)

where the function θ(x, t) is the solution of the differential equation θxx(x, t) = 0, satisfying the
boundary conditions θ(0, t) = εϕ0, θ(l, t) = −εϕ0. It is easy to obtain θ(x, t) = εϕ0 − ε2ϕ0

l
x. Then

the function φ(x, t) is the solution of the nonlinear equation

Ψtt − α2(Ψx)
νΨxx = εf

(

Ψt,Ψx − ε
2ϕ0

l
,Ψtxx

)

(4)

and satisfies the homogeneous boundary conditions

Ψ(0, t) = 0, Ψ(l, t) = 0. (5)

The main ideas of the perturbations methods can be applied to the study of the considered dynamic
processes due to the restrictions of the right side of the equation (1) and the boundary conditions
for the function φ(x, t). They are the most effective in case when the unperturbed analogs of the
corresponding boundary problems allow to construct the solution in the closed form. There is the
solution of the equation φtt − α2(φx)

νφxx = 0 under the homogeneous boundary conditions (5). In
spite of the equation is nonlinearity, the separation variables can be realized, that means that solution
can be found as

φ(x, t) = Φ(x) · T (t). (6)

To find the unknown functions Φ(x) and T (t) one can obtain, using (6), the ordinary nonlinear differ-
ential equations

d2Φ

dx2

(

dΦ

dx

)ν

+ λΦ(x) = 0, (7)

d2T

dt2
+ α2λT ν+1(t) = 0, (8)

where the unknown parameter λ in (8) is determined in such a way, the boundary conditions (5) is
true. Thus, function Φ(x) must satisfy the following conditions

Φ(0) = Φ(l) = 0. (9)

Linear independent solutions of the equation (7) are represented by the periodic Ateb–functions

Φ (x) = Φ0



















sa

(

1, 1
ν+1 ,

(

λk
ν+2
2Φν

0

)
1

ν+2

x

)

,

ca

(

1, 1
ν+1 ,

(

λk
ν+2
2Φν

0

)
1

ν+2

x

)

,

(10)

where Φ0 is constant. One can obtain from (9) and (10) eigenvalues and their corresponding set of the
boundary problem solutions for the linear variable Φ(x) in the following form

Φ(x) = Φ0 sa

(

1,
1

ν + 1
,Πx

k

l
x

)

. (11)
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Value Πx = Πx

(

1, 1
ν+1

)

is period on the argument Πx
k
l
x of used Ateb–function, k = 1, 2, 3, . . . in

dependence (11). Solutions set of the equation describing time changes in torsional oscillations of the
elastic body can be found similarly

T (t) = T0











ca
(

ν + 1, 1,
(

ν+2
2 α2λkT

ν
0

)
1

2 t
)

,

sa
(

ν + 1, 1,
(

ν+2
2 α2λkT

ν
0

)
1

2 t
)

,

(12)

where T0 is the arbitrary constant. Substituting values that coordinate with the boundary conditions
instead of parameter λk into (12) one can obtain

T (t) = T0

{

ca (ν + 1, 1, ωk (akt)) ,

sa (ν + 1, 1, ωk (akt)) .
(13)

Hence, the set of single-frequency solutions, describing the unperturbed torsional oscillations of the
elastic body consists of the functions

φk(x, t) = a sa

(

1,
1

ν + 1
,Πx

k

l
x

)

ca
(

ν + 1, 1, ωk(a) t+ θ0
)

,

where ωk(a) = αa
ν

2

(

kΠx

l

)

ν+2

2 , a = Φ0T0 is the corresponding mode amplitude of the torsional oscilla-
tions, θ0 is their initial phase.

Remark. The initial conditions for the original system (1), (2) must satisfy the existence of single-
frequency oscillations mode, close to one of the “dynamic equilibrium” forms of the system. This
question is not discussed in the paper.

4. Single-frequency oscillations

Single-frequency torsional oscillations of the linear elastic body are the special case of the obtained
relationships (13) if ν = 0. There are fundamental differences between this special case and obtained
general nonlinear case described by the dependence (13): a) eigenfrequency spectrum does not depend
on amplitude for the linear torsional oscillations, but it depends for the nonlinear case; b) resonant
torsional oscillations of the elastic bodies with material satisfying the nonlinear elasticity law, are
different in principle from the oscillations with the linear elasticity law. These problems can be the
subject under separate study. By the way, the system of functions

Φk(x) =

{

sa

(

1,
1

ν + 1
,Πx

k

l
x

)}

,

describing forms of single-frequency torsional oscillations, possesses the orthonormalized property

∫ l

0
Φm(x)Φn(x) dx = δmnP ,

where δmn is Kronecker delta, and P = ν+2
3ν+4 l for the considered boundary conditions. This property

essentially simplifies the perturbed problem solving, that is to find the approximate analytic solution of
the equation (1) under the inhomogeneous boundary conditions (2). There are two main analytic ap-
proaches: the first is to represent the solution of considered boundary problem as the asymptotic series
form, the sense of the second is to extend the main idea of Bubnov–Galerkin and Van der Pol methods
to the new class of the dynamic systems [23,25,26]. The first method needs cumbersome mathematical
calculations even for the most simple form of the right sides of the equation (4). Therefore, we will
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discuss the second method. Single-frequency oscillations principle easier implements this method in
the nonlinear systems with multi-degree-of-freedom and distributed parameters. In accordance with
the main idea, the perturbed oscillations for the first approximation of the asymptotic solution can be
treated in the same form as the unperturbed oscillations, but the difference is that amplitude and fre-
quency of the process are slowly changeable time functions. So, let us find the solution of the boundary
problem (4), (5) in the following form

φ(x, t) = a(t)Φ1(x) ca
(

ν + 1, 1, ω1(a(t))t + θ(t)
)

. (14)

The task is to determine the laws of changing functions a(t), θ(t), satisfying the considered mathemat-
ical model of the elastic body torsional oscillations with the needed degree of accuracy. Differentiation
with respect to time of the dependence (14), taking into account the main ideas of Bubnov–Galerkin
and Van der Pol methods, derives the following equations

da

dt
ca (ν + 1, 1, ψ1)−

2a

ν + 2

dθ

dt
sa (1, ν + 1, ψ1) = 0, (15)

∂2φ

∂t2
= −

2Φ1(x)

ν + 2

da

dt

(

ω1(a) + a
dω1(a)

da

)

sa (1, ν + 1, ψ1)

+
2X1

ν + 2

da

dt
ω1

(

ω1(a) +
dθ

dt

)

caν+1 (ν + 1, 1, ψ1) , ψ1 = ω1 (a) t+ θ. (16)

The dependences (15), (16) and equation (4) determine in total unknown functions and by the following
differential equations

ȧ = ε
sa (1, ν + 1, ψ1) f

∗
1 (a, ψ1)

ω1(a)P
,

θ̇ = ε
(ν + 2) ca (ν + 1, 1, ψ1) f

∗
1 (a, ψ1)

2aω1(a)P
,

(17)

where

f∗1 (a, ψ1) =
1

l

∫ l

0
f

(

aΦ1(x) ca (ν + 1, 1, ψ1) , . . . ,−
2a

ν + 2
ω1Φ1(x) sa (1, ν + 1, ψ1)

)

Φ1(x) dx.

5. Analysis of torsional oscillations mathematical model

The differential equations system (17) is quite complicated for the quantitative and qualitative analysis
of the nonlinear elastic body torsional oscillations. It is reasonable to simplify the system for the
practical implementation of the obtained results. Let us advance the following arguments: if the
right side of the autonomous differential equation (2) is proportional to the small parameter, and the
boundary conditions are of the autonomous type, then the single-frequency process amplitude changes
negligibly during one oscillation period. This peculiarity forms the basis for the averaging over the
oscillation phase of the right sides, i.e.

ȧ =
ε

2ΠTPlω1(a)

∫ 2ΠT

0

∫ l

0
sa (1, ν + 1, ψ1)Φ1(x)f1 (a, x, ψ1) dx dψ1,

ψ̇ = ω1(a) +
ε(ν + 2)

4aΠT lPω1(a)

∫ 2ΠT

0

∫ l

0
ca (ν + 1, 1, ψ1) Φ1(x)f1 (a, x, ψ1) dx dψ1,

(18)

where 2ΠT = 2Π(1, ν+1) is the oscillation phase ψ1 period. The following statement can be proposed as
conclusion: the first approximation of the elastic body dynamic process with the boundary problem (1),
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(2), as the mathematical model of torsional oscillations is described by the following dependence

φ1(x, t) = a sa

(

1,
1

ν + 1
,Πx

k

l
x

)

ca (ν + 1, 1, ψ1) + εϕ0 − ε
2ϕ0

l
x, (19)

where parameters a, ψ1 are connected by the differential equations (18). Let us consider the nonlinear
single-frequency body oscillations under the condition that the resistant force is proportional to the
speed with 2ν1 +1 degree as the example. The right side of the differential equation (1) in this case is
the following

εf(φt, φx, φtxx) = ε
(

β1(φt)
2ν1+1

)

,

where β1 ν1 are foregone constants. To find time change of the amplitude and frequency of the torsional
oscillations with respect to the dependences (18), (19) one can obtain

ȧ =
εβ1

ΠTΠxρω1 (a)

(

2aω (a)

(ν + 2)

)2ν1+1

(

Γ
(

2(ν1+1)+1
2

))2
Γ
(

ν+1
ν+2

)

Γ
(

1
ν+2

)

Γ
(

2(ν1+1)+1
2 + ν+1

ν+2

)

Γ
(

2(ν1+1)+1
2 + 1

ν+2

) ,

ψ̇ = αa
ν

2

(

Πx

l

)
ν+2

2

.

(20)

Dependence of torsional oscillations frequency on amplitude with respect to the equations (20) is
demonstrated in Fig. 1.

α, rad

ω, s−1

ω11(α)

ω12(α)

ω13(α)

ω14(α)

α, rad

t, s

α1(t)

α2(t)

α3(t)

α4(t)

Fig. 1. Dependences of torsional oscillations frequency
on amplitude.

Fig. 2. Dependences of the amplitude on time.

Represented dependences are obtained in four cases of the nonlinear elastic bodies properties respec-
tively with four frequencies on the figure: frequency ω11(a) corresponds to the body with the properties
G = 5.6·108 Pa, ν = 2/5; frequency ω12(a) corresponds to the body with the properties G = 1.5·108 Pa,
ν = 2/15; frequency ω13(a) corresponds to the body with the properties G = 1.3 · 108 Pa, ν = 2/9;
frequency ω14(a) corresponds to the body with the properties G = 1.8 · 108 Pa, ν = 4/9. Time change
of torsional oscillations amplitude ai(t), i = 1, 2, 3, 4 is shown in Fig. 2 for the same four cases.

Results that are obtained considering the torsional oscillations mathematical model can be used
as basis for the resonant oscillations study. Discussed oscillations mode can be subject of separate
investigation. Let us study their existence conditions, considering periodic by phase external pertur-
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bation. The classic condition is true in case of the main resonance: eigenoscillations and perturbed
oscillations periods must be equal (close to equal), that is 2π

µ
= 2ΠT

ω(a) , where µ is frequency of the
external periodic perturbation. Therefore, the resonant torsional oscillations appear under condition,
when their amplitude converges to the foregone value

a∗ =

(

ΠTµ

απ

(

l

Πx

)
ν+2

2

)

2

ν

.

This result is important while analyzing the dynamic oscillations modes, describing the considered
mathematical models.

6. Conclusions

In this paper, a procedure to study the mathematical model of elastic body oscillations, which combines
asymptotic approaches and perturbations methods is proposed (elastic properties of the body material
are described by close to power elasticity law). There is shown that the dynamic process in these
systems differs in comparison with that in the linear systems. Firstly, there is the dependence of
eigenfrequency on amplitude. In particular, the less value of the eigenoscillations frequency corresponds
to the greater oscillations amplitude values. Just the opposite statement is true in the case. Concerning
the damped oscillations, one can see that the amplitude decrease does not essentially depend on the
nonlinear elastic properties of the body material. The main idea of the paper can be used to study
the dynamic processes of some other nonlinear oscillation systems classes. The obtained results can
be used in problems of synthesis and optimization of parameters, ensuring running characteristics of
processing equipment.
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Застосування асимптотичних пiдходiв та методiв теорiї збурень
до дослiдження математичної моделi одночастотних коливань

нелiнiйно пружного тiла

СокiлБ. I. 1, ПукачП.Я.1,2, СокiлМ.Б.2, ВовкМ. I.2

1Нацiональна академiя сухопутних вiйськ iменi гетьмана Петра Сагайдачного,

вул. Героїв Майдану, 32, 79012, Львiв, Україна
2Нацiональний унiверситет “Львiвська полiтехнiка”,

вул. С. Бандери, 12, 79013, Львiв, Україна

У роботi проiлюстровано можливостi поєднання асимптотичних методiв нелiнiйної
механiки та основних положень теорiї збурень для дослiдження математичної мо-
делi нелiнiйної коливальної системи. Розглянута система описує крутильнi коливан-
ня пружного тiла, пружнi властивостi якого описуються нелiнiйним законом. За до-
помогою розробленої у роботi методики дослiдження динамiчної системи отримано
спiввiдношення у виглядi звичайних диференцiальних рiвнянь для визначення ос-
новних параметрiв одночастотних коливань та умови виникнення резонансу. Вказано
на практичнi застосування отриманих результатiв у задачах оптимiзацiї параметрiв
технологiчного обладнання.

Ключовi слова: математична модель, одночастотнi коливання, нелiнiйний закон

пружностi, асимптотичний метод, амплiтуда, частота.
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