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In this paper, the small-scale spatially distributed influences on the infectious disease
development are proposed to be modeled by means of diffuse disturbance of the corre-
sponding degenerate model problems. We represent the asymptotic expansions of the
solutions of the corresponding singularly-disturbed problems with a time-delay that are
reduced to a sequence of problems without a time-delay. The results of numerical ex-
periments that characterize the spatially distributed diffuse influences on the infectious
disease development are presented. The decrease in the maximum concentration level of
pathogenic antigens due to their diffuse “redistribution” from the locus of infection into
less infected areas of the target organ is illustrated.
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1. Introduction

The universality of the immune defense processes of the organism against pathogenic bacteria and
viruses prompted the development and wide application of mathematical modeling methods to their
study. Today, there is a various spectrum of mathematical models of the immune defence of the
organism constructed according to different principles [1–5].

In particular, in [1] the simplest mathematical model of infectious disease of G. I.Marchuk is pre-
sented as a system of nonlinear differential equations with time-delay

dV

dt
= (β − γF )V,

dC

dt
= ξ (m)αV (t− τ)F (t− τ)− µC (C − C∗) ,

dF

dt
= ρC − (µf + ηγV )F,

dm

dt
= σV − µmm

(1)

for conditions

C(t0) = C0, m(t0) = m0, V (t̃) = V 0(t̃), F (t̃) = F 0(t̃), t0 − τ 6 t̃ 6 t0, (2)

where V (t) is the concentration of pathogenic antigens, C(t) is the concentration of plasma cells that are
carriers and producers of antibodies, F (t) is the concentration of antibodies that neutralize antigens,
m(t) is the relative characteristic (measure of contagion) of the infected organ. The model also assumes

310 c© 2020 Lviv Polytechnic National University

CMM IAPMM NASU



Modeling small-scale spatially distributed influences on the development of infectious diseases 311

that for the uninfected organ m is zero and for the fully infected it is a unit. (see [1]). With significant
damage to the organism, the production efficiency of antibodies decreases, which, in general, can lead
to death. The function that we introduced in model (1)–(2)

ξ(m) =

{

1, 0 6 m < m∗,
(m− 1)/(m∗ − 1), m∗ 6 m < 1,

allows us to account of the reducing of the production efficiency of antibodies with significant damage
to important target organs. On the interval 0 6 m < m∗ the function ξ(m) equals a unity, it means
that functionality of the immunological organs is complete and does not depend on the severity of the
disease. Further, for m∗ 6 m < 1, the functionality efficiency of the organ rapidly decreases.

The system of equations (1) has stationary solutions, one of that describes the state of a healthy
organism:

V = 0, C = C∗, F = F ∗ = ρC∗/µf , m = 0. (3)

This means that the concentration of pathogenic antigens and the infected proportion of the target
organ is zero, and the number of plasma cells C and antibodies F correspond to the immunological
status of a healthy person. In [1] it is shown that this state is asymptotically stable for β < γF ∗ and
maintains such resistance when a healthy organism is infected by a dose of antigen V 0 that does not
exceed some level V ∗ of the immunological barrier:

V 0 < V ∗ = µf (γF
∗ − β)/(βηγ). (4)

The other stationary solution

V̄ =
µCµf (β − γF ∗)

β (αρ− µCηγ)
, C̄ =

αβµf − ηµCγ
2C∗

γ (αρ− µCηγ)
, F̄ =

β

γ
, m̄ =

σV̄

µm

=
σµCµf (β − γF ∗)

µmβ (αρ− µCηγ)
,

that describes the so-called chronic process of the disease, is obtained for V > 0 and ξ(m) ≡ 1 is also
stable [1].

According to the assumptions of the basic infectious disease model with significant lesions of the
target organ value of the relative characteristics of the extent of such lesions m∗ < m < 1, then, in
particular ξ(m) = (m− 1)/(m∗ − 1) [1]. Taking into account that the second equation of system (1)
(m− 1)/(m∗ − 1)αV F − µC(C − C∗) = 0, which describes the change in the number of plasma cells
under steady state, we get stationary solutions in a situation of significant damage to the target organ

¯̄V1,2 = µm ¯̄m1,2/σ,
¯̄C1,2 = βη ¯̄V1,2/ρ+ µfβ/ (ργ),

¯̄F1,2 = β/γ,

¯̄m1,2 =
1

2αρ



αρ+ µC(m
∗ − 1)



ηγ ±

√

(

αρ+ ηγµC(m∗ − 1)

µC(m∗ − 1)

)

2

−
4αρσµf (γF ∗ − β)

βµmµC(m∗ − 1)







 .
(5)

Let us note according to the infectious disease model (1)–(2) described above, the response of the
immune system to the existing of foreign pathogenic antigens begins from the moment t0. For that, a
certain initial level of concentration of presented antigens in the organism V 0 is established.

The processes of spatial distribution of antigens after their entry and reproduction in the organism
in the models are not specified. As noted in [6], for any pathogenic antigen in the organism there
are lymphocytes that can recognize it. However, for each antigen, the number of lymphocytes with
their corresponding specific receptors is small. In addition, the activity of lymphocytes is less than the
activity of pathogenic antigen. So, it is considered that antigens that enter the organism externally
prior to their recognition by the immune system are able to spread in the organism, infect the target
organ cells in different spatially distributed places. Thus, several centers of infection with significantly
higher antigenic pathogens are created. Further, the newly-formed antigens spread from high concen-
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tration places to lower concentration places, expanding the target organ lesion area and reducing the
concentration of available antigens in the area itself.

The purpose of this work is to take into account the small spatially distributed diffuse influ-
ences on the development of the infectious disease for its study that is based on the basic model
of G. I.Marchuk (1)–(2).

2. Modeling infectious disease process taking into account of small diffuse disturbance
(problem statement)

We assume that small-scale spatially distributed influences on the development of the infectious disease
process have diffusive character. Let us describe the corresponding spatio-temporal dynamics of model
factors of infectious disease in the set GZ = {(x, t) : −∞ < x < +∞; t0 < t < +∞} as the system of
differential equations with time-delay generalized according to (1)–(2):

∂V (x, t)

∂t
= (β − γF (x, t))V (x, t) + εDV

∂2V (x, t)

∂x2
,

∂C (x, t)

dt
= ξ (m (x, t))αV (x, t− τ)F (x, t− τ)− µC (C (x, t)− C∗) + εDC

∂2C (x, t)

∂x2
,

∂F (x, t)

dt
= ρC (x, t)− (µf + ηγV (x, t))F (x, t) + ε2DF

∂2F (x, t)

∂x2
,

∂m (x, t)

dt
= σV (x, t)− µmm (x, t) + ε2Dm

∂2m (x, t)

∂x2

(6)

for conditions
C(x, t0) = C0(x), m(x, t0) = m0(x), V (x, t̃) = V 0(x, t̃),

F (x, t̃) = F 0(x, t̃), t0 − τ 6 t̃ 6 t0,
(7)

where εDV , εDC , ε2DF , ε2Dm are the coefficients of space-diffusion “redistribution” of antigens, anti-
bodies, plasma and affected cells respectively.

In cases, when the spatially distributed diffuse influences on the dynamic of infectious disease
are small compared to other components of the process (parameter ε is small) the use of asymp-
totic methods for solving the corresponding singularly disturbed model problems [7, 8] is effec-
tive. In particular, the solutions of problems (3)–(5) can be formally represented as asymptotic
series V (x, t) =

∑N
i=0

εiVi(x, t) + RV
N (x, t, ε), C(x, t) =

∑N
i=0

εiCi(x, t) + RC
N (x, t, ε), F (x, t) =

∑N
i=0

εiFi(x, t) + RF
N (x, t, ε), m(x, t) =

∑N
i=0

εimi(x, t) + Rm
N (x, t, ε) as disturbance of the solution

to the corresponding degenerate problem [9], where Vi(x, t), Ci(x, t), Fi(x, t), mi(x, t) are the members
of regular part of asymptotes, RV

N (x, t, ε), RC
N (x, t, ε), RF

N (x, t, ε), Rm
N (x, t, ε) are the corresponding

remainders. After substituting the asymptotic series and performing the standard procedure of equat-
ing the coefficients with the same powers of ε, we obtain such problems to find the functions Vi(x, t),
Ci(x, t), Fi(x, t), mi(x, t) (i = 0, 1, . . . , N):































































dV0(x, t)

dt
= (β − γF0(x, t)) V0 (x, t) ,

dC0(x, t)

dt
= αV0(x, t− τ)F0(x, t− τ)− µC (C0(x, t)− C∗) ,

dF0(x, t)

dt
= ρC0(x, t)− (µf + ηγV0(x, t))F0(x, t),

dm0(x, t)

dt
= σV0(x, t)− µmm0(x, t),

V0(x, t̃) = V 0(x, t̃), F0(x, t̃) = F 0(x, t̃), t0 − τ 6 t̃ 6 t0,

C0(x, t0) = C0(x), m0(x, t0) = m0(x);

(8)
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





























































dV1(x, t)

dt
= βV1(x, t)− γ (a0(x, t)F1(x, t) + b0(x, t)V1(x, t)) + ΦV 1(x, t),

dC1(x, t)

dt
= α (a0(x, t− τ)F1(x, t− τ) + b0(x, t− τ)V1(x, t− τ))− µCC1(x, t) + ΦC1(x, t),

dF1(x, t)

dt
= ρC1(x, t)− µfF1(x, t)− ηγ (a0(x, t)F1(x, t) + b0(x, t)V1(x, t)) ,

dm1 (x, t)

dt
= σV1 (x, t)− µmm1 (x, t) ,

V1(x, t̃) = 0, F1(x, t̃) = 0, t0 − τ 6 t̃ 6 t0,

C1(x, t0) = 0, m1(x, t0) = 0;

(9)































































dVi(x, t)

dt
= βVi(x, t)− γ (a0(x, t)Fi(x, t) + b0(x, t)Vi(x, t)) + ΦV i(x, t),

dCi(x, t)

dt
= α (a0(x, t− τ)Fi(x, t− τ) + b0(x, t− τ)Vi(x, t− τ))− µCCi(x, t) + ΦCi(x, t),

dFi(x, t)

dt
= ρCi(x, t)− µfFi(x, t)− ηγ (a0(x, t)Fi(x, t) + b0(x, t)Vi(x, t)) + ΦF i(x, t),

dmi(x, t)

dt
= σVi(x, t)− µmmi(x, t) + Φmi(x, t),

Ci(x, t0) = 0, mi(x, t0) = 0, Vi(x, t̃) = 0, Fi(x, t̃) = 0, t0 − τ 6 t̃ 6 t0,

i = 2, 3, . . . , N,

(10)

where
a0(x, t) = V0(x, t), b0(x, t) = F0(x, t);

ΦV 1(x, t) = DV
∂2V0(x, t)

∂x2
, ΦC1(x, t) = DC

∂2C0(x, t)

∂x2
;

ΦV i(x, t) = −γ

i−1
∑

k=1

Vk(x, t)Fi−k(x, t) +DV

∂2Vi−1(x, t)

∂x2
,

ΦCi(x, t) = α

i−1
∑

k=1

Vk(x, t− τ)Fi−k(x, t− τ) +DC

∂2Ci−1(x, t)

∂x2
,

ΦF i(x, t) = −ηγ

i−1
∑

k=1

Vk(x, t)Fi−k(x, t) +DF

∂2Ci−2(x, t)

∂x2
,

Φmi(x, t) = Dm

∂2Ci−2(x, t)

∂x2
, i = 2, 3, . . . , N.

Let us note that the equations (8)–(10) are ordinary differential equations for variable t, where
variable x is a parameter. The solution to problems (8), (9), (10) with time-delay is reduced to the
sequence of problems without time-delay [10]:































































dV0,0(x, t)

dt
= (β − γF0,0(x, t))V0,0(x, t),

dC0.0(x, t)

dt
= αV 0(x, t− τ)F 0(x, t− τ)− µC (C0,0(x, t)− C∗) ,

dF0,0(x, t)

dt
= ρC0,0(x, t)− (µf + ηγV0,0(x, t))F0,0(x, t),

dm0,0(x, t)

dt
= σV0,0(x, t) − µmm0,0(x, t),

V0,0(x, t0) = V 0(x, t0), F0,0(x, t0) = F 0(x, t0),

C0,0(x, t0) = C0(x), m0,0(x, t0) = m0(x), t0 6 t 6 t0 + τ,

(11)
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









































































dV0,1(x, t)

dt
= (β − γF0,1(x, t))V0,1(x, t),

dC0.1(x, t)

dt
= αV0,0(x, t− τ)F0,0(x, t− τ)− µC (C0,1(x, t)− C∗) ,

dF0,1(x, t)

dt
= ρC0,1(x, t)− (µf + ηγV0,1(x, t))F0,1(x, t),

dm0,1(x, t)

dt
= σV0,1(x, t)− µmm0,1(x, t),

V0,1(x, t0 + τ) = V0,0(x, t0 + τ), F0,1(x, t0 + τ) = F0,0(x, t0 + τ),

C0,1(x, t0 + τ) = C0,0(x, t0 + τ), m0,1(x, t0 + τ) = m0,0(x, t0 + τ),

t0 + τ 6 t 6 t0 + 2τ,

(12)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,




































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
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
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























dV0,n(x, t)

dt
= (β − γF0,n(x, t))V0,n(x, t),

dC0.n(x, t)

dt
= αV0,n−1(x, t− τ)F0,n−1(x, t− τ)− µC (C0,n(x, t)− C∗) ,

dF0,n(x, t)

dt
= ρC0,n(x, t)− (µf + ηγV0,n(x, t))F0,n(x, t),

dm0,n(x, t)

dt
= σV0,n(x, t) − µmm0,n(x, t),

V0,n(x, t0 + nτ) = V0,n−1(x, t0 + nτ), F0,n(x, t0 + nτ) = F0,n−1(x, t0 + nτ),

C0,n(x, t0 + nτ) = C0,n−1(x, t0 + nτ), m0,n(x, t0 + nτ) = m0,n−1(x, t0 + nτ),

t0 + nτ 6 t 6 t0 + (n+ 1)τ,

(13)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,


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
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


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
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



















dV1,0(x, t)

dt
= βV1,0(x, t) − γ (a0,0(x, t)F1,0(x, t) + b0,0(x, t)V1,0(x, t)) + ΦV 1,0(x, t),

dC1,0(x, t)

dt
= α (a0,0(x, t− τ)F1(x, t− τ) + b0,0(x, t− τ)V1(x, t− τ))− µCC1,0(x, t)

+ΦC1,0 (x, t) ,

dF1,0(x, t)

dt
= ρC1,0(x, t)− µfF1,0(x, t)− ηγ (a0,0(x, t)F1,0(x, t) + b0,0(x, t)V1,0(x, t)) ,

dm1,0(x, t)

dt
= σV1,0(x, t)− µmm1,0(x, t),

V1,0(x, t0) = V1(x, t0), F1.0(x, t0) = F1(x, t0),

C1,0(x, t0) = 0, m1(x, t0) = 0, t0 6 t 6 t0 + τ ;

(14)






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


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
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
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




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
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





















dV1,1(x, t)

dt
= βV1,1(x, t)− γ (a0,1(x, t)F1,1(x, t) + b0,1(x, t)V1,1(x, t)) + ΦV 1,1(x, t),

dC1,1(x, t)

dt
= α (a0,1(x, t− τ)F1,1(x, t− τ) + b0,1(x, t− τ)V1,1(x, t− τ))− µCC1,1(x, t)

+ΦC1,1(x, t),

dF1,1(x, t)

dt
= ρC1,1(x, t)− µfF1,1(x, t)− ηγ (a0,1(x, t)F1,1(x, t) + b0,1(x, t)V1,1(x, t)) ,

dm1,1(x, t)

dt
= σV1,1(x, t)− µmm1,1(x, t),

V1,1(x, t0 + τ) = V1,0(x, t0 + τ), F1,1(x, t0 + τ) = F1,0(x, t0 + τ),

C1,1(x, t0 + τ) = C1,0(x, t0 + τ), m1,1(x, t0 + τ) = m1,0(x, t0 + τ), t0 + τ 6 t 6 t0 + 2τ,

(15)
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

dV1,n(x, t)

dt
= βV1,n(x, t)− γ (a0,n(x, t)F1,n(x, t) + b0,n(x, t)V1,n(x, t)) + ΦV 1,n(x, t),

dC1,n(x, t)

dt
= α (a0,n(x, t− τ)F1,n(x, t− τ) + b0,n(x, t− τ)V1,n(x, t− τ))− µCC1,n(x, t)

+ΦC1,n(x, t),
dF1,n(x, t)

dt
= ρC1,n(x, t)− µfF1,n(x, t)− ηγ (a0,n(x, t)F1,n(x, t) + b0,n(x, t)V1,n(x, t)) ,

dm1,n(x, t)

dt
= σV1,n(x, t)− µmm1,n(x, t),

V1,n(x, t0 + nτ) = V1,n−1(x, t0 + nτ), F1,n(x, t0 + nτ) = F1,n−1(x, t0 + nτ),

C1,n(x, t0 + nτ) = C1,n−1(x, t0 + nτ), m1,n(x, t0 + nτ) = m1,n−1(x, t0 + nτ),

t0 + nτ 6 t 6 t0 + (n+ 1)τ ;

(16)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ;
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dVi,0(x, t)

dt
= βVi,0(x, t)− γ (a0,0(x, t)Fi,0(x, t) + b0,0(x, t)Vi,0(x, t)) + ΦV i,0(x, t),

dCi,0(x, t)

dt
= α (a0,0(x, t− τ)Fi(x, t− τ) + b0,0(x, t− τ)Vi(x, t− τ))− µCCi,0(x, t)

+ΦCi,0(x, t),

dFi,0(x, t)

dt
= ρCi,0(x, t)− µfFi,0(x, t)− ηγ (a0,0(x, t)Fi,0(x, t) + b0,0(x, t)Vi,0(x, t))

+ΦF i,0(x, t),

dmi,0(x, t)

dt
= σVi,0(x, t)− µmmi,0(x, t) + Φmi,0(x, t),

Vi,0(x, t0) = Vi(x, t0), Fi.0(x, t0) = Fi(x, t0),

Ci,0(x, t0) = 0, mi(x, t0) = 0, t0 6 t 6 t0 + τ ;

(17)
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dVi,1(x, t)

dt
= βVi,1(x, t)− γ (a0,1(x, t)Fi,1(x, t) + b0,1(x, t)Vi,1(x, t)) + ΦV i,1(x, t),

dCi,1(x, t)

dt
= α (a0,1(x, t− τ)Fi,1(x, t− τ) + b0,1(x, t− τ)Vi,1(x, t− τ))− µCCi,1(x, t)

+ΦCi,1 (x, t) ,

dFi,1(x, t)

dt
= ρCi,1(x, t)− µfFi,1(x, t)− ηγ (a0,1(x, t)Fi,1(x, t) + b0,1(x, t)Vi,1(x, t))

+ΦF i,1(x, t),

dmi,1(x, t)

dt
= σVi,1(x, t)− µmmi,1(x, t) + Φmi,1(x, t),

Vi,1(x, t0 + τ) = Vi,0(x, t0 + τ), Fi,1(x, t0 + τ) = Fi,0(x, t0 + τ),

Ci,1(x, t0 + τ) = Ci,0(x, t0 + τ), mi,1(x, t0 + τ) = mi,0(x, t0 + τ), t0 + τ 6 t 6 t0 + 2τ ;

(18)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,
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dVi,n(x, t)

dt
= βVi,n(x, t)− γ (a0,n(x, t)Fi,n(x, t) + b0,n(x, t)Vi,n(x, t)) + ΦV i,n(x, t),

dCi,n(x, t)

dt
= α (a0,n(x, t− τ)Fi,n(x, t− τ) + b0,n(x, t− τ)Vi,n(x, t− τ))− µCCi,n(x, t)

+ΦCi,n(x, t),

dFi,n(x, t)

dt
= ρCi,n(x, t)− µfFi,n(x, t) − ηγ (a0,n(x, t)Fi,n(x, t) + b0,n(x, t)Vi,n(x, t))

+ΦF i,n(x, t),

dmi,n(x, t)

dt
= σVi,n(x, t)− µmmi,n(x, t) + Φmi,n(x, t),

Vi,n (x, t0 + nτ) = Vi,n−1(x, t0 + nτ), Fi,n(x, t0 + nτ) = Fi,n−1(x, t0 + nτ),

Ci,n(x, t0 + nτ) = Ci,n−1(x, t0 + nτ), mi,n(x, t0 + nτ) = mi,n−1(x, t0 + nτ),

t0 + nτ 6 t 6 t0 + (n+ 1)τ,

(19)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,
where

a0,j(x, t) = V0,j (x, t) , b0,j(x, t) = F0,j(x, t);

ΦV 1,j(x, t) = DV

∂2V0,j(x, t)

∂x2
, ΦC1,j(x, t) = DC

∂2C0,j(x, t)

∂x2
,

ΦV i,j(x, t) = −γ

i−1
∑

k=1

Vk,j(x, t)Fi−k,j(x, t) +DV

∂2Vi−1,j(x, t)

∂x2
,

ΦCi,j(x, t) = α

i−1
∑

k=1

Vk,j(x, t− τ)Fi−k,j(x, t− τ) +DC

∂2Ci−1,j(x, t)

∂x2
,

ΦF i,j(x, t) = −ηγ

i−1
∑

k=1

Vk,j(x, t)Fi−k,j(x, t) +DF

∂2Ci−2,j(x, t)

∂x2
,

Φmi,j(x, t) = Dm

∂2Ci−2,j(x, t)

∂x2
, i = 2, 3, . . . , N, j = 0, 1, . . . , n, . . . .

It should be noted that in order to ensure the proper smoothness of the corresponding solutions
for t = τ , t = 2τ , t = 3τ , . . . , it is also necessary besides the traditional conditions of smoothness with
respect to functions (7), to impose consistency conditions for t = t0 − τ , t = t0 [10]. In particular, the
condition (for ξ(m) = 1)

∂C(x, t0)

dt
= αV 0(x, t0 − τ)F 0(x, t0 − τ)− µC (C(x, t0)− C∗) + εDC

∂2C(x, t0)

∂x2

must be satisfied.
Let us note that we consider an infinite set GZ for the convenience of the presentation avoiding

their complexity. The proposed approach is “without problems” transferred to other areas. Obviously,
we should use more complex series instead of those described above.

The estimates of the remainders RV
Nj(x, y, t, ε), RC

Nj(x, y, t, ε), RF
Nj(x, y, t, ε), Rm

Nj(x, y, t, ε) are
similar to [7, 8].

3. Results of numerical experiments

Let us denote that one of the typical features of the basic infectious disease model of G. I.Marchuk (1)–
(2) was using a differential equation with time-delay that allowed describing the rate of change of plasma
cell concentration. And it allowed describing the immune response dynamics more accurately. Fig. 1
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shows the dependence of the dynamics of the main infectious disease factors on the time-delay τ ,
during which the cascade of plasma cells is formed. As expected, if the time-delay τ increase then the
maximum values of the current factors V (t), C(t), F (t), m(t) increases, that is, as a result of increasing
the time-delay, the maximum concentration of pathogenic antigens increases in the organism. It causes
an increase in the level of damage to the target organ and eventually leads to increase in the production
and increase in the concentration of plasma cells and antibodies.
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Fig. 1. Dynamics of the main acting factors of the basic infectious disease model of G. I. Marchuk with different
values of time-delay τ .

t
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V

Fig. 2. Spatio-temporal dynamics of the level
of the concentration of pathogenic antigens under

condition V (x, t̃) = V 0(t̃), t0 − τ 6 t̃ 6 t0.

Fig. 2 presents the spatial-temporal dynamics of
the level of concentration of pathogenic antigens ac-
cording to model (6)–(7), provided that they are uni-
form initial distribution V (x, t̃) = V 0(t̃), t0−τ 6 t̃ 6
t0 in the space. The small-scale spatially distributed
diffuse influences in this case do not cause changes in
the dynamics of the infectious disease process.

In the case when the distribution of pathogenic
antigens at the initial time t0 is spatially non-
uniformly distributed V (x, t̃) = V 0(x, t̃), t0 − τ 6

t̃ 6 t0, taking into account the small-scale spa-
tial distribution of diffuse influences in (6)–(7) leads
to changes in the corresponding model dynamics
of infectious disease processes. Fig. 3 presents the
spatial-temporal dynamics of the concentration of
pathogenic antigens in the organism in the case of a separate locus of infection when the small-scale
spatially distributed diffuse influences are absent (Fig. 3a) and present (Fig. 3b). The results of numer-
ical experiments show a decrease in the maximum level of concentration of pathogenic antigens in the
infection locus in the case of diffuse influences. It is the result of “diffusion” spread of antigens from
the places with their high concentration to places with lower concentration.

Fig. 4 presents the dependence of the dynamics of active infectious disease factors on the intensity
of diffuse influence (value of parameter ε) in the epicenter of infection. In particular, if the intensity of
diffuse influences increase then the maximum level of concentration of pathogenic antigens decreases
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Fig. 3. Spatio-temporal dynamics of the level of the concentration of pathogenic antigens under condition
V 0(x, t0) = δ/(1 + (x− λ)2): (a) ε = 0; (b) ε = 0.1.
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Fig. 4. Dynamics of the main acting factors of model (8)–(9) at different levels of diffuse influence.

in the epicenter of organ infection. It causes a decrease in the degree of target organ damage. The
dynamics of other infectious disease factors (concentrations of plasma cells and antibodies) are similarly
changing. Thus, the severity of infectious disease decreases if the intensity of diffuse influences increases.
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Fig. 5. Dynamics of the concentration of the pathogenic antigens at different intensity levels of the diffuse
influence.
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Fig. 5 shows the dynamics of the concentration of pathogenic antigens in the acute form of the
disease when the intensity of diffuse influences in the epicenter of infection is absent (ε = 0) and
present. In the absence of diffusion, their concentration at the epicenter of infection increases to some
maximum level triggering the mechanism of the immune response (increase in the concentration of
plasma cells and antigens). As a result, over time the concentration of antigens is established at some
stationary level. If the intensity of diffuse influence increases, the increasing rate of the concentration
of pathogenic antigens in the epicenter of the infected organ decreases; then it causes a decrease in
the severity of the immune response of the organism. And starting from a certain intensity level
of diffuse influence, the concentration of pathogenic antigens in the epicenter of infection does not
increase over time, i.e., before the infection, the available immune protection of an organism is able
to reduce the concentration of pathogenic antigens to a steady-state level without the active response
of the immune system. Fig. 6 shows the spatio-temporal dynamics of the concentration of pathogenic
antigens of a certain locus of infection when the small-scale spatially distributed diffuse influences are
absent (Fig. 6a) and present (Fig. 6b).

t
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V
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t

x

V

b

Fig. 6. Spatio-temporal dynamics of the level of the concentration of pathogenic antigens under condition (a)
ε = 0; (b) ε = 0.2.

4. Conclusions

This paper presents an effective approach to take into account small-scale spatially distributed diffuse
influences on the development of the studied process of the disease development and also a stepwise
(by means of time-delay τ) representation of the required functions in the asymptotic series form as
disturbance of the solution of the corresponding degenerate problem, on the example of the basic
infectious disease model of G. I.Marchuk.

The results of numerical experiments illustrate the dynamics of reducing the maximum level of
concentration of pathogenic antigens due to their diffusion “redistribution” from the locus of infection
into less infected areas of the target-organ. This, in particular, influences the identification of the nature
of the infectious disease in the model. If at the initial point of time the infection dose V 0 exceeds a
certain critical value V ∗ in some area (in the zone of infection), as a result of diffusion “redistribution”
over a certain period of time, the maximum concentration of pathogenic antigens in this area can
be significantly reduced (in particular, to a level below critical one), and then the neutralization of
antigens may be provided by the available antibody level F ∗ in the organism.

In this case, the solution of the corresponding singularly disturbed problem (that predicts the
distribution in time and space of concentrations of antigens, antibodies, plasma cells, and the measure
of contagion) leads to some stable, in particular, asymptotically stable, stationary value. That is, in
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this case, in this model, the immune response is able to prevent the infection development, resulting
in the nature of the infectious disease changes, for example, from acute to subclinical.

The developed computational procedure may serve the basis of a broader set of decision making:
either we can completely rely on the immune self-protection of the organism or, otherwise, perform
external influence (treatment) according to the values of the corresponding input data, in particular,
data of the intensity of diffusion “redistribution” and the size of the infection zone.

In future studies, it is a possibility to take into account the spatially distributed diffuse influences
in the investigation of the process of infectious disease that is based on the more general models, in
particular, the Marchuk–Petrov’s model of antiviral immune response [1].

It is perspective, to take into account the accumulation of plasma cells in lymph nodes, that is a
certain analog of mathematical models of filtering-convection-diffusion-mass transfer in a two-porous
(in particular, nanoporous) environment [11–14].
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Моделювання малих просторово розподiлених впливiв на
розвиток процесу iнфекцiйного захворювання
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3Комунальне пiдприємство “Рiвненський обласний клiнiчний лiкувально-дiагностичний

центр iменi Вiктора Полiщука” Рiвненської обласної ради,

вул. 16-го Липня, 36, 33028, Рiвне, Україна

Запропоновано малi просторово розподiленi впливи на розвиток iнфекцiйного захво-
рювання дослiджувати шляхом дифузiйного збурення вiдповiдних вироджених мо-
дельних задач. Побудовано представлення асимптотичних розвинень розв’язкiв вiд-
повiдних сингулярно збурених задач iз запiзненням, якi зведено до послiдовностi
задач без запiзнення. Наведенi результати числових експериментiв характеризують
просторово розподiлений дифузiйний вплив на розвиток iнфекцiйного захворювання.
Проiлюстровано зниження максимального рiвня концентрацiї патогенних антигенiв
унаслiдок їх дифузiйного ”перерозподiлу” з осередку зараження у менш зараженi
зони органу-мiшенi.

Ключовi слова: модель iнфекцiйного захворювання, стацiонарнi розв’язки дина-

мiчних систем, стiйкiсть розв’язку.
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