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In the current paper, we develop a nonlocal propagation model, which describes the dif-
fusion wave process. The main motivation of this work is to apply the nonlocal vector
calculus, introduced and developed by Du et al. [1] to such hyperbolic problem. More-
over, based on some density arguments, some a priori estimates and using the Galerkin
approach, we prove existence and uniqueness of a weak solution to the nonlocal wave
equation widely adopted in various applications.

Keywords: Galerkin approximation, nonlocal operators, nonlocal vector calculus, volume
constrained problems, wave equation.

1. Introduction

From a physical standpoint, nonlocal approaches play a vital role in characterizing many natural phe-
nomena. The concern for nonlocal methods is motivated by the ability of these approaches to capture
with rigorous accuracy the effects that are difficult to describe by local models. Nonlocal functionals,
nonlocal operators and nonlocal problems defined in nonlocal function spaces, have gradually attracted
the mathematical community’s attention by its theoretical value, as for its concrete real-world appli-
cations. This type of model occurs in a quite natural way in many different contexts, such as, among
others, image restoration [2-5], phase transition [6,7], machine learning [8] and obstacle problem [3].

In a major advance in 2013, Du et al. [1] offered a collection of relevant results to better understand
and analyze nonlocal problems. The suggested nonlocal vector calculus defines nonlocal fluxes, nonlocal
analogues of the gradient, divergence, and curl operators, and presents some basic nonlocal integral
theorems that mimic the classical integral theorems of the vector calculus for differential operators,
the authors have also provided connection between the nonlocal operators and their usual differential
counterparts in a distributional sense then in a weak sense by introducing nonlocal weighted operators.

The present paper was motivated by [9], where the authors threw light on the analogy between
nonlocal and local diffusion problems with a convincing explanation of the usefulness, in the nonlocal
case, of volume constraints which represent the nonlocal analogue of the boundary conditions of the
classical theory. Our purpose is to discuss the well-posedness of a hyperbolic problem considering a
nonlocal diffusion operator instead of the Laplacian operator. Furthermore, the study of the eigenvalues
problem corresponding to the nonlocal Dirichlet problem is carried out.

The paper is divided into two main sections. The first part gives a brief overview of the basic
concepts of the nonlocal vector calculus and emphasises the existence of an orthogonal basis of eigen-
functions associated to the considered nonlocal operator. In the second part, we formulate the nonlocal
wave equation and exploit the Galerkin method to prove existence and uniqueness of weak solution to
the nonlocal hyperbolic problem.

334 (© 2020 Lviv Polytechnic National University
CMM IAPMM NASU



Analysis of the nonlocal wave propagation problem with volume constraints 335

2. Statement of the elliptic nonlocal problem

In the present section, we give the position of the elliptic volume constrained problem and present the
energy spaces needed to study the nonlocal problem:

{ DED*(u))=f on Q, (1)

u=0 on 7.

Where ) is an open and bounded subset of R™ with piecewise smooth boundary and satisfies the
interior cone condition, ¢ is a symmetric second-order tensor, f € L%(Q) is a given function and we
denote by “u.v” the tensor-vector product or the inner product of two vectors u and v.

Given a vector function v(x,y): R" x R" — R¥ and an antisymmetric vector function a(z,y): R™ x
R™ — R¥, the action of the nonlocal divergence operator D on v is defined as

D) (z) = /n (v(z,y) +v(y,z)).ofz,y)dy for ze€R™ (2)

Given a scalar function u(z): R™ — R, the adjoint of D is the operator D* whose action on w is given
by
D*(u)(z,y) = —(u(y) —u(z))a(x,y) for z,yeR™ (3)

The operator —D* is considered as a nonlocal gradient, also,

n

DED (@) = -2 | (uly) ~ uw))ale,) (¢, )alz.0) dy.
Given two positive constants vy and e, we first assume that the symmetric kernel

Y(z,y) = oz, y).(§(z,y).a(z,y))

satisfies, for all x € QU Qf

L y(z,y) 20 Vye B(a);

2. y(z,y) 2 >0 Vye B (x);

3. y(z,y) =0 VYye (QUQ)\ Be(z), where B.(x) :={y € QUQr: |y — x| < e};
4. There exist s € (0,1) and positive constants v, and v* such that, for all x € Q

*

5
<v(z,y) < W

Ve
|y — ="+

for y e B.(z).
Let us also recall the definition of the interaction domain corresponding to :
Qr:={y e R"\Q: az,y) #0 for some x € N}. (4)

To investigate the problem (1), the following nonlocal energy space will be used constantly [9]. We
adopt:
V(QUQ) = {ue L*(QUQ): [||lu]]] < oo} (5)

equipped with the nonlocal energy norm

= (5 [ [ o0t )ayaz) (0

we then introduce the nonlocal volume constrained energy space [9]:
Ve QQuUQ) i ={ueV(QuUQ):u=0 in Qr},
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the norm

iral

veuop == sup  |{f, ©)veuan,viuan|
QOGVC(QUQI)
lelli<t

denotes the norm for the dual space V(22U Q) of V.(Q U Q).
Next, using the nonlocal Green’s first identities [1]|, we state the following definition.

Definition 1. We say that u € V.(Q U ) is a weak solution of the nonlocal elliptic problem (1) if

/QUQI /QUQI )-(£D (¢ ))dydzn—/fgoda: Vo € V. (QU Q). (7)

Then, according to the definition of the nonlocal energy norm (6), we immediately announce the
following theorem:

Theorem 1. There exist two constants My, Ms > 0 such that

/QUQI /QLJQI )-(£.D"(¢)) dy dx

My Jull? < /M /M ).(€.D" (w) dy d (9)

< Ma[[ulll lllll (8)

and

for all u, € V.(QU Q)

Theorem 2. For each f € L*(Q2), there exists a unique weak solution u € V,(QUSY;) of the nonlocal
elliptic problem (1).

Proof. Using the previous theorem (1), we obtain the result of existence and uniqueness via a direct
application of the Lax—Milgram theorem. ]

2.1. The nonlocal Dirichlet eigenvalues problem

In this subsection, we focus our attention on seeking the set of numbers p such that the following
eigenvalues problem (10) corresponding to the Dirichlet nonlocal problem (1):

/ / (€D (o ))dydx=u/ucpdx Vi € Va(QU Q). (10)
QU JQUOQ Q

has a solution u € V,(Q U ).
We state the following result.

Theorem 3. 1) Each eigenvalue of the problem (10) is real.
2) If we repeat each eigenvalue according to its multiplicity, we have that the set ¥ of the eigenvalues
of the operator D(£.D*(.)) is as follows:

%= ()21, (11)
where 0 < pg < pio < ... < fiy < ... and p; — oo.

j—o0
3) There exists an orthonormal basis (v;);=1 of L*(Q U Qr), where v; € V.(QU Q) is an eigenvector
corresponding to p; for j > 1.

Proof. Let K be the mapping
K: L} (QuUQp) — V.(QUQp),

fl—>Uf,
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where u is the unique solution of (1) given by Theorem (2).
We claim that the operator K is bounded, indeed:

lull[? = /M /M ).(€.D" (u)) dy da

< llzz@ll v lle2 )

according to the nonlocal Poincaré inequality [9], there exists a positive constant C' such that:

KL< Lz@uar)

since the embedding

I:V,(QUQp) — LA(QuUQy),

u—u

is compact [9], we directly deduce that the mapping

ToK: L2(QUQp) — L2 (QuUQy),
f=ouy

is linear and compact.
On the other hand, if w is the unique solution of the problem:

{ D(ED*(w) = f on

w =20 on €y,
and v if the solution of:

DD () =g on

v=20 on £,
where f,g € L?(QU Q). We have:

(To K)f, ) 2oy) = / wy de = /Q . /Q D)D" (w) dyda,

(I 0 K)g. )r2uny) = / of di = /Q . /Q DD ) dy de,

which prove that the operator I o K is symmetric. In addition:

(T o K)f. )2y /Q . /Q DD () dyds >0

We apply the theory of compact and symmetric operators from [13] to conclude the existence of real
eigenvalues of I o K, and that the corresponding eigenvectors (v;);>1 form a complete orthonormal
system in L2(Q2 U Q).

To conclude the proof, notice that:

1
(I o K)v = v is equivalent to D(£.D*(v)) = YU = M-

Theorem 4. Let (v;)j>1 be the eigenvectors corresponding to (fi;);j>1 given by Theorem 3, then
(vj)j=1 forms an orthogonal basis of V(2 U Q).
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Proof. The orthogonality of the eigenvectors follows from:
L] D @eD m)dyde = pos, 00200
QUQ JQUQ
= j0ij
On the other hand, for each u € V(22U Qr) we have:

u = Z(%UJ')LZ(QUQI)UJ

j>1
_ Z Java, Jaua, D (w).(€.D* (”y))dydﬂfv’
]>1 lu] !
_ Z Java, Jaua, D fD*(”a))dydxv_
|||U 1|2 o

gzt

which concludes the proof.

Since (v;);>1 is an orthogonal basis of V(2 U Q) for any j € N, we can define the orthogonal

projection on the j-dimensional subspace of V(€ U Q) spanned by v1,va, ..., ;.

Proposition 5. Let P,, @, be the orthogonal projections defined, for all n € N, by:

n

Po(u) ==Y (u,vj)r2uany; Yu € LA(QUQY),

j=1
n D*(w).(£.D*(v;)) dy dx
Qn(u) ::ZIQUQI Joun, D )(f ) dy v Vu e V(U Q).
< T
Then ,
P ZO00 0 vue L2Quy).
Then .
Quu Y20, Vu € Vo(QU Q).

These convergences come simply from the following result.

Proposition 6. Let P,, @, be the orthogonal projections defined by definitions (12) and (13), then:

1 Pullzcz2uan),c2uar)) = 1Qnllzviouan, v.ua)) = 1.

If we set
n

Pa(u) =Y (u,v5)vruanvaquanv;  Vu € VI(QUQ),
=
then
1 Pullzvis (ouan),veuop)) = 1.

Proof. Let u € L2(Q U Qy), then

n

HUHLz (QuQr) = nh_{lgo Z(U U])LZ(QUQI) = nh_{n || (u )H2L2(QUQI)

7j=1
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subsequently
[1Pn (u)l] L2 (U,

P, 2 2 = <1
1Pallews@uan.cxaunn) werziuay)  ullrzuay)
u#0
to conclude the proof, note that: P,(v;) = v;.
Secondly, we have, for u € V.(Q U Qy):
Onu) = 2": fQUQI fQUQI D*(u)(fD* (vj))dydazvj
2 el
= Z(u’vj)LQ(QUQI)Uja
j=1
therefore
. Java, Jaua, D (v)-(€.D*(v))dydz
@n(lIl = (. v)i2uan ™= v
2 Mol
= 2
Z u,v;) L2(QUQI v 1]
j=1
< Mllf?,
and as Qn(v;) = vj, we claim that |[Qn|zv.Quap),v.ua,)) = 1-

Furthermore, if we extend the projection P, to V(€ U §2;) we obtain:

[(Pa(w), @) v ouan viuan | = ‘ > (w5 ve v (0, v5) 12000y
=
‘ V* (QUQ), VC(QUQI)|

HUHV* uey) |l

hence
||Pn(u)|vc*(QUQI) < ||U||Vc*(QuQI)-

3. The nonlocal wave equation

3.1. statement of the problem

We denote by 2 an open set of R” and by ()7 its corresponding interaction domain. We will always
assume that 2 and ; are bounded with piecewise smooth boundary and satisfy the interior cone
condition.

The example of nonlocal hyperbolic equation that we consider is the following: we seek a real valued
function u = u(z,t), x € Q, t €]0,T], solution to

u' +D(ED*(u)) = f in Qx]0,T],
u=20 in Q[X]O,T],
u(z,0) = g(z) in Q,
o' (x,0) = h(z) in Q.

(14)
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Where D, D* are, respectively, the nonlocal divergence (2) and the nonlocal gradient (3), £(z,y) denotes
a symmetric, positive definite second order tensor having elements that are symmetric functions of x
and y and f: Qx]0,T[— R, g,h : Q — R are given.

First, we specify in which sense we want to solve the problem (14).
Definition 2. If f € L*(0,T;L?*(Q)), g € Vo(QU Q) and h € L>(Q U Q) we say a function u €
L0, T; V. (QU Q) with o' € L*(0,T; L2(QU Q) and u” € L*(0,T;V(QUy)) is a weak solution

of the nonlocal constrained problem (14) if

W Sy @uan vy + / / D* (u).(€.D" (i) dy do = / fodu
QU JQUQ Q

Vo € Vo(QUQ ) and a.e. 0 <t < T, with u(0) = g, v/'(0) = h.

Remark 1. Defining: L2(QU Q) == {u € L2(QUQ;): u = 0 in Q;}, the embedding V.(QU Q;) <
L2(Q U Q) is dense and continuous, and L2(Q U €);) is a separable Hilbert space since it is a closed
subspace of L?(2 U Q) and according to Du et al. [9], V.(Q U ;) is a Hilbert space which is a subset
of L(Q U Q) with continuous embedding, hence V,(Q U Q) is separable. Which ultimately leads to

assert that
Vo(QUQ) — LE(QUQ;) < VI QUQ) (15)

is an evolution triple. Consequently, L2(Q U ;) is dense in V*(Q U Q) [10].
Since u € Sy C S and v’ € Sy, where

S ={ulue L*0,T;V.(QUQ)), v € L*(0,T;V;(QUQ))}, (16)
Si={ulue L*0,T; L2(QUQy)), v’ € L*(0,T; V(QUQ))}, (17)
={ulue L*0,T;V.(QUQ)), v’ € L*(0,T; LZ(QU Q) } . (18)

Proposition 23.23. in [10] implies that:

ue C([0, T L (U Qp), o' € C([0, TV (QuU Q). (19)

3.2. Galerkin approximation

Let (vj);>1 be the eigenvectors corresponding to the eigenvalues (A;);>1 of the problem (10), given by
Theorem 3.
For a fixed n > 1, we are looking for a function w,: [0,7] — V.(Q U ) of the form

)= pin(t)v;, (20)
j=1

such that

For j=1,...,n

(U Vi) v QUL Ve (QUOD) +/ / D*(uy).(§.D*(vy)) dy dx = / fnvj da,
QUQ JQUQ Q

M-

un(0) = > (9,v5)2(0)55 (21)

7j=1

n

up, (0) =Y (h,vj) 1205,

j=1

2(Qx(0,7))

where (fn)n € D(Q2 x (0,7)) such that fn fwith |[fullL2axo,m) < Ifllz2@x0,1))-

Mathematical Modeling and Computing, Vol.7, No.2, pp.334-344 (2020)



Analysis of the nonlocal wave propagation problem with volume constraints 341

Theorem 5. For each integer n > 1, there exists a unique function u,, of the form (20) satisfying (21).

Proof. To solve the problem (21), we shall find

Pn(t) = (Pin(t), p2n(t), - .., Dan(t)) € R

solution to

i=1....n
// * *
Din + / / D*(v;).(£.D*(vg))prn(t) dy dx = / fnv; dx,
’ ; Que; Jaue, ’ o " (22)
Pgn(o) = (9,v5)r2(0)
pjn(o) = (hvvj)Lz(Q)'
According to standard existence theory for ODE, there exists a unique function
pn(t) = (pl,n(t)apZn(t)y v 7pn,n(t)) (23)
satisfying (22) for a.e. 0 <t < T. [

3.3. Energy estimates

In order to show that (uy,),>1 converges to a weak solution of (14), we will need some uniform estimates.

Theorem 6. There exists a positive constant M such that

Jnax (N O+ Nun Ol L2uar)) + NunllL2o,mve @uon)
<M (1flez0.r;20)) + gl + 17l p2())  for n > 1.

Proof. We multiply equation (21) by p;-n(t), sum for j =1,...,n, we find

(U U )V (QUQ ), Vi (U ) +/ / D*(un).(£.D*(uy,)) dy dx = / frtty,daz
QUQ JQUQ Q

forae 0<t<T.
which gives

d * *
G (WBgan+ [ [ D e ) dvde ) <2l ol
QU JQUQ

< ll2agqy + Nl Baangy + a1

Gronwall’s inequality and the proposition (6) imply
172 uay) + Nlunll]? < M (’HPn(Q)H\2 + 1P (W72 uay) + HfNHLZ(O,T;LZ(Q))>
< M (Jllgll + 1181 32 00y + 1l B0z 2

as 0 <t < T was chosen arbitrarily, we obtain:

max (11, (0)122ana,) + el 1) < M (Ul9lI1Z + 11012 o0, + 171320 r220)

o<t<T

To conclude, we fix any ¢ € V.(QU Qr) with

llelll <1 and ¢ = Pu(p) + ¢,
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where (v, v5)2(quo,) = 0 for 1 < j < n. We get:

W, )y o Vo) / FuPa(p) da — /Q § /Q D) (€D (Pu) dy da

Consequently, since ||| P, (¢)||] < 1

ey < M| fallzz ) + [lunll]),

(s )l

finally, using (3.3) we get

0.z @usny <M (11220 mrzqoyy + gllZ + 17122 ) .

3.4. Existence and uniqueness result

Theorem 7. The nonlocal hyperbolic problem (14) admits a unique weak solution.

Proof. Using the previous Theorem 6, we conclude that (uy),>1 is bounded in L2(0,T;V.(Q U Qy)),
with (u},)n>1 is bounded in L?(0,T; L2(Q UQy)), and (u”),>1 is bounded in L2(0, T; V.*(Q U Qy)).

Consequently, there exists a subsequence still denoted (uy),>1 and a function v € L2(0,T; V.(Q U
Qp)) with v’ € L*(0,T; L*(QU ) and «” € L*(0,T; V*(Q U Qy)), such that:

up, —~u in  L%(0,T;V.(QUQp),
u', =’ in L*0,T; L*(QUQy), (24)
u ~ " in L2(0,T;V(QUQ),

next, fix an integer N and select n > N, choose a function 1 € L%(0,T) and ¢ € V.(Q U Q). We
multiply (21) by P,(¢)1, sum j =1,..., N and integrate with respect to t to discover:

T
/0 <<un7Pn(¢)¢(t)>v;(QUQI),VC(QUQI) +/QUQI /QUQI D (un).(£.D* (Pa(p))) dy dm) dt

/ /fn () dedt (25)

Ve (QUQ .
M ( we obtain:

by passing to weak limits, together with the fact that P,(y)

T
/ <<U”, )V Quay),Ve(@uen) ¥ / / )-(£.D*(p2p(t))) dy dm) dt
0 QU JOQUQ T

T
~ [ [ revaza o
0 Q
for all ¢ € L?(0,T) and ¢ € V.(QU Q). This terminates the proof.
It remains to prove that u(0) = g and %/ (0) = h. For this purpose, we choose any function
o € Ve(QU Q) and ¢ € CH([0,T]) such that ¢(T) = o'(T) = 0. Integrating by parts twice with
respect to ¢ in (26) yields:

/ ' (f et [ e eno)ay i) i

_ / / Fou(t) da dt — / w(0) o (0) dz + / W (0)op(0) dz.  (27)
0 Q Q Q
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Similarly from (25) we get:

[ (] P )+ /Q L per s )
/ / FuPa( @) (t) da dt — /Q 1 (0) P, ()0 (0) der + /Q 4 (0) P (0)6(0) d (28)

by passing to the limit, we obtain:

[ (f, v [ [ e o) ) a
- /0 /Q Fou(t) da dt — /Q gy (0) da + /Q ho(0) dz (29)

comparing those results, we conclude that w(0) = g and «’ = h. u
Finally, we announce the uniqueness of the weak solution to (14).

Theorem 8. A weak solution of (14) is unique.
Proof. Since the equation is linear, to show uniqueness it is sufficient to show that the only solution

u of (14) with zero data f =g=h=0is u=0.
To verify this, fix 0 < s < T and set

[Su(r)dr if 0<t<s,
() { if s<t<T. (30)

Then ¢(t) € Vo(QU Q) for each 0 < ¢ < T, which allows us to write

/0 << L OV (uar),Ve(0001) /Qum /QUQI (u).(£.D* (v ))dydw> dt =0,

since v’ = 0 and ¢(s) = 0 by integrating by parts, we obtain:

/ <—/ u’cp/dx—i—/ / ).(£D* (¢ ))dydx) dt =0,
0 QU QUQ JOQUQ

now as ¢’ = —u(0 < t < ), we obtain:

[ (/d‘ / / J(ED" (o >>dydx> at =0,

then p
/ dt (HUHB Quay) / / )-(£D*(p)) dy dx) dt =0,
QU JQUQS
here
()] 2 ) + O] = 0.
Consequently u = 0 on [0, 7. [
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AHani3 3aga4i HeNOKa/IbHOro NOLWKWPEHHSI XBUJIb 3 00'EMHUMN
obMeXXeHHSAMM

Aiir Beta ®@. 3.1, Enp-Pa6i M.2, Xaxim A.L, Jlarpi6 A.3

! Vnisepcumem Kadi Afiao,
npocnexm Ab6deavkpum Xammabi, Mappaxew, 40000, Mapokko
2 Honimexmivnuti inemumym UniLaSalle,
eyn. Iy Tpowke, 3, Mon-Cenm-Envan, 76130, @panuis
3 Vuisepcumem Cyamana Myaati Caiman,
Asenio 16w Xandyn, Bewi-Meanran, 23000, Mapoxko

VY nmaniit crarTi po3po0JISETHCS MOJIEIb HEJOKAJIBHOTO MONIMPEHHS, IKa ONUCye audy3iii-
Huli XBUJIbOBHiA mporiec. OCHOBHA MOTHUBAIIis IIET pOOOTH — I 3aCTOCYBaHHs HEJIOKAJIbHO-
r0 BEKTOPHOT'O UHCJIEHHsI, SIKe BBeJleHe Ta po3suHene [y ta in. [1], mo Takoi rinep6osivanol
3agaqdi. KpiM TOro, BAKOPUCTOBYIOUH (DYHKINIO T'yCTUHY, JEsIKi ampiOpHi OIMHKY i IaXim
Tampopkina, MU JOBOIMMO iCHYBaHHS Ta €IMHICTH CJIAOKOT0 PO3B’SI3KY HEJIOKAJIHLHOTO XBH-
JIbOBOT'O PIBHAHHS, sIKE€ MAa€ MUPOKE 3aCTOCYBAHHS.

Knto4oBi cnoBa: nabauscenns [ anvopking, HeAOKANbHT ONEPAMOPU, HEAOKANOHE GeK-
MOPHE YUCAEHHA, 3040040 3 0OMENCEHHAMU HA 00 €M, TEUNDOGE PIBHAHHA.
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