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In this paper, the systematic investigation of the stresses occurring in a rod bearing cap
bolted joint is carried out by considering a concentrically clamped rod bearing cap bolted
joint. The aim of this study is to develop a 2D finite element model to determine occurring
stress in bolted joints during all cases of bolted joint and to compare VDI-Directives. For
this aim, the bolt load and part load are analytically calculated based on the axial load.
The assembly stress, working stress, and alternating stress are calculated and simulated
based on the introduction of a load factor n. A 2D finite element model is developed.
For this aim, the global stiffness matrix [K] is obtained and the boundary conditions and
load (such as force [F ] and moment [M ]) are applied. By solving algebraic equations of
the system in terms of nodal displacement {u} and {θ}, we obtain assembly stresses σv,
working stress σB and alternating stress σa in each element of the structure. The finite
element equations for the bolt are established. The assembly stress, working stress, and
alternating stress are calculated using the developed finite element model. The analytical
calculation results and finite element calculation results are compared and are found to
be highly similar in terms of the assembly stress, working stress, and alternating stress.
Increasing the stiffness rate of the bolt causes the increase of the bolt load and alternating
stresses; in contrast, increasing the stiffness rate of the clamp causes the decrease of the
bolt load and alternating stresses. The stiffness of the bolt should be as low as possible
to reduce the maximum bolt load and stress of the bolt cross-sections. However, the
stiffness of the clamped part should be as high as possible. Additionally, increasing the
load introduction factor causes the increase of the bolt load. Thus, for concentrically
bolted joints, increasing the load introduction factor causes the increase of the assembly
stress and alternating stress.

Keywords: bolted joints, assembly stress, working stress, alternating stress, finite ele-
ment.
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1. Introduction

Bolted joints are commonly used in machine and steel construction. Ideally, bolted joints should safely
withstand all working and load conditions. Thus, the design of bolted joints must satisfy the selection
of the bolted joint parameters, such as the preload, tightening factor, and bolt material.

This study aimed to develop a finite element model for concentrically clamped rod bearing cap
bolted joints. For this purpose, a rod bearing cap bolted joint was considered. The assembly stress,
working stress, and alternating stress are calculated and simulated based on the load introduction
factor n.

This study systematically investigated the stresses on a concentrically clamped bolted joint by
considering a rod bearing cap bolted joint. The bolt is of the M12 type and is composed of 12.9
steel materials. The bolt load and part load are analytically calculated depending on the axial load
according to the VDI 2230 directive. In this study, both analytical and finite element calculations were
based on the VDI 2230 directive.
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All obtained equations used in the finite element calculation were written in matrix form and the
results were obtained by matrix operations.

According to the literature review, studies on bolted joints can be classified into finite elements

modelling, fatigue life testing, and geometrical parameter analysis.
According to the literature review, studies on bolted joints can be classified into those considering

finite elements modelling and fatigue life testing. These types of studies are explained in more detail
in this section. The results presented in previous studies are described below.

Many studies have been conducted in the literature based on the finite element method of bolted
connections.

The bolt-plate assembly was modelled using the finite element technique, including super elements
to solve the contact problem of the integrated preload and external load. The external load distribution
on the bolt-plate assembly was analysed by focusing on the part of the external loads that affected the
bolt [1].

A new 3D parametric finite element model for designing two-bolted joints was developed. This
model considered an eccentric compression load. A numerical model for designing two threaded fastener
connections and calculating the displacements and loads at each node of the bolted joint was presented.
Bolts were subjected to normal and tangential stresses under the tensile loading condition. Von Misses
criteria were applied for statically calculating the bolt dimensions under tensile loading [2].

The aim of the developed finite elements model was to determine the local stress at the first thread
root to observe fatigue damage initiation. By using a local approach, the fatigue behaviour of bolts
under axial loads was considered based on material behaviours. The local stress at the first thread root
was determined by using the finite element model of the bolt. The bolt behaviour was characterised
with the obtained numerical results by using the Dang Van multi-axial fatigue criterion. These results
were experimentally correlated with the number of cycles to failure. The lifetime in terms of the failure
probability was predicted by using the statistical Gauss method [3].

The stress concentration distribution in the bolted joints was studied using an asymmetric finite
element model. The different geometric designs presented in the literature were compared to achieve
the best design to reduce stress concentrations. The design modifications include grooves and steps on
the bolts and nuts. Additionally, the bolt shank diameter was reduced [4].

A finite element modeling method was presented for a bolt-nut assembly. The first step is a linear
calculation of 2D plates and bar elements. The second step is a non-linear calculation of 3D solids. In
the non-linear calculation method, the nut and bolt surfaces and bearing stresses were considered in
the joint modelling. Analytical calculations were included in the static tests and compared with the
finite element calculation results. Furthermore, the effects of element meshing on the nut and bolt-nut
assembly contact surfaces as well as the contact types were analysed for the 3D models [5].

Four types of finite element models were considered: a solid bolt model, a coupled bolt model, a
spider bolt model, and a boltless model. All of the developed models included the preloaded effect and
contact behaviour. The solid bolt model provided the most reliable responses that were also close to
the experimental results. The coupled bolt model was the most effective in terms of CPU time [6].

Many studies have been conducted in the literature on fatigue life tests of bolted connections.
The fatigue strength of the bolts loaded in axial tension was investigated experimentally. Tests

were conducted under the static loading condition to determine the tightened bolt behaviour in the
applied conditions. The external load was increased gradually, and the elongation of the bolt was
measured. The increase in the bolt force and a decrease in the clamping force in the bolted assembly
could be determined according to these measurements [7].

The effects of embedding and self-loosening of the bolted connection have also been analysed via
tests on single bolted lap joints. The amount of static embedding primarily depended on the coating
system. If there was a cyclic displacement in the joint, even uncoated connections lost up to 40% of
the preload. Self-loosening tests demonstrated the importance of several parameters, including the
clamping length and amount of displacement [8].
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Relaxation of contact pressure and self-loosening in dynamic bolted joints were investigated. It was
concluded that bolted joints are widely loaded by the dynamic load with various vibration frequen-
cies. Therefore, these vibrations can cause a loss in clamping pressure. Furthermore, this vibrational
loosening can cause serious failures [9].

Some factors affecting the loosening failure of bolted joints under vibration using finite element
analysis were presented. A 3D finite element model of bolted joints was developed. The effects of
several factors on loosening under transverse vibration loading were investigated [10].

For reliability testing, dynamically loaded bolted joints were developed for the vibration test ac-
cording to DIN 65151. This testing was performed to determine the possible relation between the
residual preload in the bolted connections and external forces as a function of time. For each test,
different speeds were used for bolted joint assembly, and the screw preloading decreased with increases
in the time duration of the test. Residual stresses in bolted connections in which the test falls below
%5RP0,2 can be regarded as insufficient, indicating a total breakdown of the screw connection. Ex-
periments have shown that a high-speed tightening of the locking nut DIN 985 has an effect on the
behaviour of the following secured bolted joint [11].

In the literature, finite element solutions are generally made on solid models. When two-dimensional
finite element solutions are made, they are not compared with analytical solutions. Furthermore, the
elasticity of the elastic bolts has not been studied as in these studies.

In this study, the elasticity of the elastic bolt has been analyzed both analytically and by a finite-
element method in detail.

Also in the literature, there are many studies on the fatigue behavior of bolts; there are a lot of
studies on the material and loading types of bolts and vibration.

In this study, the variable stress under the dynamic load conditions of the bolt is presented by
associating it with the elasticity of the bolt.

This study can be summarized due to the finite element method used in engineering applications.
Also, the finite element method is taught in engineering education. It is aimed to show that

conventional bolt calculations can also be solved with the finite element method. In addition, it is
aimed to show the basics of mathematical problems solved through solid models.

In addition, it is aimed to demonstrate the utility of elasticity of elastic bolts under dynamic loading
conditions by the numerical application.

In this study, stresses on elastic bolts are focused. The subject of this study is only to examine the
parameters that are effective in calculating elastic bolts. The problem of contact of the connected parts
is the subject of another study, as a result of both the pre-tensile force and the operating force applied
to the bolts. Furthermore, the study of eccentrically mounted bolts is another research subject.

2. Methods and materials

A finite element model was developed for a concentrically clamped rod bearing cap bolted joint. Both
the bolt and part were modelled by the finite element method. To obtain a finite element model of the
rod bearing cap bolted joint, the stiffnesses of the bolt and part were modelled according to the finite
element method.

The bolt was discretised into 14 finite elements and was considered a bar with a variable cross
section supporting a preload and axial load. The clamped part was discretised into 12 finite elements.
The clamped part was considered as a cylindrical element with a hole supporting a preload and axial
load. First, the equivalent stiffness for each element of the bolt in terms of tensile stress and torsional
stress was calculated during the finite element modelling. After determining the deformation values
of each section, the local stresses were calculated according to Hooke’s Law. The obtained nominal
stresses and torsional stresses were used in the equivalent stress equations, and the preload stress and
assembly stresses were calculated. Then, a stiffness matrix of the clamped parts was obtained. Thus,
the alternating stress depending on the stiffnesses of the bolt and clamped parts were calculated.
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The obtained finite element calculation results and analytical calculation results were compared.
The finite element calculation results were highly similar to the analytical calculation results for the
assembly stress, working stress and alternating stress. The obtained finite element model was valid for
calculating all of the stresses on concentrically clamped bolted joints, including the assembly stress,
working stress and alternating stress. Increasing the load introduction factor causes the bolt load
to increase. Thus, increasing the load introduction factors results causes the assembly stress and
alternating stress to increase for concentrically bolted joints.

Load and deformation condition. During the assembly of the joint, a preload FV is applied,
which produces a clamp load FK at the interface. The preload and deformation conditions are shown
in Fig. 1, and the joint diagram of the preload condition is shown in Fig. 2. The stiffness rate of the
bolt RS during the assembly of the joint under a preload is written as follows [12–15].

RS =
FV

fS
,

wherefS is the deformation of the bolt under a preload.

FV

FV

f S

f P

f S
f P

RS

RP

F0

f(+)

f(−)

Fig. 1. Preload and deformation conditions. Fig. 2. Joint diagram of the preload condi-
tion.

In the joint diagram of the preload condition, the preload is plotted on the horizontal axis and the
deformation is plotted on the vertical axis. The characteristic line for the stiffness rate of the bolt
is obtained by drawing a line between the preload point and bolt deformation point. Similarly, the
characteristic line for the stiffness rate of the part is obtained by drawing a line between the preload
point and part deformation point.

The stiffness rate of the plate, RP , during the assembly of the joint under a preload is written as
follows:

RP =
FV

fP
,

where fP is the deformation of the plate under a preload.
An axial working load FA, introduced via the clamped parts and acting on the bolt, is proportionally

transmitted via the clamped region of the interface as well as via the bolt. The proportion of the
working load loading the bolt in addition to the preload is designed as an additional bolt FSA, whereas
the remaining proportion FPA relieves the clamped parts. The axial load-deformation condition is
shown in Fig. 3, and the joint diagram of the axial load condition is shown in Fig. 4. The axial load
FA is written as follows [12–15].

FA = FSA + FPA.
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The stiffness rate of the boltRS under the axial working load is

RS =
FSA

fA
,

where fA is the deformation of the bolt under an axial load.

f A

f A

FA

FA

FV

FV

RS

RP

FPA FSA

0

f(+)

f(−)

FK

F

f
P

f
S

f
A

f
A

Fig. 3. Axial load and deformation conditions. Fig. 4. Joint diagram of the axial load con-
dition.

The stiffness rate of the plate RP under the axial working load is

RP =
FPA

fA
,

where fA is the deformation of the plate under the axial load.
In the joint diagram of the axial load condition, the axial load is plotted on the horizontal axis,

and the deformation is plotted on the vertical axis. The characteristic line for the stiffness rate of the
bolt is obtained by drawing a line between the axial load point and bolt deformation point. Similarly,
the characteristic line for the stiffness rate of the part is obtained by drawing a line between the axial
load point and part deformation point.

part

bolt

part

Assembled state Working state

FA

FA

FV

FV

fP

fS
fA

fA

Fig. 5. Axial load and deformation conditions.

The characteristic lines
for the stiffness rate of the
bolt and the stiffness rate
of the part are parallel for
both the preload condition
and axial load condition.

Analysis of the forces

and deformation of the

bolted joints. The cal-
culation for single-bolted
joints is based on the elas-
tic behaviour of the joint
in the immediate surround-
ings of the bolt axis. Dur-
ing the assembly and ser-
vice, this region has a considerable effect on the deformation and thus the loading of the bolt [12].

The forces and axial deformation in the single-bolted joint can be described via a simple mechanical
spring model. In this model, the bolt and clamped parts are considered as tension and compressing
springs with elastic resiliences δS and δP , respectively [12]. The spring model of a bolted joint is shown
in Fig. 5.
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3. Analytical calculation steps

The calculation steps for the bolted joints primarily involve the determination of the assembly stress
σV , working stress σB , and alternating stress σa. A flowchart of the systematic bolted joint design is
shown in Fig. 6.

Systematic Bolted

Joint Design

Design is

not

significant

No

Yes

Yes

Design is

significant
Yes

Design is

not

significant

No

No

Design is

not

significant

σV 6vRP0,2

σB 6 RP0,2

σa 6 σA

Fig. 6. Flowchart of the systematic bolted joint design.

Determining the tightening fac-

tor αA. The tightening factor αA consid-
ers the scatter of the achievable assembly
preload betweenFV min and FV max. This
factor is determined while considering the
tightening and adjusting techniques and, if
necessary, the coefficient of friction classes.
The tightening factor αA is determined as
follows [12–15]:

αA =
FV max

FV min
.

Dividing the working load into

FSA and FPA. The load factor φ is the
quotient of the additional bolt load FSA

and the axial load FA [12–15]:

φ =
FSA

FA
.

The axial additional bolt load FSA is

FSA =
1

1 +RP /RS
FA = φFA.

The additional plate load FPA is

FPA =
1

RS/RP + 1
FA = (1− φ)FA.

By considering the load introduction factor n, the additional bolt load FSA is obtained as

FSA = nφFA,

where the value of the load introduction factor n is between 0 and 1 (0 < n < 1). The load introduction
factor is shown in Fig. 7.

FA

FA

FA

FA

FA

FA

n = 1

n = 1

n = 0

n = 0.5

n = 0.5

Fig. 7. Load introduction factor n.
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Determining the minimum assembly preload FV min. The minimum assembly preload FV min

is equal to the preload FV for the assembly state. The minimum assembly preload FV min is

FV min = FV .

Determining the maximum assembly preload FV max. The maximum assembly preload
FV max is calculated by multiplying the preload FV by the tightening factor αA. The maximum assem-
bly preload FV max is

FV max = αA FV .

Determining the assembly stress σV . The assembly preload FV of the bolt serves as a dimension
criterion for the nominal diameter of the bolt. For the corresponding strength of the material and with
the given friction conditions, the selected bolt must have an associated clamping load FV that is at
least as high as the calculated maximum assembly preload FV max [12]. The assembly stress σV is

σV = σred,M =
√

σ2
z,M + 3τ2t 6 ν RP0,2,

where σz,M is the tensile stress in the bolt. The tensile stress σz,M is calculated as

σz,M =
FV max

AS
=

αA FV

AS
,

where AS is the stress cross section of the bolt thread according to DIN 13-28. The stress cross section
of the bolt AS is calculated as

AS =
π

4

(d2 + d3)
2

2
,

τt is the torsional stress in the thread as a result of MG. The torsional stress in the thread τt is
calculated as

τt =
MGmax

Wt
,

where MG is the proportion of the tightening torque acting on the thread (the thread torque). The
thread torque MG is calculated as

MGmax = αA Fv
d2
2

tan
(

ϕ+ ρ′
)

,

where ϕ is the helix angle of the bolt thread and ρ′ is the angle of friction. Wt is the moment of
resistance of the stress cross section of the bolt thread. The moment of resistance of the stress cross
section of the bolt thread is calculated as

Wt =
π

16
d33,

ν is the utilisation factor of the yield point stress (the limit of full plasticisation of the cross section at
risk) during tightening.

Determining the working stress σB. The working stress σred,B must not exceed the RP0,2 limit
of the bolt material. The working stress σred,B is

σred,B =
√

σ2
z + 3 (0.5 τt)2 6 RP0.2,

where RP0.2 is the 0.2% proof stress of the bolt according to DIN EN ISO 898-1.
Determining the alternating stress σa. If the stress in the working case is an alternating stress,

the alternating stress ±σa must not exceed the fatigue limit of the bolt [12]. The alternating stress is

σa =
FSA,a

AS
=

FSA0 − FSAu

2AS
=

FS,max − FS,min

2AS
6 σA.
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Calculation quantities. The calculation quantities include the calculation of the elastic resilience
of the bolt and the calculation of the elastic resilience of the part.

Elastic resilience of the joint. The resilience of the bolt depends on not only the elastic
deformation within the clamp length but also any elastic deformation that occurs outside this region
that has an effect on the deformation behaviour of the bolt in the joint [12].

Resilience of the bolt. The bolt consists of a number of individual elements, which can readily
be substituted by cylindrical bodies of various lengths li and cross sections Ai [12].

l1 lG lMlK0

Fig. 8. Deformation region of the bolt.

In the bolt, the cylindri-
cal elements are arranged in a
row such that the total elas-
tic resilience δS is determined
by adding the resilience of the
individual cylindrical elements
within the clamp length δi
and the further deformation re-
gion [12]. The deformation re-
gion of the bolt is shown in
Fig. 8.

δS = δSK + δ1 + δ2 + . . .+ δGew + δGM .

The resilience of the bolt is calculated as

δS =
1

RS
=

1

ES

(

lK0

AN
+

l1
AT

+
lG
Ad3

+
lM
AN

)

,

where AN is the nominal cross section of the bolt, AT is the necked-down cross section or reduced-shank
cross-section of the bolt, and Ad3 is the cross section of the thread at a minor diameter according to
DIN 13-28.

DA

dw

dh

D

l K

Fig. 9. Deformation region (cone) of the clamped part.

Resilience of the part. The elastic resilience δP of the concentrically clamped parts is obtained
for this case [12]. The deformation region of the clamped parts is shown in Fig. 9.
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δP =
1

RP
=

2
w dh tanϕE

ln
[

(dw+dh) (DA−dh)
(dw−dh) (DA+dh)

]

+ 4
D2

A
−d2

h

[

lK − DA−dw
w tanϕE

]

EP π
,

where w is the joint coefficient for the type of bolted joint, dh is the hole diameter of the clamped
parts, ϕE is the angle of the substitutional deformation cone for the tapped thread joints, and dw is the
outer diameter of the plane head bearing surface of the bolt (at the inlet of the transition radius of the
head). In general, the bearing surface outer diameter and DA can be substituted for the diameter of
the basic solid at the interface; if the interface area differs from the circular form, the average diameter
is used [12].

4. Finite elements method

Solving algebraic equations

of the system

Finite Elements Analysis

Steps

Obtaining global stiffness

matrix

Applying boundary

conditions and load

[K]

[F ], [M ]

{u}, {θ}

Fig. 10. Flowchart of the fi-
nite element analysis steps.

The basic steps of the finite element method analysis are the discreti-
sation of the solution domain into a finite number of elements, writing
the static equilibrium for each node, obtaining the global stiffness ma-
trix, applying the boundary conditions and load, solving the algebraic
equations of the system, and obtaining the stress of each element. The
flowchart of the finite element analysis step is shown in Fig. 10.

The steps for the connecting rod bearing cap bolted joint analysis
are detailed below.

Discretisation of the solution domain into a finite number of

elements. The bolt is discretised into 14 finite elements and is consid-
ered a bar with a variable cross section supporting a preload and axial
load, as shown in Fig. 11.

Although the bolt was divided into 14 finite elements, this problem
could also be solved with fewer elements. However, the fact that it is
divided into more elements does not bring much calculation cost. In
addition, although more stress concentrations were estimated due to the
notch effect at the bolt head, the notch effect was not considered in
terms of being compatible with the analytical method. These stress
concentrations are taken into account in the calculation of safety stresses,
not in calculating the current stress. If a finite element solution was made
on the solid model, it would be appropriate to take more elements due
to stress concentrations at the ends (in the notched regions).
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Fig. 11. Discretisation of the bolt.

The weight of the bolt is neglected. The bolt is fixed on one end and carries the loads FV and FA.
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A centrally loaded element of a uniform cross section can be modelled as a spring element with an
equivalent stiffness. The equivalent stiffness is written as follows [16, 17]:

keq =
AE

l
.

The equivalent stiffness for element 1 is

k1 =
EAN

lK0
.

The equivalent stiffness for element 2 is

k2 =
EAT

lk
.

The equivalent stiffness for elements 3, 4, 5, 6, 7, 8, 9, 10 and 11 are equal to the equivalent stiffness
for element 2:

k2 = k3 = k4 = k5 = k6 = k7 = k8 = k9 = k10 = k11.

The equivalent stiffness for element 12 is

k12 =
E Ad3

lG
.

The equivalent stiffness for element 13 is

k13 =
E AN

lM
.

Writing the static equilibrium for each node. The sum of the forces acting on each node
should be zero according to static equilibrium. This requirement creates the following fourteen equa-
tions, which describe the static equilibrium for each node:

Node 1: R1 − k1(u2 − u1) = 0,

Node 2: k1(u2 − u1)− k2(u3 − u2) = 0,

Node 3: k2(u3 − u2)− k3(u4 − u3) = 0,

Node 4: k3(u4 − u3)− k4(u5 − u4) = 0,

Node 5: k4(u5 − u4)− k5(u6 − u5) = 0,

Node 6: k5(u6 − u5)− k6(u7 − u6) = 0,

Node 7: k6(u7 − u6)− k7(u8 − u7) = 0,

Node 8: k7(u8 − u7)− k8(u9 − u8) = 0,

Node 9: k8(u9 − u8)− k9(u10 − u9) = 0,

Node 10: k9(u10 − u9)− k10(u11 − u10) = 0,

Node 11: k10(u11 − u10)− k11(u12 − u11) = 0,

Node 12: k11(u12 − u11)− k12(u13 − u12 = 0,

Node 13: k12(u13 − u12)− k13(u14 − u13) = 0,

Node 14: k13(u14 − u13)− F = 0.

By rearranging the equilibrium equations by separating the reaction force R1 and the applied external
force F from the internal forces and presenting the equilibrium equations in matrix form, we obtain
matrix equation [16, 17]:

{R} = [K] {u} − {F} ,

where the reaction matrix, {R}, is a 14× 1 column matrix, which is written as
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{R} =































−R1

0
.
.
.
0































14×1

.

Obtaining the global stiffness matrix. The stiffness matrix of bolt for tensile stress [K]Gσ is a
14× 14 square matrix, which is written as

[K]Gσ =

[

square
matrix

]

14×14

.

The displacement matrix {u} is a 14 × 1 column matrix, which is written as

{u} =































u1
u2
.
.
.

u14































14×1

.

The load matrix {F} is a 1× 14 column matrix, which is written as

{F} =































0
.
.
.
0
F































14×1

,

where the stiffness matrix of the bolt for torsional stress [K]Gτ is written as

[K]Gτ =

[

square
matrix

]

14×14

,

where the equivalent stiffness for element 1 is written as

k1 =
J1.G

lK0
.

The equivalent stiffness for element 2 is written as

k2 =
J2 G

lk
.

The equivalent stiffness for elements 3, 4, 5, 6, 7, 8, 9, 10 and 11 is equal to the equivalent stiffness for
element 2:

k2 = k3 = k4 = k5 = k6 = k7 = k8 = k9 = k10 = k11.

The equivalent stiffness for element 12 is written as

k12 =
J12 G

lG
.

The equivalent stiffness for element 13 is written as

k13 =
J13.G

lM
.
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The polar moment of inertia for element 1 is written as

J1 =
1

2
π

(

d

2

)4

.

The polar moment of inertia for element 2 is written as

J2 =
1

2
π

(

dT
2

)4

.

The polar moments of inertia for elements 3, 4, 5, 6, 7, 8, 9, 10 and 11 are equal to the polar moment
of inertia for element 2:

J2 = J3 = J4 = J5 = J6 = J7 = J8 = J9 = J10 = J11.

The polar moment of inertia for element 12 is

J12 =
1

2
π

(

d3
2

)4

.

The polar moment of inertia for element 13 is equal to that for element 12

J12 = J13.

The angle of twist matrix {θ} is a 14× 1 column matrix:

{θ} =































θ1
θ2
.
.
.

θ14































14×1

.

The torque matrix {M} is a 14× 1 column matrix:

{M} =































0
0
.
.
.
M































14×1

.

Applying the boundary conditions and load. The boundary conditions and loads are applied
as follows. The bar element is fixed at the top, and the displacement of node 1 is zero. Thus, there are
only 13 unknown nodal displacement values, i.e., u2, u3, u4, . . . , u14. The reaction force at node 1, R1,
is also unknown; there are a total of 14 unknown values. Because there are 14 equilibrium equations,
we should be able to solve for all of the unknown values [16, 17].

To eliminate the need to consider the unknown reaction force simultaneously and focus first on
the unknown displacements, we employ the known boundary condition and replace the first row with
a row that reads u1 = 0. The application of the boundary condition u1 = 0 eliminates the need to
consider the unknown reaction force in our system of equations. Thus, the application of the boundary
condition leads to the following matrix equation [16, 17]:

[K]Gσ {u} = {F} . (1)
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Solving the algebraic equations of the system. The algebraic equations of the system are
solved as follows. From Equation (1), the unknown displacements matrix {u} can be calculated as

{u} = [K]G
−1

σ {F} .

Equation (1) is re-written for the torsion of a circular shaft as

[K]Gτ {θ} = [M ]. (2)

From Equation (2), the unknown angle of twist matrix {θ} can be calculated as

{θ} = [K]−1 {M} .
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node 12

node 13

node 14

l 1
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l M
l K

0

FV , FA

Fig. 12. Discretisation of the
clamped part.

Obtaining the stress in each element. The average stress σ
in the bar element is given by the following equation [16, 17]:

σ =
F

A
.

The stress and strain are related by Hooke’s law over the elastic
region. The tension stress is written as follows [16, 17]:

σ = E ε,

where E is the elasticity modulus of the material, and the average
normal strain ε of the bar element is defined as the change in length
∆l per unit original length l of the element. The average normal
strain ε is written as follows [16, 17]:

ε =
∆l

l
.

The change in length ∆l per unit can be written as

{∆l} = {ui+1 − ui} .

Obtaining the stiffness matrix of the clamped parts. The
clamped part is discretised into 12 finite elements. The clamped
part is considered as a cylindrical element with a hole supporting
a preload and axial load, as shown in Fig. 12. The weight of the
clamped part is neglected. The clamped part is fixed at one end and
carries the load F .

The stiffness matrix of clamped part for the tensile stress [K]GP
is a 12× 12 square matrix, which is written as follows:

[K]GP =

[

square
matrix

]

12×12

,

where the equivalent stiffnesses for element 1 to element 11 are

k1 = k2 = k3 = k4 = k5 = k6 = k7 = k8 = k9 = k10 = k11 =
A1E

l1
,

where the cross sections of element 1 to element 11 are

A1 = A2 = A3 = A4 = A5 = A6 = A7 = A8 = A9 = A10 = A11 =
π(DA)

2

4
−

π(dh)
2

4
,

where l1 = l2 = l3 = l4 = l5 = l6 = l7 = l8 = l9 = l10 = l11 are the lengths of each element of the
clamped part, DA is the substitutional outer diameter of the basic solid at the interface, and dh is the
hole diameter of the clamped parts.
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5. Numerical examples

FA

FV , FAFV , FA

Fig. 13. Connecting the rod bearing
cap bolted joint.

The rod bearing cap bolted joint is considered as an example for
a simulation study. The bolt is of type M12 and is composed of
12.9 steel materials. The rod bearing cap bolted joint is shown
in Fig. 13. The simulation parameters are shown in Table 1.

The assembly stress, working stress and alternating stress
are calculated with both the analytical method and FE method
using a MATLAB program that depends on the simulation pa-
rameters.

Table 1. Simulation parameters.

Parameters Value Unit

Axial load FA 6000 [N]
Preload FV 27000 [N]
Nominal diameter d for M12 12 [mm]
Pitch diameter of the bolt thread d2 10.863 [mm]
Minor diameter of the bolt thread d3 9.853 [mm]
Pitch of the thread P 1.75 [mm]
Young’s modulus of the nut or the
tapped thread region EM

210000 [N/mm2]

Young’s modulus of the bolt mate-
rial ES

210000 [N/mm2]

Tightening factor αA 1.5 [—]

5.1. Analytical calculation results

Investigation of the bolt stiffness and plate stiffness rate. The additional axial bolt loads with
respect to the bolt and plate stiffness are shown in Table 2. The relation between the bolt stiffness
rate and additional axial bolt load is shown in Fig. 14.

The analytical simulation indicated that increasing the stiffness rate of the bolt causes the axial
additional bolt load FSA to increase. Therefore, a lower bolt stiffness rate is necessary for reducing the
additional axial bolt load and alternating stresses.

The relation between the plate stiffness rate and additional axial bolt is shown in Fig. 15. The
analytical simulation indicated that increasing of the stiffness rate of the clamp plate causes the axial
additional bolt load FSA to decrease. Thus, a higher plate stiffness rate is necessary for decreasing the
additional axial bolt load and alternating stresses.

Table 2. Additional axial bolt load with respect to the bolt and plate stiffness.

Bolt stiffness Plate stiffness FSA Bolt stiffness Plate stiffness FSA

RS [N/mm] RP [N/mm] [N] RS [N/mm] RP [N/mm] [N]
50000 919850 309 232520 200000 3225
75000 constant 452 constant 300000 2619
100000 constant 588 constant 400000 2205
125000 constant 717 constant 500000 1904
150000 constant 841 constant 600000 1675
175000 constant 959 constant 700000 1496
200000 constant 1071 constant 800000 1351
225000 constant 1179 constant 900000 1231
250000 constant 1282 constant 1000000 1131
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Fig. 14. Relation between the bolt stiffness rate and
additional axial load.

Fig. 15. Relation between the plate stiffness rate and
additional axial load.

Table 3. Analytical method calculation results of the bolt
and part loads.

n factor Fv FA FSA FPA Fsmax

[−] [N] [N] [N] [N] [N]
0.1 27000 6000 121 5879 40621
0.2 constant constant 242 5758 40742
0.3 constant constant 363 5637 40863
0.4 constant constant 484 5516 40984
0.5 constant constant 605 5395 41105
0.6 constant constant 726 5274 41226
0.7 constant constant 847 5153 41347
0.8 constant constant 969 5031 41469
0.9 constant constant 1090 4910 41590
1 constant constant 1211 4789 41711

Investigation of the bolt loads us-

ing the analytical method. The analyti-
cal method calculation results of the bolt and
part loads are shown in Table 3. The ana-
lytical method calculation results indicated
that increasing the load introduction factor
n causes the additional axial bolt load FSA

and axial total bolt load FSmax to increase.
The relation between the load introduction
factor and additional axial load is shown in
Fig 16, the relation between the load introduc-
tion factor and axial total bolt load is shown
in Fig 17, and the relation between the load
introduction factor and plate load is shown in
Fig 18.
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Fig. 16. Relation between the load introduction fac-
tor and additional axial bolt load.

Fig. 17. Relation between the load introduction fac-
tor and total axial bolt load.
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Fig. 18. Relation between the load introduction fac-
tor and axial plate load.

Fig. 19. Relation between the load introduction fac-
tor and assembly stress.
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Table 4. Analytical method calculation results of the bolt stresses.

n factor σV σB σa SF SD

[−] [N/mm2] [N/mm2] [N/mm2] [—] [—]
0.1 853.0703 712.0535 0.9801 1.5448 34.0093
0.2 853.0703 713.8646 1.9602 1.5409 25.5070
0.3 853.0703 715.6764 2.9404 1.5370 17.0047
0.4 853.0703 717.4890 3.9205 1.5331 12.7535
0.5 853.0703 719.3024 4.9006 1.5293 10.2028
0.6 853.0703 721.1166 5.8807 1.5254 8.5023
0.7 853.0703 722.9315 6.8609 1.5216 7.2877
0.8 853.0703 724.7472 7.8410 1.5178 6.3768
0.9 853.0703 726.5636 8.8211 1.5140 5.6682
1 853.0703 728.3808 9.8012 1.5102 5.1014

Investigation of the bolt

stresses using the analytical

method. The analytical method
calculation results of the bolt
stresses are shown in Table 4. The
analytical method calculation re-
sults satisfy the safety factors SF

and SD. The assembly stress, work-
ing stress and alternating stresses
are shown in Fig. 19, Fig. 20 and
Fig. 21, respectively.
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Fig. 20. Relation between the load introduction fac-
tor and working stress.

Fig. 21. Relation between the load introduction fac-
tor and alternating stress.

5.2. Finite elements calculation results

Investigation of the bolt loads using the finite element method. The results of the FE
method calculation of the bolt loads are shown in Table 5. The finite element method calculation
results indicated that increasing the load introduction factor n causes the additional axial bolt load
FSA and axial total bolt load FSmax to increase. The obtained results are similar to the analytical
method calculation results.

Table 5. Finite element method calculation results of the bolt loads.

n factor Fv FA FSA FPA Fsmax

[−] [N] [N] [N] [N] [N]
0.1 27000 6000 122 5878 40622
0.2 constant constant 245 5755 40745
0.3 constant constant 368 5632 40868
0.4 constant constant 491 5509 40991
0.5 constant constant 613 5387 41113
0.6 constant constant 736 5264 41236
0.7 constant constant 859 5141 41359
0.8 constant constant 982 5018 41482
0.9 constant constant 1105 4895 41605
1 constant constant 1228 4772 41728
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Fig. 22. Relation between the FEM node and assembly stress.

Investigation of the bolt stresses

using the finite element method.

The stresses are shown in Table 6. The
local stress for each element is shown in
Table 7. Thus, the finite element cal-
culations indicate suitable values for SF

and SD. The assembly stress, working
stress and alternating stresses are shown
in Fig. 22, Fig. 23 and Fig. 24, respec-
tively.

Table 6. Finite element method calculation results of the bolt stresses.

n factor σV σB σa SF SD

[−] [N/mm2] [N/mm2] [N/mm2] [—] [—]
0.1 864.5631 721.2018 1.0068 1.5252 31.0410
0.2 864.5631 723.0653 2.0135 1.5213 24.8328
0.3 864.5631 724.9288 3.0202 1.5174 18.6246
0.4 864.5631 726.7923 4.0269 1.5135 12.4164
0.5 864.5631 728.6498 5.0336 1.5096 10.3470
0.6 864.5631 730.5074 6.0404 1.5058 8.2776
0.7 864.5631 732.3741 7.0471 1.5019 7.2429
0.8 864.5631 734.2409 8.0539 1.4981 6.2082
0.9 864.5631 736.1092 9.0606 1.4943 5.5874
1 864.5631 737.9775 10.0673 1.4906 4.9666

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10 11 12 13

FEM node and working stress σB relation

FEM node

W
o
rk

in
g

st
re

ss
σ
B

[N
/
m

m
2
]

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12 13

FEM node and alternating stress σa relation

FEM nodeA
lt
er

n
a
ti
n
g

st
re

ss
σ
a

[N
/
m

m
2
]

Fig. 23. Relation between the FEM node and work-
ing stress.

Fig. 24. Relation between the FEM node and alter-
nating stress.

Table 7. Finite element method calculation results for each element.

n = 1 σV σB σa SF SD

Element number [N/mm2] [N/mm2] [N/mm2] [−] [−]
1 690.9176 472.8545 5.1473 2.3263 9.7138
2 720.1780 600.1072 7.6532 1.8330 6.5332
3 864.5631 737.9775 10.0673 1.4906 4.9666

4 864.5631 737.9775 10.0673 1.4906 4.9666

5 864.5631 737.9775 10.0673 1.4906 4.9666

6 864.5631 737.9775 10.0673 1.4906 4.9666

7 864.5631 737.9775 10.0673 1.4906 4.9666

8 864.5631 737.9775 10.0673 1.4906 4.9666

9 864.5631 737.9775 10.0673 1.4906 4.9666

10 864.5631 737.9775 10.0673 1.4906 4.9666

11 864.5631 737.9775 10.0673 1.4906 4.9666

12 864.5631 737.9775 10.0673 1.4906 4.9666

13 659.6333 461.5503 7.5505 2.3833 6.6221
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6. Results and discussion

The analytical method calculation results and finite element method calculation results are compared
below:

— The assembly stress σv obtained with the finite element method is 1.32% higher than that obtained
in the analytical calculations.

— The working stress σB obtained with the finite element method is 1.30% higher than that obtained
in the analytical calculations.

— The alternating stress σa obtained with the finite element method is 2.65% higher than that obtained
in the analytical calculations.

— Both the analytical method calculation results and finite element method calculation results have
suitable safety factors SF and SD.

7. Conclusions

This study systematically investigated concentrically clamped bolted joints. The bolt and part loads
were analytically calculated based on the axial load. The assembly stress, working stress and alternating
stress were calculated and simulated based on the load introduction factor n.

The finite element equations were obtained for the rod bearing cap bolted joints. The assembly
stress, working stress and alternating stress were calculated using a finite element model. The results
obtained from the analytical calculations and finite element calculations were compared and were found
to be highly similar in terms of the assembly stress, working stress and alternating stress.

In this study, both the analytical calculations and finite element calculations were based on the VDI
2230 directive. All obtained equations used in the finite element calculations were written in matrix
form, and the results were obtained through matrix operations.

The obtained analytical and finite element results were highly similar, demonstrating that the
proposed method is reliable. An experimental study was not considered and performed. During
the modelling of the clamped parts, the sealing element and nut type were ignored. The following
conclusions are drawn:

1. The increase of the stiffness rate of the bolt causes the bolt load to increase. Thus, a lower bolt
stiffness rate is necessary for reducing the additional axial bolt load and alternating stresses.

2. In contrast, the increase of the stiffness rate of the clamp part causes the bolt load to decrease.
Thus, a higher plate stiffness rate is necessary for decreasing the additional axial bolt load and
alternating stresses.

3. The stiffness of the bolt should be as low as possible to reduce the maximum bolt load and stress
of the bolt cross-sections. However, the stiffness of the clamped part should be as high as possible.

4. Increasing load introduction factor causes the bolt load to increase. Thus, increasing the load
introduction factors causes the assembly stress and alternating stress to increase in concentrically
bolted joints.

5. The finite element method enables the stress of each individual element and the critical cross section
under the maximum stress to be determined. Thus, the failure point of the bolt under an axial
load is estimated more precisely.

6. The results obtained by means of the analytical method and the finite element method have suitable
values for the safety factors SF and SD.

The above conclusions demonstrate that the obtained finite element model is valid for calculating
all of the stresses on the concentrically clamped rod bearing cap bolted joints, including the assembly
stress, working stress, and alternating stress. However, the conventional analytical method is a simple
and reliable method for the bolt connection calculation. Therefore, there is no need to use such complex
mathematical models for the considered type of bolted joints during engineering applications.
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In future works, the author plans to carry out a study that includes both the contact problem and
the eccentrically mounted bolt problem.

A reliability-based study is necessary for probabilistic results for new bolt products to guarantee
the bolt service life. Thus, manufacturer prestige is of high importance in the market depending on
the reliability level of their products. Therefore, the bolt static and dynamic load-carrying capacities
and bolt fatigue life will the objects of the experimental investigation of the author in a future study.
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Appendix

The stiffness matrix of bolt for tensile stress [K]Gσ is a 14× 14 square matrix:

[K]Gσ =







































k1 −k1 0 0 0 0 0 0 0 0 0 0 0 0
−k1 k1 + k2 −k2 0 0 0 0 0 0 0 0 0 0 0
0 −k2 k2 + k3 −k3 0 0 0 0 0 0 0 0 0 0
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The stiffness matrix of the bolt for torsional stress [K]Gτ is 14× 14 square matrix:

[K]Gτ =
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The stiffness matrix of clamped part for the tensile stress [K]GP is a 12× 12 square matrix:

[K]GP =
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Систематичне дослiдження напружень у концентрично
затиснутих болтових з’єднаннях методом скiнченних елементiв

БозчаМ.

Технiчний унiверситет Йилдиз, факультет машинобудування,
34349 Йилдиз, Стамбул, Туреччина

У цiй статтi систематично дослiджувалися напруження, якi виникають в болтовому
з’єднаннi кришки стрижневого пiдшипника з урахуванням специфiки концентрично
затисненого болтового з’єднання. Метою даного дослiдження є розроблення двови-
мiрної моделi скiнченних елементiв для визначення виникаючих напружень у болто-
вих з’єднаннях у всiх випадках болтових з’єднань i порiвняння директиви VDI. Для
цiєї мети навантаження на болт i часткове навантаження розраховуються аналiтично
на основi осьового навантаження. Робоче напруження, збiрне напруження i змiнне
напруження розраховуються i моделюються на основi коефiцiєнта введеного наван-
таження n. Розроблено двовимiрну скiнченно-елементну модель. Для цього отримано
глобальну матрицю жорсткостi [K], застосовуються граничнi умови i навантаження,
такi як сила [F ] i момент [M ]. Розв’язуючи алгебраїчнi рiвняння системи, ми отри-
муємо вузлове змiщення {u} i {θ}, збiрне напруження σv, робоче напруження σB i
змiнне напруження σa в кожному елементi системи. Встановлено рiвняння скiнченних
елементiв для болта. Збiрне напруження, робоче напруження i змiнне напруження
розраховуються з використанням розробленої скiнченно-елементної моделi. Результа-
ти аналiтичних розрахункiв i результати розрахункiв методом скiнченних елементiв
порiвнюються i виявляються дуже схожими з точки зору збiрного робочого напру-
ження i змiнного напруження. Збiльшення коефiцiєнта жорсткостi болта викликає
збiльшення навантаження на болт i змiнних напружень; навпаки, збiльшення коефi-
цiєнта жорсткостi затисненої частини болта призводить до зменшення навантаження
на болт i змiнних напружень. Жорсткiсть болта повинна бути якомога нижчою, щоб
знизити максимальне навантаження на болт i напруження поперечних перерiзiв бол-
та. Однак жорсткiсть затиснутої частини повинна бути якомога бiльшою. Крiм того,
збiльшення коефiцiєнта введення навантаження призводить до збiльшення наванта-
ження на болт. Отже, для концентричних болтових з’єднань збiльшення коефiцiєнта
введення навантаження призводить до збiльшення збiрного напруження i змiнного
напруження.

Ключовi слова: болтовi з’єднання, монтажне напруження, робоче напруження,
змiнне напруження, скiнченний елемент.

Mathematical Modeling and Computing, Vol. 7, No. 2, pp. 345–365 (2020)


