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Abstract

Today, several methods are proposed and tested for controlling many nonlinear and unstable systems. This study
employed the sliding mode control (SMC) and proportional-derivative (PD), which are used to control the position
and modeling of ball and beam system that is a fundamental system used to test the control methods. Such systems
are nonlinear and unstable due to their nature. Therefore, these systems are affected by external disturbances and this
leads to a decrease in the control quality. The study tested the system by utilizing the classical PD and SMC methods,
and the results were assessed by employing the Integral-Square-Error (ISE) performance criterion. The system results
were provided as graphics and tables. Besides, the results were compared and analyzed.
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1. Introduction

Ball and beam systems are difficult to control as they have an incomplete drive and non-linear structure. It is also
one of the systems in which control methods are tested and compared. These systems are nonlinear and unstable. The
fundamental objective in controlling such systems is to automatically control the beam angle to attain the needful
position of the ball on the beam by carrying out a suitable torque to the joint. These systems have two degrees of
freedom. The first one is the ball rolling up and down on the beam, and the other is the beam rotating along its central
axis. This system has been studied many times, and diverse controllers have been recommended to control this poorly
operated mechanism. Hauser et al. analyzed the nonlinear control via approximate input-output linearization: the case
of ball and beam [1]. Teel recommended a hemispherical compensating feedback control that requires merely the
measurement of the ball position and beams angle and does not require precise information about the ball mass or
beam inertia for the simplified "ball and beam™ [2]. Huang and Lin studied the robust nonlinear control of a ball and
beam system. The method was supported by simulation results [3].

Yi et al. put forward a new fuzzy controller for stabilization control of a ball and beam system relying on a fuzzy
inference model dynamically coupled to SIRMs (Single-input-rule-modules) [4]. An incremental sliding control method has
been proposed and the application has been implemented [5]. Andreev et al. studied the matching control law of a similar
system [6]. Yu and Ortiz recommended a complete model of a nonlinear ball and beam system and stability analysis of PD
control. This experimentally suggested method was employed and its results were discussed [7]. Almutairi and Zribi
proposed the SMC of the system. The proposed controller was supported by simulation and experimental studies [8]. Chang
et al. Fuzzy suggested the fuzzy sliding-mode control by utilizing fuzzy ant colony optimization for a ball and beam system
[9]. Chang et al. proposed a T-S fuzzy-model-based adaptive dynamic surface control for a ball and beam system. They
conducted T-S fuzzy modeling-based simulation and experimental studies [10]. De La Torre et al. worked on a study
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aiming to improve a virtual and remote laboratory for the system by using Moodle. They performed applications using
various methods [11]. Peraza et al. put forward a method referred to as the parameter adaptation in an FLC based harmony
search algorithm (HS) for the optimization of ball and beam controller. Type 1 and type 2 fuzzy logic methods were
analyzed utilizing some error performance criteria [12]. Mehedi et al. designed and employed a fractional degree controller
on a two degree of freedom the ball and beam system. They presented a suitable assessment and comparison among integer
and fractional order controllers in a numerical and experimental environment [13]. Du et al. designed a distortion prevention
and control method employing an improved equivalent input distortion approach. They offered an equivalent input
distortion (EID) approach developed to handle exogenous disturbances and system nonlinearities [14]. A robust observer-
based adaptive fuzzy backstepping method for a similar system by Rahbar and Kalat is proposed. They were made
researches for the method in a simulation environment [15].

This study employed the Sliding Mode Control (SMC) and Proportional-Derivative (PD), which are used to control the
position and modeling of the ball and stick system that is a fundamental system used to test the control methods. Such systems
are nonlinear and unstable due to their nature. Therefore, these systems are affected by external disturbances and this paves the
way for a decrease in supervision quality. The aim was to increase the control quality of the system by utilizing sliding mode
control and PD methods. Besides, the results were assessed by employing the Integral-Square-Error (ISE) performance
criterion. The system results were provided as graphics and tables. Besides, the results were compared and analyzed.

2. Modeling of the system

Various methods are used in modeling in the literature. One of them is the Lagrange-Euler method. The method
is basically an energy-based method. The model employed for system control algorithms was obtained by utilizing
the Lagrange-Euler method [16]. Figure 1 depicts the free body diagram of the ball and beam system.

Fig.1. Free body diagram representation of the ball and beam system

In the system illustrated in Fig. 1, ¢ and X variable parameters indicate the beam inclination angle and the ball
position, respectively. L is the beam length, r is the radius of the ball, d is the distance between the screw mounted
point and the motor gear d and m is the mass of the ball. @ angle seems limited. Therefore, Equation 1 illustrates the
mathematical relationship between the beam angle inclination & and @ (1):

a=—0, (1)
The model of the ball and beam system is provided in Equation 2:
J, . . 2
(=5 +m)X+mgsin(a) -mxa“ =0. 2)
r

Equation 3 was obtained when equation 1 was inserted into equation 2. The parameters of the ball and beam
system are shown in Table 1.

(‘:—g+m)X‘+mg sin(@)-mxé? =0. (3)
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Table 1. The system parameters.

Symbol Description Value/Units
mp Mass of ball 0.064 kg
The radius of the ball 1.27cm
Beam length 42.55 cm
d Distance between screw-mounted 254 cm
point and motor gear
Lever arm length 12cm
Support arm length 16 cm

3. Controller design for the ball and beam system

The ball and beam systems are not stable, controllable, observable, and non-linear, the system must first be
stabilized and then checked in designing the controller. The goal is to obtain a controller with minimal error to move
the ball so that the real position of the ball reaches the desired position. What matters here is that a (beam angle) is
controlled by the angle at the motor exit (¢ angle). Conventional PD controller and Sliding Mode Control (SMC)
control methods were proposed for the system control.

3.1. Proportional-derivative (PD) control

While it is a former method employed in many implementations, the basic mathematical equation of a good
performance PID control method is provided in equation 4 [17]. The closed-loop control type Ziegler-Nichols method
was used to find the PID control coefficients [18]. Fig. 2 shows the schema of the PD control method designed for the
system. 6y reference entry angle signal, 6 exit angle of the real system, K, proportional gain, K; integral gain, Kq
derivative gain, and e = 4 — @ an error signal are utilized to define them. In this study, the PD control method was
utilized and the method formula is given in equation (5).

u(t):er(t)JrKije(t)dtJrKd%e(t): (4)
u(t):er(t)+Kd%e(t), (5)
& * e d

— Koe(t)+K

0
oo — -

Fig.2. Block schema of the PD control method designed for the system

3.2. Sliding mode control (SMC) method

The second method used in the control of the system is the Sliding Mode Control (SMC) method, which has a
high resistance to dynamic uncertainties. SMC is a special form of variable structured control. This method initially
forces state variables to go on the sliding surface and then, they are kept on such surface and afterward, are shifted
towards the origin [19]. Therefore, it is called the sliding surface as well as the switching surface. Thanks to its
nature, it has a non-continuous control structure. This discrete control sign causes crackling. This harms the physical
system elements. One of the ways to prevent this is to replace the discrete signum function that is in the sliding mode
control sign with the saturation function, a continuous function thereof [20]-[21]. The position of the ball is the
control variables of the robot. Fig.3 shows the control structure of the sliding mode control (SMC). Equations
containing the error and its derivative are provided in equations (6) and (7):

e(t)=6,(®)-6() (6)

é=6,-0. )
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Fig.3. The control structure of the SMC method.

The reference input angle signal is referred to as 6y, exit angle of the actual system as 6, and e, é are called error
signals, respectively. The sliding surface is indicated by s. Equations 8 and 9 were obtained. A is a positively defined
symmetric matrix and k is a constant parameter.

s=¢é—le, (8)
$=6— 16, )
u=—k*sign(s), (10)
s if 2] <1
sat(s/p)={ ¢ (11)
sign(s/¢)  if % >1

Signum is the sign function and s functions as switching. The Lyapunov criterion was employed for system
stability. The sliding surface is illustrated in Fig.4. The saturation function was employed to solve the crackling

problem. ¢ shows the thickness of the boundary layer.
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Fig.4. The concept of the sliding surface.

4. Numerical simulation results

This section includes the simulation activities obtained by employing motion equations of the ball and beam
system. PD and Sliding Mode Control (SMC) algorithms were employed in controlling the system. The system's
control variables are the ball position and engine angle. Square and step wave inputs were employed in the system.
Thus, the best controller analysis was attempted by obtaining the results per Integral Square Error (ISE) criteria,
which is the performance criterion of the applied control algorithms. The simulation time was identified as 50
seconds. Fig. 5 indicates the ball position and motor angle graphs obtained versus square and step input employing
the PD method of the ball and beam system. As can be observed in Fig.5a, the peak overshoot occurs in the system
per the graphic for the PD control method versus the square wave input. Besides, we observe that the system reached
the settling time only in the 20th second. Similarly, the graph obtained for the step input indicates that the system
overshoots the peak and reaches the settling time approximately in the 10th second, as can be observed in Fig.5b.
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Fig.5. The square (a) and the step (b) input graphs by employing a PD control method for the ball position and motor angle.

Fig.6 indicates the ball position, motor angle graphs versus square, step input employing SMC of the system, and
signum sign function. Fig.6a illustrates that the system does not overshoot the peak in the graph obtained by
employing the SMC control method and the signum sign function versus the square wave input. Besides, it is
observed that the system reached the settling time approximately in the 13th second. Similarly, the graph obtained for
the step input indicates that the system does not overshoot the peak and reaches the settling time approximately in the
5th second, as can be observed in Fig. 6b. However, a crackling problem, which is a negative effect of the signum
sign function, occurred as can be observed in the angle graphs from the system versus both inputs. This is considered
as a negative situation for the system. To correct the negative situation in Fig. 6, the results were obtained by
employing the saturation function instead of the signum sign function.
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Fig.6. The square (a) and the step (b) input graphs by employing the SMC control method and signum sign function for the ball
position and motor angle.

Fig.7 illustrates the ball position and motor angle graphs versus square and step input by employing SMC of the
system and saturation sign function. Fig.7a illustrates that the system does not overshoot the peak in the graph obtained by
employing the SMC control method and the signum sign function versus the square wave input. Besides, it is observed that
the system reached the settling time approximately in the 13th second. Similarly, the graph obtained for the step input
indicates that the system does not overshoot the peak and reaches the settling time approximately in the 5th second, as can
be observed in Fig. 6b. A crackling problem, which is a negative effect of the signum sign function, was solved with
saturation function as can be observed in the angle graphs from the system versus both inputs. The performance index ISE
is given in the following equation
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|SE=T(ydj —y,)dt, (12)

where yg; is the desired j value; y; is the real j value of the robot; y is the position of the ball (x); j=1,2,3,4.... N’

SMC-sat

SMC-sat
4r
— — Ref
3fFr— —— SMC-sat
T |
S2r|
x |
1rl
-4 ' 0
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
S50
9 § 20
o0 (\ — r v V\ °
=) ~
< 0
-50
100 1 L L 1 L L L 1 L I 20 L L L L 1 1 L L L I
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
time (s) time (s)
a b

Fig.7. The square (a) and the step (b) input graphs by employing the SMC control method and saturation sign function for the ball
position and motor angle.

Table 2 indicates the error results obtained by employing the performance criteria ISE of the PD and SMC
control methods versus square and step inputs.

Table 2. The error results according to performance criteria.

ISE PD Control SMC-sat
Square input 0.0145 0.0029
Step input 0.00185 0.00015

For the ball position results provided in Table 2, the best error rate versus square entry was obtained by the SMC
control method and the result was 0.0029 cm. The value obtained by employing the PD control method is 0.0145 cm.
The best error rate versus the step input, which is another input provided in the table, was obtained by the SMC
control method and the result is 0.00015 cm. The value obtained by employing the PD control method is 0.00185 cm.
The results indicate that the best error rate is obtained by employing the SMC method versus step input. In general,
the SMC method shows superior performance.

5. Conclusion

This study employed the Sliding Mode Control (SMC) and Proportional-Derivative (PD), which are used to control
position. Modeling was carried out for the ball and beam system that is a fundamental system used to test the control
methods. The system was controlled by applying conventional PD and Sliding Mode Control methods. Besides, the
results were assessed by employing the Integral-Square-Error (ISE) performance criterion. The SMC method provided
the best performance results for both peak overshoot and settling time. The best error rate versus the step input, which is
another input provided in the table, was obtained by the SMC control method and the result was 0.00084 cm. The value
obtained by applying the PD control method was 0.0015 cm. The results indicate that the best error rate was obtained by
applying the SMC method versus step input. In general, the SMC method shows superior performance. Besides, the
method can be developed by employing different optimization techniques and objective functions. The method can also
be developed and applications can be made in a real-time laboratory environment in future studies.
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IIpoexTyBaHHS Ta BIPOBAIKEHHS PEryJISITOPA MOJI0KEHHS CUCTEMH
«KYJs1-0aJIKa» MeToAaMM KOB3HOTo pe:kumy Ta I1/] peryaroBanus

Taiipyn AGyT
Yuieepcumem Myw Annapcnan, Myw, 49100, Typeuyuna

AHoTanis

CTaHOM Ha CBHOTOJIHI 3alPOIIOHOBAHO 1 MEPEBIPEHO JEKIIbKAa METO/IB KEepyBaHHs OaraTbMa HEJHIHHUMH Ta

HECTIKUMU cucTeMamMu. Y IIbOMY JOCTIPKEHHI BHKOPHUCTAHO KOB3HHH pEXUM KEpyBaHHS Ta MPOMOPIIiHHO-
mudepentianeauii ([1I) perymsitop, siki BAKOPHUCTOBYIOTBCS IUIsl KEPYBaHHS MOJOKESHHSM Ta MOJICITIOBAHHS CHCTEMH
«Kyss-Oanka», Mo € 0a30BOI0 CHUCTEMOIO ISl NEepPEeBIpKM METOJIB KepyBaHHs. Taki cCHCTEMH € HENiHIMHUMH Ta
HECTIKMMU 3a CBOEIO TPUPOJIOI0 i HA HUX BIUIMBAIOTH 30BHINIHI 30ypeHHs. Y 1ild poOOTi JOCHTIIKEHO CUCTEMY i3

3acTocyBaHHAM KiacngHoro IIJ[ perymsaropa Ta KOB3HOTO peXHMy KepyBaHHS. PesymbraTu Oynum OIliHEHI i3
3aCTOCYBaHHS IHTErpaJbHOI KBaJpaTHUYHOI OLIHKH. Pe3yibTaT npencrasieHi y BUrisiai rpadikiB Ta tadbmamms. Kpim
[[FOT0, BUKOHAHO TIOPiBHSHHS Ta aHaJIi3 Pe3yJIbTaTiB.

KiarouoBi cioBa: kynsa-0anka;, MOJIGNIOBaHHS; KEpyBaHHS, KOB3HHH pPEXHUM KepyBaHHS, IPOMOPIIHHO-

TuQepeHIiaTbHAN; IHTerpaibHa KBaApaTHIHA OIliHKA.



