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TEMPORAL CHANGES IN THE EARTH’S TENSOR
OF INERTIA AND THE 3D DENSITY MODEL BASED ON THE UT/CSR DATA

This study aims to derive the Earth’s temporally varying Earth’s tensor of inertia based on the dynamical
ellipticity H,,(?), the coefficients C,, (¢), S,, (¢#) from UT/CSR data. They allow to find the time-varying
Earth’s mechanical and geometrical parameters during the following periods: (a) from 1976 to 2020 based on

monthly and weekly solutions of the coefficient 520; (b) from 1992 to 2020 based on monthly and weekly
solutions of the non zero coefficients Zzo (1), Zzz(t ) related to the principal axes of inertia, allowing to build
models their long-term variations. Differences between 520 and Zzo , given in various systems, represent the
average value =~ 2 - 107" , which is smaller than time variations of 520 or Zzo , characterizing a high quality of
UT/CSR solutions. Two models for the time-dependent dynamical ellipticity /1, (#) were constructed using
long-term variations for the zonal coefficient Zzo (t) during the past 44 and 27.5 years. The approximate
formulas for the time-dependent dynamical ellipticity /,,(#) were provided by the additional estimation of
each parameter of the Taylor series, fixing H =3.27379448 x 10" at epoch 1, =J2000 according to the

IAU2000/2006 precession-nutation theory. The potential of the time-dependent gravitational quadrupole V,
according to Maxwell theory was used to derive the new exact formulas for the orientation of the principal axes

A, B, C via location of the two quadrupole axes. Hence, the Earth’s time-dependent mechanical and
geometrical parameters, including the gravitational quadrupole, the principal axes and the principal moments of
inertia were computed at each moment during the past 27.5 years from 1992 to 2020. However, their linear
change in all the considered parameters is rather unclear because of their various behavior on different time-

intervals including variations of a sign of the considered effects due to a jump in the time-series (_:20 (¢) during

the time-period 1998-2002. The Earth’s 3D and 1D density models were constructed based on the restricted
solution of the 3D Cartesian moments inside the ellipsoid of the revolution. They were derived with conditions
to conserve the time-dependent gravitational potential from zero to second degree, the dynamical ellipticity, the
polar flattening, basic radial jumps of density as sampled for the PREM model, and the long-term variations in
space-time mass density distribution. It is important to note that in solving the inverse problem, the time
dependence in the Earth's inertia tensor arises due to changes in the Earth's density, but does not depend on
changes in its shape, which is confirmed by the corresponding equations where flattening is canceled.

Key words: Temporal change in principal axes and moments of inertia; Dynamical ellipticity; Gravitational
quadrupole; Precession-Nutation theory.

Introduction Cop (1) = Cog + ACyy = Co + Cog (£ — 1)

Processing of SLR (Satellite Laser Ranging) data
led to precise information about a long time-series of
the time-varying Earth’s gravity field during the time-
interval 1976-2020. Since 1983 the secular variation

consisting of the time-independent part 520 at epoch

t, and the secular variation 520 . This model for the

_ A L ffici lied i
J, = —5- C,, in the normalized harmonic coefficient time-dependent  coefficient - Cyy was applied in

_ o ) ] various studies, e.g. Rubincam, 1984; Cheng et al.,
Cyy of the gravitational potential was derived by  1989; Schwintzer et al., 1991; Cheng et al., 2004;

Yoder et al. (1983) with the simplest linear model IERS Standards, 2010; Cheng et al., 2011; etc.
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Contrary to the linear model Cheng et al., 2013
applied the enhanced approximation with the
quadratic term additionally to the linear model for the

C,,(t) time-series, during the time-interval from

1976 to 2011. Marchenko and Lopushansky (2018)
used a similar approach for the period from 1976 to
2017 yr. and subinterval from 1992 to 2017 yr. It

allowed revealing the long-term variations in EZm (1),

S,,(t), and the dynamical ellipticity H ,(%).
According to Cheng et al., 2013 the linear model can
be used successfully only on short time intervals. But
a long time interval requires a choice of special
modeling including probable fit by Fourier-Hermit
series if the infinite interval is considered (Marchenko,
1998; Marchenko, Abrikosov, 2001).

Therefore, after 1983 yr. only the Earth gravitational
potential is measured as time-dependent. The
corresponding density distribution in the famous
Newtonian integral for the gravitational potential
should be considered also as time-dependent. The
problem of the standard Earth’s density model was
formulated by the IAG in 1971. As a result, the well-
known PREM model was developed by Dziewonski
and Anderson (1981). The classical theory is given
by Clairaut, Laplace, G. Darwin, Bullard (1954),
Bullen (1975), Moritz (1990), etc. General discussion of
different density distributions related to Clairaut,
Williamson-Adams, and Poisson equations can be
found in (Marchenko, 2000). The parameterization
of the 1D density via the Gaussian radial profile is
one of the possible solutions of the Williamson-
Adams differential equation also given in (Marchenko,
2000). But the density parameterization has a special
significance when the Earth’s corresponds to a
deformable body with a time-varying gravity field.
Hence, all suitable geodetic, astronomical, and other
data for 3D density models are valid in the
following. They involve the 1D static radial profile
(such as PREM), fundamental astronomical -
geodetic parameters which describe the 3D static
global density and its temporal variations with a
space-time mass density distribution as the 4D
density changes.

Traditionally, basic estimates of the normalized

time-dependent EZm (1), §2m (¢) series are obtained

usually from the analysis of SLR observations of the
following  satellites:  Starlette, Stella, Ajisai,
LAGEOS-1, LAGEOS-2, BEC, GRACE, Larets, and

LARES (Cheng and Ries, 2017) and recent 52m (1),

S,,,(¢) lead to more accurate solutions. Furthermore,
latest determinations of the astronomical dynamical
ellipticity /1, are derived from the precession

constant p, and based on the non-rigid Earth’s

rotation theory (Dehant et al., 1999; Mathews et al.,
2002; Capitaine et al. 2003; Fukushima, 2003;
Bourda, Capitaine, 2004; Petit, Luzum, 2010; Liu,

6

Capitaine, 2017) which was adopted by IAU
resolutions at the epoch J2000 (Capitaine et al. 2009).

New values of H ), including the older determination
by Williams (1994), already contained the secular

change C. 5o in the frame of the linear model (Marchenko,
Schwintzer, 2003; Bourda, Capitaine, 2004). So,
Ezm(t), .§2m(t), and H,(¢) allow accurate
determination of the time-dependent Earth’s principal
axes, principal moments of inertia, and other fundamental
parameters due to more stable determinations of /1.
As the first step, this study aims to derive the
Earth’s time-evolving dynamical ellipticity /1, (¢),
the orientation of the principal axes of inertia, and
their evolution with time from the coefficients

C,, (1), S,,(t). If the values C,, (¢), S,, (1),

and H,(¢t) are known for each moment the
calculation of the principal axes and principal
moments of inertia is carried out via the solution of
the eigenvalue-cigenvector problem together with
accuracy estimation by the error propagation
(Marchenko, 2003; Marchenko and Schwintzer, 2003).
Hence, closed exact formulas for the eigenvalue-
eigenvector problem can be found in both above
mentioned articles and in the following papers (Chen,
Shen, 2010; Chen, et al., 2015).

It is crucial to clarify that literature sources
presented us only one recommended value of

H, =3.27379448x10" at epoch J2000 according
to the TAU 2000/2006 precession-nutation theory
(Capitan, et al., 2009) instead of a series of the time-
dependent ellipticity H ,,(¢) . As a result, the building

of a suitable model for the time-dependent H () is

required. This problem can be solved approximately
with the additional condition to conserve changes in
the trace of the inertial tensor. It is possible, to
compute time-dependent components of inertial
tensor and other associated parameters if the model
for Hp,(t) becomes established (Marchenko and
Lopushansky, 2018). Thus, modeling beforehand the

long-term variations in H () is significant with

Hp, = 3.27379448x107 fixed at epoch J2000

based on the linear and quadratic terms. Components
of the Earth’s inertial tensor are derived from

C,, (1), §2m(l‘), and H ,(¢) at each moment f.

These Ezm(t), §2m(t) also allow to find the

potential of the gravitational quadrupole (Marchenko,
1979) having important parameters that are
independent relating to the rotation of the adopted
reference frame. Thus, they represent the invariant
characteristics of the gravitational field which are
dependent on time only.
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Therefore, this study focuses on 1) the verification
of previous formulas for modeling of the time-

dependent H ,(t) with H, =3.27379448 x10™
fixed at epoch #, = J2000 ; 2) the derivation of the

new exact formulas for the orientation of the principal

axes Z, B , C through the location of the two
quadrupole axes; 3) the revealing of the long-term

changes from monthly UT/CSR solutions of (_720 from

1976 to 2020; 4) the detection of long-term variations
from weekly and monthly UT/CSR solutions of non

Zero Zzo(t ). A, (t) related to the principal axes
system over the time interval from 1992 to 2020; 5) the
construction of the time-dependent model of H ,,(¢)
using Zzo(t ) during the past 27.5 years; 6) the
calculation of the principal axes A(t), B(t), C (1),
the principal moments A(t), B(¢), C(t) of inertia
and other fundamental parameters; 7) the determination
of the Earth’s 3D density model and the corresponding

long-term variations in space-time mass density
distribution.

H (1) = (2C(1) = A(t) = B(1)12C(t) & C(t) =54y ()/ H ,(2).
A(t) =54, (1= 1/H (1)) =154, (1) /3,
B(t) = 54,()(1= 1/ H (1)) + V154, (1) /3.

The orientation of the principal axes in the (X,
Y , Z)-frame is based on the new formulas (16),
using C,, (¢), S,,(t) without H,. The H, -
values are given by (Williams, 1994; Mathews et.
al., 2002; Fukushima, 2003; Capitane et al., 2003)
have a small differences between the adopted
H, =0.0032737945 according to IAU2000/2006

Precession-Nutation model Petit, Luzum,

2010).

(see,

Modeling the Earth’s time-dependence dynamical
ellipticity

In the first step the transformation of the vector
8(1) = [Coy (10:Cor(0): 55, (1: T (1): S5, (O] of
C,, (1), S, (f), defined in the Earth’s-fixed
geocentric coordinate system X , ¥ , Z , to the vector
8()=[4,(), 0, 0, A,(t), 0] of the non
zero harmonic coefficients Zzo(t) , ZZZ(Z‘) in the
instant coordinate system of the principal axes of
inertia A(f), B(f), C(t) is applied. Assuming
initial data to consist of the vector g(f) for each
(k=12,...q) with the

variance-covariance matrix, we will use the closed
formulas of the eigenvalue-eigenvector problem given
in Marchenko and Schwintzer (2003) for the

determination of Zzo(t ), Zzz (¢) in the principal axes

moment of time =1,

system. By involving the dynamical ellipticity H ()
we can find the normalized by the factor 1/ Ma ? time-
dependent principal moments of inertia A(¢), B(t),
and C(t) (under the condition M = const ):

(la)
(1b)

(Ic)

To transform the associated quantities from different

P, to the common value p, =50.2879225"/yr.

the relationship OH , =6.4947-1078p, of
Souchay and Kinoshita (1996) can be applied. These

H, have much better accordance with the IAU
2000/2006 dynamical ellipticity /1 ,.

The calculation of A(¢), B(t), C(t) ,and the trace
Tr(I(¢)) of the tensor of inertia are straightforward

Tr(I(r)) = A(t) + B(t) + C(¢) = 31, (1) =54, (1)(2 - 3/ H (1))

via Egs. (1) for each given moment of ¢ =7, . From
this we get a direct dependence of A(t), B(?),
C(t), Tr(I(?)), and the mean moment [, (¢) of

—V54,(t) = (2C(1) — A(1) - B(1)) /2,

The difference B(t)— A(¢) is also slightly

dependent on a tide system because C,,(f) enters

inertia on the treatment through 620(1‘) of the

permanent tide in Zzo(t )= 520 , A, (t) represented

by the following equations
2V154,,(1)/3 = B(t) - A(r). 2)

into the calculation of the coefficient A, (f).

Hereafter it is assumed that the A,,(¢), A,,(¢), and
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H () values are related to the zero-frequency tide
2000). However the UT/CSR

— estimates are based on the

system (Groten,

C,u(®). 5y, (1)

background gravity model including the solid earth
and ocean tides, the solid earth and ocean pole tides,
and other effects. To separate various influences for
the filtering only components of the time-dependent
gravity field we need to provide an additional study.

But the computation of long-term variations only
based on the initial 52m (1), §2m (¢) was assessed to
be significant.

If the gravity field of the elastic celestial body is
variable, this produces small changes for all
parameters in Eq. (3). From the formula (3), taking

into account that t he additional condition for the

dTr(1(t)) = dA(t) + dB(t) + dC(t) = d[31,, ()| =0, < dA(t) = dB(t) = —-dC(1)/2,

Let us derive the variations of the dynamical
ellipticity () from A, (t), Ay (t) time-series
and TIAU2000/2006 dynamical ellipticity
H,, =0.0032737945 fixed at epoch J2000. The
approximate solution of the problem is possible

because A,y(1), A,,(¢) can be found separately

from the vector g(#). Furthermore, the expression
(1a) can be written as

54,(t)
c@
(Rochester and Smylie,

Hy(1) = 3)
trace Tr(I(¢)) = const

1974) “as zonal forces do not change the revolution
shape of the body” (Melchior, 1978; Souchay and
Folgueira, 1998):

one gets for the secular change in H ,, (), after Taylor expansion of Eq. (3):

HD(t) =]_[D|t:,0 +d]_[D :HD|t:t0 + dt

dH (1)

where the first and second derivatives can be found in the following way

dt , (1)
dt

_ 54, d*H,@0)
c ~ dr

t=t, |t=t0

where all insignificant terms were omitted due to the

computed value of A, =-7.461-10"" yr

(dgfo = Zzo) for our interval from 1992 to 2020 yr.
According to Eq.(2) and Eq. (4) (Bursa, et al., 2008;
Marchenko, 2009a) the linear change C at epoch
72000 can be calculated as C =1.112-107"" yr™'.

) . . LN Py LN
Moreover, the derivatives C and A, (% = Azo)
at least smaller or may have values of the same order

as C and Zzo- Hence four terms in the full

and 2 having

dt di

. .. dH d*H
expressions for derivatives -

. -15 S . -
magnitude ~ 107, are insignificant in comparision

with C, Zzo» and Zzo that leads to the final

solution
dA,y (1) = [ Ay (2 = 1) + Ay (2 ~ to)ZJa (7

where deO(t) is nothing else but the long-term

change (linear and quadratic) in the time-dependent
zonal harmonic coefficient of degree 2 given in the
principal axes system.

Thus, after the choice of the long periodic model

for dA,,(t) we get the required solution with respect

8

@)
1d*H, (¢
V54, . dC@t) ., . d’C(t)
-——, C(t)y=—=, C(t)=—77, (6
C (?) % (1) " (6)

to the epoch 7,= 2000 based on the following
relationship
V5

? ' (Zzo(t —l)+ jao(t - to)z)(g)

if both linear and the quadratic components of Zzo

H,() =HD|t:t0 -

are taking into account and C is related to the epoch
t,= 2000. As a result, Eq. (8) by definition can

represent the only long-term variation of H , (¢)
because it was derived via estimates of the derivatives

C, Zzo and C, Zzo-

Models for C,, and the dynamical ellipticity
From the transformation of the vector g€ known in

(X, Y, Z), to the vector & , given in the principal axes
(Z , B , C ), we can determine Zzo at epoch and

the differences between Czo and Zzo- In this case,

such differences can be based on the UT/CSR
solutions for the time-dependent coefficients

C,, (1), S,, (t) during the period from 1992 to
2020. After transformation to Zzo(t) , Zzz(t) we
get the average difference (620 - Zzo) ~2-107"°
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smaller than UT/CSR long-term variations. A value of
difference ~2-107" corresponds to the non-zero

invariant [, = 107" according to Lambek’s formulas

(Lambek, 1971; Marchenko, 2009a). There are
different models chosen for time-dependent change of

the coefficient Zzo (for example, Cheng et al, 2011;

Cheng et al, 2013; etc). Here one starts from the Zzo

model taken from the paper (Marchenko and Lopu-
shansky, 2018) and representing the change in time as

A4y = Azoo + Ay (1 — 1) + Ay (2 — to)2 +4, COS(?T[U —1))— {¢a }j > (€))

— o —
where A20 are the adopted value of A, at reference

epoch 7 ; Zzo , Zzo are the parameters of long-term
variations in Zzo , which are valid at the vicinity of
ty; (A,,¢,) are the components of the annual

variations with the period P, .

a

Fig. 1 (620(1‘) during the period from 1976 to

2020) and Fig. 2 (Zzo(t ) during the interval from 1992
to 2020) illustrate the aforementioned UT/CSR time
series of C,, , which were modeled by polynomials up

to the second degree simultaneously with Fourier
series. Most stable solutions were obtained in both
cases including only an annual period.

Table 1
Coefficients for the polynomial representation of the long periodic trend for Zzo (blue line)
in the form A,, = A,,’ + A, (t —1,) + A,,(t —,)* at epoch J2000 (see, Eq. (9), Fig. 1)
— 0 == _ =, _
Solution 4, Ay [yr '] Ay [yr~]
Cheng, et al., 2013 —484.169453E-06 0.27E-11 —0.40E-12
Marchenko, Lopushansky, 2018, 1 | —484.1694554194E-06 0.1166E-11 —0.4844E-12
Marchenko, Lopushansky, 2018, I1 | —484.1695458067E-06 —0.1001E-10 0.3659E-12
This study, I  (1976-2020) —484.1695331837E-06 —0.2559E-11 —0.3792E-12
This study, I1 (1992-2020) —484.1695422666E-06 —0.1026E-10 0.2960E-12
This study, I1I (1992-2020) —484.1695355089E-06 —0.7461E-11 -
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Fig. 1. UT/CSR series of 520 (period from 1976 yr to 2020 yr. — black line) where the long-term

variations fixed at epoch J2000 were modeled by polynomials up to 2nd degree (blue line)
(solution I in Table 1) simultaneously with Fourier series using annual period (red line)
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Fig. 2. UT/CSR time series of ZZO (period from 1992 to 2020 yr. — black line) where

the long-term variation fixed at epoch J2000 was modeled by polynomials up to 2nd degree
(blue line) simultaneously with Fourier series using annual period (red line) (solution II in Table 1).
The linear model is shown in green (solution III in Table 1)
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Fig. 3. Long-term variations (solid line) in the astronomical dynamical ellipticity H ,
modeled according to Eq. (8) and Solution II model with #,= J2000

Table 1 illustrates the obtained models and the = (Marchenko et. al., 2018) during the time-interval
following result: more than three years additional — 1992-2020.

= . . On the contrary, we get large differences
C20 (7) coefficients from SLR data lead in between (Cheng, et al., 2013; Marchenko et. al.,
this study to a small change in the long-term varia- ~ 2018) results and this Solution I during the time-

tions, taking into account the comparison with intervals (1976-2011) and (1976-2020) due to

10
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S, (1), various
initial data, and different approaches to data
processing.

This leads to the idea to use the linear splines

for better modeling of time-dependent parameters

longer periods of C, (f),

using suitable short intervals because the direct
determination of H,(#) from observation is not
found in the literature sources.

Obviously spline functions of the degree 2 or 3 will
give a better quality of fitting, but in this case the
approximation requires the necessity of estimation of

the time series H (%) .

~[3 -
H=M2b(hlh§ +h,h)—cos¥ -I} :

are defined in the Earth’s-fixed coordinate system
(X, Y, Z) and in the principal axes of inertia ( A4,

E, (_7), respectively; r' and T' are the
Cartesian vectors of coordinates corresponding to
these systems; GM is the product of the
gravitational constant G and the planet’s mass
M ; a is the semi-major axis of the ellipsoid of

Orientation of the principal axes through the
gravitational quadrupole parameters

In addition to the formulas (1) we will use the second
degree potential with the harmonic coefficients
(C,,,»S,,,) which can be considered with other para-
meters as the potential of the Earth’s gravitational
quadrupole written in the identical Maxwell-Gauss form.

From the preceding studies (Maxwell, 1881;
Marchenko, 1979; Marchenko, 1998) we get

V15 GMda® 1 V15 GMa?

Vv, = F¥THF, (10
o2 2 P (1
where the matrices H and H :
3+ cosy
cosy 0 0
- - 2
H=M, 0 —cosy 0 , (11)
0 0 _ 3—cosy
2
current point; I is the wunit (3x3) matrix;

h, =h,(/,,m,,n) and h, =h,(l,,m,,n,) are
to the

quadrupole axes with the angle 7 between h,

the wunit axial vectors corresponding

and h, ; M , is the normalized quadrupole moment

M ,, which is always positive by definition. Thus

revolution; 7 is the distance from the origin to the we get
M, >0, (h;-h) =1, (h,-h,)=1, (h;-h,)=cosy, (12)
M,=24,, - A4,, M, = M, _ 4y _\/EAZO , COSy = 3A22 hl \/_AZO (13)
\/E 3 22 \/_Azo

It is easily seen that the location of h, and h,

will be always in the plane of the principal axes A

and C . Theaxis A is nothing else but the bisector of

a=(h, +h,)/2 |

c¢=(h,-h,)/2, = h,=a+c,

the angle 7 and the axis C is the bisector of the

angle 7T —% . Then we define two vectors coincided

with the axes Z and (_7 :

and after some simple algebra we get their Euclidean norms in terms of 4, B, C:

||a|| =(a-a)=cos

2/}/ B_A
2 C-4

h,=a-c, (14)
_B
, ||c|| =(c- c)—sng —g—A (15)

Eigenvectors or the principal axes are found as the solution of the homogeneous system of linear algebraic
equations based on the matrix H with the following resulting expressions

[ +1

mn, —m,n,
—— _
' l2|l|a||'||°||’ ’
uczizl‘_”cz, Ve =

% w, =+t
e T = S
m,—m, . n-n
2o T e

11
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where Egs. (16) also follows from (14) and (15) and
represent new exact formulas to estimate of the

direction cosines of the axes A

(a=a(u,,v,,w,)), B (b =b(u,,v,,wy)), and

principal

C (e =c¢(ug,ve,We)). The direction cosines
(l,,m;,n,) of h, and (/,,m,,n,) of h, are

derived from the coefficients C,, ,S,, according to
(Marchenko, 1998).

Earth time-dependent mechanical
and geometrical parameters

After the determination of the long-term contribution
of dA,,(t) we get the time-dependent /1, (¢) based

on Eq. (8). Fig. 3 shows this change in /1, (¢) based on
dA,,(t) taken here as Solution II in Table 1. With

C,, (1), S,, (t),and H,(t) via the solution of the

eigenvalue-eigenvector problem we come to the Earth’s
mechanical and geometrical parameters.

coefficients

CZm (t) ’
§2m (¢) were extracted for the following time series:

a) 1976-2020; b) 1992-2011; c) GSR Release 06
(2011-2020) taken from UT/CSR
(https://www.csr.utexas.edu/datasets/ftp-portal-grace-
data/). These C,, (f), S,,(¢f) with a step size

from weekly to monthly solutions were applied for the

The time-dependent

computation of the temporally varying Earth’s
mechanical and geometrical parameters.
Table 2 shows remarkable stability in the time of

the axes A and B due to small deviations in latitude
and longitude (345.067°+345.075°), (75.067°+75.075°),
respectively, during the period from 1992 to 2020
(see, also Marchenko, 2009a).

Because of a great number of various parameters
(twenty) computed for every f we give here only
mean values of some time-dependent quantities
obtained by averaging their instant values. These
average values of the Earth’s time-dependent
mechanical and geometric parameters and their
uncertainties during the time-interval from
1992.844640 yr to 2020.371 yr. are shown in
Table 3.

Table 2

Average values of the spherical coordinates of the
principal axes computed via Eq. (16) and given in
the accepted ITRF system. Their estimates at

epoch 7, = 2000 are given in brackets

Axis Latitude [degree] L’[(()ir;iiue(}e

4 —0.0000430 345.07094
(—0.0000451) (345.07084)

B 0.0000921 75.070941
(0.0000940) (75.070836)

C 89.999898 280.16230
(89.999895) (280.67896)

Table 3

Average values of the Earth’s time-dependent mechanical and geometric parameter and their
uncertainties during the time-interval from 1992.8 yr to 2020.4 yr. (GM = 398600.4415 km’s™;
a =6378136.3m epoch f, = 2000 ; zero frequency tide system)

Parameter Mean value Minimum Maximum
1 2 3 4
_20 .10 (—484.169561653 £+ 0.000014) —484.170060986 —484.169132852
A.-10°° (2.812636730 £ 0.00019) 2.812117252 2.812997518
22
H 0.0032737951 £ 0.0000000005 | 0.0032737944 0.0032737956
D
A 0.32961129 + 0.00000005 0.32961104 0.32961159
B 0.32961855 + 0.00000005 0.32961830 0.32961885
C 0.33069756 + 0.00000005 0.33069731 0.33069786
/ A+ B+C 0.32997580 £+ 0.00000005 0.329975551 0.329976102
"3
p 50.28812427 50.28700040 50.28884813
4
(C — A)- 10° (1086.26715090 + 0.00025) 1086.2659601 1086.2683628

12
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Cont. Table 3

1 2 3 4
(C-B)-10° (1079.00495408 + 0.00025) 1079.0038943 1079.0059753
(B—A)-10° (7.26219681 + 0.000012) 7.26085552 7.26312836
a=(C-B)/A (3273.567947 £0.005) -10°° 3273.566265 3273.569255
B=(C-A4)/B (3295.527948 +0.005) -10° 3295.525205 3295.529757
y=(B-A4)/C (21.960237 +0.0015) -10° 21.956187 21.963055
1/ f 298.2564416 £ 0.00001 298.256292 298.256570
1/ f, 91437.107 £ 6.1 91425.380 91453.9980
M,-107 (1086.26715090 + 0.00025) 1086.2659601 1086.2683628
¥ [in degree] 170°.619988 + 0.000005 170°.619387 170°.6208506
(C-B)/(C-A) 0.9933145389 +0.0000004 0.9933136846 0.9933157663
(B-A)/(C—-A) 0.006685461124 + 0.000005 0.0066842337 0.0066863154

Then, determining parameters connected with

A, =—0.7461-10""yr™" (Table 1, Solution III),

the linear dependence OF ()= F (t—1t,), where

S dF (1)
F= dt

the frame of the linear model SF(f) = F(f — ty)

is chosen at epoch f,, some changes in

during the period 27.5 years (from 1992 to 2020) are
given in Table 4, assuming the parameter ¢ = const .

Table 3 and Table 4 contain the coefficients o , [3 ,
¥ of the Euler dynamic equations (Moritz and Muller,
1987), the polar f* and equatorial fe flattening, and

their long-term variations.

Table 4

Long-term variations in some astronomical and geodetic parameters based
on the long-wavelength drift in the coefficients 4,, = C,, and 4,, (¢, =2000)

Parameter Long-term variation F' = Cf{—f
1 2
4y, = Cy A, =—0.7461-10" yr™"
4, 4, =0.4316-10""yr"!
Hy H, :—ﬁjzoﬁ%ez(l)zs.owqm“yfl
Pa p,=H, / My _ 0,023 /ey’
.,
4 A=+/54,, =-1.668-10""yr"
B B=+54,=-1668-10"yr"
¢ C =254, =3.337-10" yr”

13
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Cont. Table 4

1 2
o= C—;lB G = _6220(2;23+3A) —5.067-10""yr"
P :% B :—\/5220((;;214+3B)=5.067-10“yr’l
4 :BT_A 4 =—\/§Z23°g§_/1):—3.692-10“Syr’1
Ok :C—;Aw Gy = V54, 3'£122A+C)w:—5.0671-10-“w yr
/ f':—@=2.5025-10“y{1
/. f =154, =1.6718-10"" yr"

Among the parameters from Table 4 all long-
term changes have the same order as variation Zzo
excluding ¥ and p,. According to Williams

(1994) the variation p, called also Jz precession

rate with the range (~11.6 to —16.8)x107 ["/cy?] is
dependent on the adopted J , = —\/g(_jzo. Williams’

j2 precession rate p, = —0.014 ["/cy’] given in

1994 corresponds to (;720 =1.3416-10""yr" and
differs from those of Table 4 because of the
opposite sign and the value p, =0.023["/cy’]. It
should be noted that a large anomaly in the time-
series of (_720 was detected by Cox and Chao
(2002). Such anomaly leads to a jump about 1998
and the change of the 520 sign during 1998-2002
years (see Fig.1). By this, we get an opposite sign

concerning Williams’ results and other parameters
given in Table 4 (see also, Marchenko, 2009a).

Thus, this new value p, =0.023 ["/cy’] requires
additional treatment given by the Earth’s rotation
theory which is outside the scope of this paper.

Thus, significant values over 50—-100 years in
the change of the parameters from Table 4,

including the variation G in the Euler frequency

O ; are rather unclear. It can be explained by
various behaviors with time of their linear drift
including the change of a sign of different
effects. The accuracy of these parameters has
similar or lower values as the uncertainty of

14

H . Consequently, the average values ¢ and ﬁ

can be involved in the precession-nutation theory,
taking into account the general theory (Moritz and
Muller, 1987) for the time-varying Earth.

3D density distribution corresponding to the
time-varying Earth’s inertia tensor

Determination of the planet’s density distribution
0(p,9,1) from the external gravitational potential
of the planet requires a solution of the famous
inverse problem of the Newtonian potential.
Hereafter p is the relative distance (0 < p <1)

from the origin to an internal current point; 3 and
A are the polar distance and longitude of this
point. If the planet’s gravitational potential energy
E (Rubincam, 1979; Moritz, 1990; Marchenko,
2009b) and the density at the surface are known as
additional information, this problem transforms
from an improperly posed (according to Hadamar)
to a properly posed (as stated by Tikhonov)
problem with its possible solution for the three-
dimensional density distribution through the 3D
Cartesian moments (Mescheryakov, 1991).

In this study we prefer to use 4,,, 4,,, and
additional information about dynamical -ellipticity
H , for the model of the 3D global density distribution
0(p,9,1). It was derived by Mescheryakov and

Deineka (1977) and modified by Marchenko (2009b)
for the Earth, having a shape of the ellipsoid of

revolution with the polar flattening f and the semi-

major axis a. This model represents the exact
(restricted by the order 2) solution of the 3D Cartesian
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moments problem for (p,3,A) in the following
form

5(p5’932’) = 5(p)R + A5(p3‘952') b (17)

AS(p,9,A) = AK + p*(AK, sin® cos’ A + AK, sin’ 3sin’ A + AK, cos’ 9),

5

AK = Z5m[5Nooo _7(Nzoo +N020 +
35 Al

AKI = I5m(3Nzoo +N020 +% _Nooo)a
35 Al

AKz =T5m(Nzoo +3N020 +¢_Nooo)a

35 Al
AK3 = I5m(Nzoo + Al gy, +3—92 _Nooo)a

R
A]000 = ]000 - Ioooa

R
A]020 = ]020 - Iozos

With y =1— f, mechanical parameters in Egs.
(19) are

Cartesian moments of the density 0 of a gravitating

expressed through the dimensionless

Ipqr (6) = MR"

T

where x, y, z are the Cartesian coordinates of the
internal point; dt is the volume element of the

are values for n =2 can

ellipsoid of revolution. 7,

B+C-4
]ooo =1, [200 :T

assuming (oo = Iy;0 = 1o =0). The reference

model 6(p)g includes individual information about

density jumps, the mean density 5}5 ,and the mean

5R
000_5 ’ 200 — 020 —
m

1 2x%+2) ¢
58 =3[6(p)rp’dp. If =;‘5—R [8(prpdp.
0 m 0

In contrast to Mescheryakov and Deineka, (1977) the

moments [ (ﬁ)o , 2];0 , 1 (fzo ,and [ (ﬁ)z of the reference
density () were derived for one common set of the
convenient mean density 5m and the mean moment of
inertia /,, of the model (17) and density jumps entering

into 0 (P )y - Hence, this 3D global density [Eq.(17)] is

[xry'2"-8(p,9,4)-dT, (p+q+r=n),

) 1020 =

268, (1*+2)

where O0(p)y is the piecewise reference radial

density model with radial density jumps such as
PREM (Dziewonski and Anderson, 1981):

(18)
Al
91
X
(19)
2
2
R
A[200 = 1200 - [200’} (20)
A]002 = [002 _[(i)z-

body (see definition in Grafarend et al., 2000)
restricted here by the order

n=pt+tqg+tr=2

21

be computed through the Earth’s mass and the
dimensionless principal moments of inertia A, B,
and C expressed via Eq. (1):

A-B+C A+B-C
— s g =,

22
) ) (22)

moment of inertia [ ,f , which have been selected

preliminary for the construction of the radial profile

S(P)x:

utst

3 IRS R
002 = - . 5 .

2.8, (x*+2)
(23)

given in the principal axes system and agreed with the
Earth’s mass and the principal moments of inertia to
conserve in this way the gravitational potential from zero

to second degree, H ,, the geometrical flattening f,
and density jumps. Fig. 4 demonstrates the density
anomalies AS(p,3,A) at the mantle/crust boundary
(r=6346.6 km).

15
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Fig. 4. Density anomalies [g/cm’] AS(p,3,A4) at the mantle/crust boundary (r=6346.6 km)

The radial density 0(p)y is also treated within
the ellipsoid of revolution if we use the formula

r,=R(1-2f-P(cos3)/3) for the radius vector

7, (Moritz, 1990), where P,(cos9) is the 2nd-
degree Legendre polynomial. Eqs. (17)—(19) are

valid for a homothetic stratification when f = const
inside the ellipsoidal Earth. Therefore, if the set
of the internal ellipsoidal surfaces 7, is labeled

by the associated mean radius 7 of a sphere we
have

7€=r[1—§f-l’2(cosl9)} = p:L:—e. (24)
r

R

e

By averaging 0(p, 3, 1) over ellipsoidal surfaces we get the piecewise radial density as

8(p)=6(p)y +[AK + p?AD]

35

Al
AD = Esm |:5(N200 + A1020 + %0202 j - 3Alooo:|a

with the treatment of the reference density 8 () inside
the ellipsoidal Earth. Since the relative radius p is

constant for each 7, , the radial densities 6(p), and

O0(p) are also constant by Eqs. (25) at the ellipsoidal
surface (24).

Then we remind that the adopted model (18)
AS(p,3,A) was derived from Eq. (19) and (22)

(25)

where the principal moments of inertia A(t), B(Z),
C(t) are time-dependent. Therefore the 4D term
At5( p,3,A,t) with time-dependent parameters in
Eq. (19) and Eq. (22) should be added to the 3D model
AS(p,3,A). From Eq. (22), Eq. (19) and Egs. (1)

we get

Nk =354C, oy 1TSACS, e 354C8, 35df§m o6
where dC is the time variation in the polar moment of inertia
ac =200 _ 2B 4 -y) @

16
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taking into account Eq. (7). Substitution of Eq.
(4), Eq. (7), and the A(ty=A+dA,
B(t)=B+dB, C(t)=C+dC (where4,B,C

are the static components of the inertia tensor at

sums

epoch ;) into the Eqgs. (19)—~(22) gives after simple

6(p,3,4) =6(p)y +A6(p,3,2)+ AS(p,9,1),

N5ty = 54C B

p(sin>9+1)—1]=

algebra temporal changes in the parameters A'K ,
AD, AK,, ANK,, and AK, of the density

model (17)—(18). As a result, Egs. (17)—(18) for the
3D density distribution can be transformed to the
following form

(28)

355dA, (1) 5,

. [pz(sinz 9+1)- 1]. (29)

In the case of the 1D density model given by Egs. (25) we get

5(p)=8(p)y +|AK + p>AD |+ [N K + p*A D],

All the five parameters AK, A'D, AK,,
A'K,, and A'K; have a direct dependence on dC

and deo (?) based on (26). Hence by Eq. (26) and
Eq. (25), we get after simple manipulations the
time-dependent contribution A'S(p,3,1) in the form of
(29) and (30) for these density models since the coordinate

system OABC is considered to be invariable. Here a
dependence on the longitude A is canceled but the time # is
hidden in Eq. (27).

As the term A'K has a permanent influence on
the entire Earth we prefer to use a relative element

NS NS (p,9,1) N&(p,t)

A’D:%[S—sz].

(30)
of the part A'S(p,9,0)=AN58(p,9,/)—ANK
that corresponds to the Roche
AS'(t)=ANK + p*A'D without A'K . Obviously
at the Earth’s surface p =1 the time-dependent

model

function A'S will be independent of 0 < p <1.
Then we introduce the auxiliary functions A‘Ss CHE
=A'6,(1,9,1), Atgs(l‘) =At5~s(l,l‘) representing by

(29) and (30) without A'K .
Hence in both cases for the time-dependent
density we get

02, (:>At5w=p2-At5~s),

~

NS, N&.(9,0)

where dependencies on 3 and ¢ are canceled. This
parameter (31) expresses a relative characteristic of
the density change along a radial profile. The quadratic

function A'S /A'S, = p? reflects the same permanent

influence at epoch f independently of a considered
radial profile and allows estimating the relative
contribution of density changes in the frame of the
model (31). Therefore, the mean values of this ratio
(31) estimated inside the basic Earth’s shells are (a)
the crust — 99.6 %, (b) the upper mantle — 89.5 %, (c)
the lower mantle — 52.9 %, (d) the outer core —
14.7 %, and (e) the inner core — 1.2 %. Thus, within
the framework of the adopted model (28), (29)

(except a permanent influence of A'K ) we come to a
large amount of (31) inside the Earth’s crust as the
thinnest stratum of the planet that consists only of
0.4 % of the Earth’s total mass.

Conclusions

Thus, the verification of approximate formulas for
the modeling of the time-dependent astronomical

dynamical ellipticity F,,(¢) fixed at epoch £, =J2000

NS (t)

€2))

(H, =3.27379448 x 107) was provided by the

additional estimation of each parameter of the Taylor
series.

According to Maxwell (Maxwell, 1881), the
potential (10) of gravitational quadrupole V, leads to
the new exact formulas (16) for the orientation of the
principal axes A , B , C through the location of the

two quadrupole axes h, and h,, always placed in
the plane of the A and C axes.

The detection of the long-term variations deO
was computed based on the UT/CSR solutions of
C,, () during the time interval from 1976 to 2020.
The basic model of the long-term variations from the
UT/CSR solutions of A, (t), Ay, (t) during the
time interval from 1992 to 2020 was revealed.

Difference between C20 and A,,, given in various

systems, has the value ~2-107" which is smaller
than time changes in 520 or Zzo- This characterizes
the quality of the studied UT/CSR solutions.
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Fundamental parameters of the Earth, including
the principal axes and the principal moments of
inertia were computed at each moment of ¢ during
27.5 years. The linear changes in values of all
considered 20 parameters are slightly unclear because
of various behavior on different time-intervals, including
variations of sign for these effects, due to a jump in

the time-series 520 (¢) during the time-period 1998—

2002. For example, the Earth’s polar flattening f

increases within the second time-interval though
Yoder (1983) and other authors have obtained the

decreasing of f .

The Earth’s 3D density model given by the
restricted solution of the 3D Cartesian moments inside
the ellipsoid of the revolution is based on the three
principal moments of inertia as astronomic-geodetic
information at each moment of 7, including reference
radial profile from seismic data treated as exact
constituent. This model conserves the time-dependent
gravitational potential from zero to second degree, the
dynamical ellipticity, the polar flattening, basic radial
jumps of density as sampled for the PREM model,
and the long-term variations in space-time mass
density distribution. It is important to note that in
solving the inverse problem, the time dependence in
the Earth's inertia tensor arises due to changes in the
Earth's density but does not depend on changes in its
shape, which is confirmed by Eq. (26) and Eq. (29)
where flattening is canceled.
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YACOBI 3MIHU B TEH30PI IHEPLIIT 3EMJII
TA 3D MOJIEJIb I'YCTUHU HA OCHOBI JAHUX UT/CSR

TonoBHOIO MeTOIO poboTu € mociimkeHHs noBrux vacoBux psaiB UT/CSR mis xoediuieHTIB rapMoHik
JIPYyroro CTyHeHs EZm 0, §2m (¢) TpasitamiftHoro mosis 3emili, OTpuMaHux 3a naHnumMu SLR. fxmio guramivna
eninTuyHicTs H ) (¢) BimoMa, BOHH JalOTh 3MOI'Y 3HAXOAUTH Pi3HI MeXaHiuHI Ta FeOMETPHYHI IapaMeTpu 3eMil,
110 3MIHIOETBCA B Yaci, MPOTATroM Takux mepiofis: (a) 3 1976 no 2020 pp. Ha OCHOBI IIOMICSYHHUX Ta THYKHEBHX
po3B’sA3KiB KoedimieHTa 520; (b) 3 1992 no 2020 pp. Ha OCHOBI HIOMICSYHHX Ta THXKHEBHX DPO3B’SA3KiB
HCHYJBOBUX KOC(]iIi€HTIB Zzo @), 222 (¢), TOB’A3aHUX 13 CHCTEMOIO TOJIOBHHX OCCH iHEpIii, IO Ja€ 3MOTy
OynyBaTH MOJeNi iXHIX JOBrOCTPOKOBUX Bapialiii. BinMiHHOCTI Mixk 520 i Zzo , 3aJIaHUMH B Pi3HUX CHCTEMaX,
MOJIATAIOTh Y CEPEeNHhOMY 3HAYEHHI =2 2:107", sxe € MeHmmM, HiX Bapiamii y waci 520 abo 220 , 1

XapakTepu3sye BUCOKY sKicTb pimienr UT/CSR. [IBi Mogeni 3aexHoi Bif yacy AMHAMIiYHOI eninTuuHoCTi H j) ()
mo0yIOBaHO 3 BUKOPUCTAHHSIM JOBIOCTPOKOBHX Bapialliif 30HAIEHOTO Koe(ilieHTa Zzo (t) npotsirom ocTanHix
44 ta 27,5 poxy. Habmmwkeni ¢popmymn ais ausamiuxoi eminrtuunocti /1, (f), wo 3anexuts Bix uacy,
3HAWILIA, JOJATKOBO OIIIHMBINK KOXEH mapamerp psmy Teitmopa i dikcyroun H, = 327379448 x10” Ha
enoxy f,=J2000 srigno 3 Teopicro mpenecii-myranii IAU2000/2006. IloTenuian 3a1€KHOTO Bif 4Yacy Ipasi-

TauiiiHoro kBaapynoist V, 3rigHo i3 Teopiero MakcBelula BUKOPHCTaHO JUIsl BUBEICHHS HOBHX TOYHUX (OpMyII

BHU3HAYEHHS Opi€HTAIII] TOJOBHUX OCEH 1HEpIIii A,B,C yepe3 MOJI0KEHHS TBOX KBaAPYMOJIbHUX oceil. OTxke,
3aJIeKHI BiJ Yacy MeXaHiuHi Ta TeOMETpUYHI IapamMeTpH 3eMili, 30KpeMa TpaBiTalliifHuii KBaJpyIoJib, TOJOBHI
0Ci Ta TOJIOBHI MOMEHTH 1HEPIIii, OOUNCIIOBAIH Y KOKEH MOMEHT Yacy MpOTIAroM ocTaHHix 27,5 poky 3 1992 no
2020 pp. Oxnak ixHS JiHiNHA 3MiHA y BCIX PO3TIIHYTHX IIapamMeTpax JOCTaTHHO HEBU3HAUCHA 4epe3 pi3Hy
MOBEJIHKY Ha TIEBHMUX IHTEpBalaxX Yacy, BKJIIOUAIOUM Bapiallil 3Haka pi3HUX e(eKTiB depe3 CTPHOOK YaCOBHX
psniB Ezo(t) npotsrom 1998-2002 pp. Mozeni 3D ta 1D ryctuau 3emui, 3a1ani oOMexxeHHM po3B’sizkoM 3D

MOMEHTIB TYCTHHH BCEpEIWHI eIincoiga oOepTaHHs, OTPUMAHO 3 YMOBaMH 30€peXKCHHS 3aJIC)KHOTO BiJl 4acy
TpaBITAIlIfHOTO TIOTCHIATY BiJ HYJIHOBOTO JO APYrOro CTENCHS, JUHAMIYHOI ENINTHYHOCTI, MOJSAPHOTO
CTHCHEHHsI, OCHOBHUX paJiaJibHUX CTPUOKIB TyCTHHH, HpuiHATHX s Mmoxeni PREM, i mosromepiogndHOi
3MiHH B MPOCTOPOBO-YACOBOMY PO3MOJiT TYCTHHU IUIAaHETH. BaXIMBO 3a3HAUMTH, IO y pa3i po3B’s3yBaHHSA
o0epHeHOI 3aa4i 3aJeXHICTh BiJl yacy B TeH30pi iHepuii 3eMii BUHHKA€e BHACHTIJOK 3MiHU T'yCTHHH 3eMJIi, ane
HE 3aJIe)KUTh BiJl 3MiH 11 (JOpMH, PO 110 CBiqYATh BiAMOBIIHI PIBHSHHS, JIe CTHCHEHHS CKaCOBYETHCS.

Knouogi cnosa: 3anexHi Bi 4dacy TOJOBHI OCi Ta MOMEHTH iHepIii 3emii; AMHaAMidyHAa ETINTHYHICTH;
rpaBiTallifHUI KBaJAPYIIOJb; TEOPis Iperecii-HyTarfii.
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