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The article is devoted to the analysis of the possibility of applying the method of inverse
problems of dynamics for the synthesis of a system of spatial stabilization of the motion
of a dynamic object on an operatively programmable trajectory. The article proposes
to apply the method of inverse problems of dynamics for the synthesis of a system for
stabilizing the motion of a dynamic object on an operatively programmable trajectory. It
is concluded that the procedure for applying the method of inverse problems of dynamics
provides for the sequential execution of two procedures. The first procedure involves
setting the desired trajectory of movement of a dynamic object and determining the vector
of necessary control forces for the implementation of this trajectory of movement. The
second procedure involves determining the control function (control deviations) to create
such forces. In the development of the concepts of the algorithmic approach (inverse
problems of dynamics), an analytical expression for the governing force is obtained. The
proposed block diagram of the control algorithm can be used to synthesize control systems
for complex dynamic objects, for example, remotely piloted aircraft.
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1. Introduction

Currently, inverse problems occupy an important place in the study of theoretical and mechanical
models. It is known that a mathematically rigorous formulation of the concept of inverse prob-
lems of dynamics was given by GaliullinA.C., Petrov B.N., Popov E.P., KrutkoP.D. The relevant
subject has been intensively developed in the works of followers, first of all, Yemelyanov S.V., Er-
moshinaO.V., ZhevninaA.A., KanatnikovaA.N., KolesnikovaK. S., KrishchenkaA.P., Mukhamet-
zyanova I.A., MukharlyamovaR., ToloknovaV. Moreover, starting with the work of Galiullin I. A., it
became possible to investigate similar problems not only in Euclidean spaces but also on arbitrary
differentiable manifolds [1–7].

Many inverse problems of dynamics are initially connected with the conditions of the program
motion of aerohydrodynamic or spacecraft. These works are devoted to the selection of control func-
tions or parameters of the apparatus, which ensure its movement along a trajectory with specified
properties [2–8].

Of great importance is the problem of analytic approximation of the programmed motion and
the estimation of its error, which is solved with the help of various methods of analysis of ordinary
differential equations. One of the most effective procedures for solving such problems is the version of
the harmonic balance method, described in the works of DelamotteB. and PolandaD. A very important
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problem is the choice of control, which ensures a steady periodic motion of a mechanical object in the
phase space. In the mathematical formulation, this means the existence of a stable limit cycle for the
corresponding system of differential equations [1, 8, 9].

Thus, obtaining conditions that ensure the movement of a dynamic object along an operatively
programmable desired trajectory is relevant from the point of view of theory and practice.

Until recently, in the theory of automatic control, the tasks were mainly considered in which it
was necessary to maintain the output signal (mode) of the control object at the same constant level
(stabilization task), or to ensure tracking of an unknown predetermined influence (tracking task).
However, due to the increasing complexity of management objects, many tasks arose in which you first
need to calculate the desired law of change of the controlled process (program motion), and then build
the control law that provides accurate or approximate implementation of this process in the event of
possible emergency situations.

The complexity of solving this problem in practice is determined by the following three factors [1,
2, 9–14]:

1. The real movement at the initial moment may differ significantly from the program. This is due to
the existing initial disturbances, as well as the occurrence of an emergency situation.

2. The real values of the parameters of the control object due to parametric perturbations differ from
their estimates, which are used in the construction of the equation.

3. There are permanent disturbances.

Therefore, if the control system is not able to counter the influence of the listed internal factors
(on-board equipment failures) and external factors (disturbances), then the real movement may differ
significantly from the software one. At the same time, the goal of control (movement along the program
trajectory) will obviously not be achieved. Thus, the problem arises of building a software motion
control system, which ensures the implementation of a program trajectory with a given accuracy with
the presence of various kinds of disturbances.

The application of classical control methods to the construction of control systems for programmed
movement encounters certain difficulties. These difficulties are associated with the uncertainty of the
properties of the controlled object and the conditions of operation of the control object [6,8,9,11–14].

Studies show that the application of control laws based on solving the inverse problem of dynamics
allows us to reduce the level of random components in state coordinates. Such control laws are effective,
for example, when building control systems for unmanned aerial vehicles [1, 6, 8, 15].

2. Basic relations

Consider a managed object whose state at time t is described by a vector function X(t) =
[X1(t), . . . ,Xn(t)]. Components Xi(t), i = 1, n are phase coordinates in n-dimensional Euclidean
space R

n.
The dynamics of the motion of a controlled object over time is described by a matrix differential

equation
Ẋ(t) = F [X(t), U(t), Z(t)] + P (t);

X(t0) = X0, t ∈ [t0, tT ],
(1)

where U(t) is m-dimensional vector of control; Z(t) is r-dimensional vector of object parameters
measured in flig

Ξ(t) = [ξ1(t), ξ2(t), . . . , ξr(t)],

P (t) is n-dimensional vector of perturbations; X0 is initial state; T = tT − t0 is time of movement of
the object.

There are restrictions on the management and state of the object

X(t) ∈ QX ; U(t) ∈ QU .
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On the time interval [t0, tT ], the control function U(t) is piecewise continuous and can have discon-
tinuities of the first kind at isolated points.

We assume that the value of the parameter ξi is unknown. External perturbations P (t) and their
probabilistic properties are not known. At the same time P (t) ∈ Qp, with all t ∈ [t0, tT ], Qp is defined
physical set.

The purpose of management is to ensure the movement of an object along a program phase trajec-
tory of movement by means of an appropriate choice U(t) ∈ Qu.

Under the program of the movement of an object we understand the desired law of a state change
over time X(t). If this law is a solution of equation (1) with some admissible U(t) ∈ Qu, then we will
call it program motion and denote Xn(t), t ∈ [t0, tT ]. An admissible control that corresponds to Xn(t)
is called programmed control Un(t) [1, 6, 8, 9].

This task is formulated by BarbashinE.A. [1, 6, 9] and called the task of the implementation of
a given trajectory. Software control Un(t) and the generated by it Xp(t) will be called optimal and
denoted accordingly U0

n(t), X
0
n(t) if they deliver at least the specified quality functionality

J
[

U0
n(·),X

0
n(·)

]

= minJ [Un(·),Xn(·)] .

The paper discusses the method of synthesis of program control systems based on the ideas of the
method of inverse problems of dynamics for multidimensional systems [1,16–20]. The implementation
time of the algorithm is up to 30 minutes.

However, it should be noted the difficulties of practical application of existing classical methods.
So, for example, the problem of analytic design of regulators for a fifth-order linear system, solved on
the basis of the matrix Riccati equation, takes up to several minutes time (depending on the degree of
integration and the parameters of the object model). Therefore, this approach can not be applied in
real-time systems, such as unmanned aerial vehicles.

In the direct formulation, the task of synthesizing algorithms for software control systems is reduced
to defining the laws for the formation of control functions U0

n (movement of system control mechanisms,
steering system deviations), subject to some indicators that indirectly characterize the quality of the
control process J (Fig. 1).

Definition of the
laws of formation of

control functions

J U0
n
(t)

Fig. 1. The direct task of synthesis.

Determination
of controlling

forces

1 stage

Determination
of control
functions

2 stage

F U0
n(t)X0

n(t)

Fig. 2. The inverse problem of synthesis.

In the reverse formulation (Fig. 2),
the definition problem U0

n is considered
in two stages. At the first stage, the
controlling forces F are determined,
which give the system the necessary
movement. These forces can corre-
spond to real physical forces and mo-
ments that need to be applied to the
control object to ensure optimal pro-
grammatic movement X0

n(t). At the
second stage, questions of the practical
implementation of the necessary forces
are considered and the control func-
tions are determined U0

n(t).
It is significant that such a formulation of the problem opens up new possibilities for building control

systems based on structural schemes that are fundamentally different from the usual ones [16–20]. This
is especially evident in those cases when it is necessary to simultaneously control all or several phase
coordinates of an n-dimensional object.
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3. Formalization of the task of implementing a given motion path of a dynamic object

Consider the features of the application of the inverse problem method for a multidimensional object,
which is described by a matrix equation in operator form [1,17–19]

A(p)X = B(p)U, (2)

where

A(p) = {aij(p)} , i, j = 1, n, (3)

XT = [X1 . . . Xn], (4)

B(p) = {bij(p)} , i = 1, n, j = 1, r, (5)

UT = [U1 . . . Ur]. (6)

It is known that such a control can be represented in the form of a Cauchy. We construct a control
algorithm in which the object moves from a point X(0) to the beginning of the phase coordinates along
a trajectory

Xn(t) =









C11e
λ1t + . . .+ C1ke

λkt

C21e
λ1t + . . .+ C2ke

λkt

. . . . . . . . . . . . . . . . . . . . . . . .

Cn1e
λ1t + . . .+ Cnke

λkt









, (7)

or in matrix form
Xn(t) = CeΛt, (8)

where

C = {Cij} , i = 1, n, i = 1, k, (9)
[

eΛt
]T

=
[

eλ1teλ2t . . . eλkt
]

, (10)

where λl, l = 1, k are various real or complex conjugate numbers that satisfy the condition Reλ1 < 0.
The constant coefficients Cij, i = 1, n, i = 1, k are uniquely determined by the initial values of the

phase coordinates and their (k − 1) derivative.
Choosing the appropriate values of the parameters Cij , i = 1, n, λl, l = 1, k, you can get a lot

of different software movements. This choice can be used to obtain those program motions (2) that
satisfy various constraints (for example, a constructive constraint or a constraint on traffic safety, angle
of list, angle of attack, angle of stall)

X(0) =









C11 + C12 + . . . + C1k

C21 + C22 + . . . + C2k

. . . . . . . . . . . . . . . . . . . . .

Cn1 + Cn2 + . . .+ Cnk









,

Ẋ(0) =









C11λ1 + C12λ2 + . . .+ C1kλk

C21λ1 + C22λ2 + . . .+ C2kλk

. . . . . . . . . . . . . . . . . . . . . . . . . . .

Cn1λ1 + Cn2λ2 + . . .+ Cnkλk









,

X(k−1)(0) =









C11λ
k−1
1 + C12λ

k−1
2 + . . .+ C1kλ

k−1
k

C21λ
k−1
1 + C22λ

k−1
2 + . . .+ C2kλ

k−1
k

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cn1λ
k−1
1 + Cn2λ

k−1
2 + . . .+ Cnkλ

k−1
k









,

The controlling force fn[t] that realizes the trajectory is denoted Xn(t). We will look for such a
trajectory in the form

fn[t] = A(p)Xn(t). (11)
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To obtain the program law of change in the control force, we substitute the expression (7) into (11)

fn(t) =









a11(p)(c11e
λ1t + . . . + c1ke

λkt) + . . .+ a1n(p)(c11e
λ1t + . . .+ c1ke

λkt)
a21(p)(c11e

λ1t + . . . + c1ke
λkt) + . . .+ a2n(p)(c11e

λ1t + . . .+ c1ke
λkt)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

an1(p)(c11e
λ1t + . . .+ c1ke

λkt) + . . .+ ann(p)(c11e
λ1t + . . .+ c1ke

λkt)









. (12)

Believe that [1, 2, 9, 15, 16]

A(p) = {aij(p)} =
{

mijp
2 + rijp+ hij

}

.

Substituting this expression into expression (12), we can get the following expression in matrix
form for the control force

fn[t] = (MCΛ2
d +RCΛd +HC)eλt, (13)

where
M = {mij} , i, j = 1, n; C = {cij} , i = 1, n, j = 1, k;

Λd = diag {λi} , i = 1, k; R = {rij} , i, j = 1, n;
[

eλt
]T

=
{

eλit
}

, i = 1, k.

To start the trajectory Xn(t) at

Xn(0) =











X10 Ẋ10 Ẍ10 . . . X
(k−1)
10

X20 Ẋ20 Ẍ20 . . . X
(k−1)
20

. . . . . . . . . . . . . . .

Xn0 Ẋn0 Ẍn0 . . . X
(k−1)
n0











,

elements of the matrix C = {cij}, i = 1, n, j = 1, k should be determined as a result of solving n

systems of k algebraic equations















C11 + C12 + . . . + C1k = X10,

C11λ1 + C12λ2 + . . . +C1kλk = Ẋ10,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

C11λ
(k−1)
1 + C12λ

(k−1)
2 + . . .+ C1kλ

(k−1)
k = X

(k−1)
10 ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,














Cn1 + Cn2 + . . . + Cnk = Xn0,

Cn1λ1 + Cn2λ2 + . . . + Cnkλk = Ẋn0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

Cn1λ
(k−1)
1 + Cn2λ

(k−1)
2 + . . .+ Cnkλ

(k−1)
k = X

(k−1)
n0 .

Or in matrix form









1 1 . . . 1
λ1 λ2 . . . λk

. . . . . . . . . . . .

λk−1
1 λk−1

2 . . . λk−1
k









×









C11

C12

. . .

C1k









=









X10

Ẋ10

. . .

X
(k−1)
10









,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·,








1 1 . . . 1
λ1 λ2 . . . λk

. . . . . . . . . . . .

λk−1
1 λk−1

2 . . . λk−1
k









×









Cn1

Cn2

. . .

Cnk









=









Xn0

Ẋn0

. . .

X
(k−1)
n0









.
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The solution of these matrix equations is

[

C11 . . . C1k

]T
= Φ−1

[

X10 Ẋ10 . . . X
(k−1)
10

]T
,

[

Cn1 . . . Cnk

]T
= Φ−1

[

Xn0 Ẋn0 . . . X
(k−1)
n0

]T
(14)

where

Φ =









1 1 . . . 1
λ1 λ2 . . . λk

. . . . . . . . . . . .

λk−1
1 λk−1

2 . . . λk−1
k









(15)

Since the values λi, i = 1, k chosen are different, there is an inverse matrix Φ−1.
Substituting expression (15) into expression (14), we get

C =











X10 Ẋ10 Ẍ10 . . . X
(k−1)
10

X20 Ẋ20 Ẍ20 . . . X
(k−1)
20

. . . . . . . . . . . . . . .

Xn0 Ẋn0 Ẍn0 . . . X
(k−1)
n0











· Φ−1T = X(0)Φ−1T (16)

The expression for the control force vector can be found by substituting expression (16) into ex-
pression (13)

fn[t] =
{

M
(

X(0)[Φ−1]T
)

Λ2
d +R

(

X(0)[Φ−1]T
)

Λd +H
(

X(0)[Φ−1]T
)}

eΛt (17)

Analyzing the obtained expression (17) it can be concluded that to obtain the necessary control force
it is necessary in advance:

— describe the control object by defining the elements of the matrices M , R, H;
— set initial conditions for each controlled coordinate and their first (k − 1) derivatives;
— set the programmed motion path, by appropriate selection of elements λi, i = 1, k.

Obtaining the expression for the control force ends the first stage of solving the problem.
Let us now consider another stage associated with the implementation of the force change program

fn. The task of the practical implementation of the force fn control algorithm is to determine the
vector of control functions Un (the magnitudes of deviations of the controls) with the help of which the
force is created fn[Xn, Un]. It is obvious that the solution of this task is determined by the structure
and parameters of the control object, and the information being measured.

The calculated ratios with which are calculated fn[Xn(t)] and Un(t) make up the content of the
motion control algorithm.

We consider, at the same time, that the control object (1) has controllability properties, the force fn
is uniquely determined by the magnitude of the control vector UT = (U1 . . . Ur) [1,2,4,8–10,15,16,21].
Therefore, for each time t and its corresponding state X(t), you can specify such Un(t) at which

f(X, Un) = fn[t]. (18)

Mathematical expression (18) can be solved relatively Un analytically (a special case), or algorithmically
(the most general case).

Consider the second way to solve equation (18), which is of the greatest interest from the point of
view of practical implementation.

Let f(X,U)such that
Ui · f(X,Ui, Uj) > 0,

Uj = const; i = 1, n, j = 1, n, i = j.
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We will seek a solution to equation (18) in the form:

U̇n = ρ∆f(t), (19)

where
ρT = diag(ρ1, . . . , ρr),

∆f(t) = fn(t)− f(X,U).

This approach to defining control functions is based on the results of studies conducted in [11,16–20].
The choice of algorithm (19) is determined by the properties of the function f(X,U)

lim
t→∞

U(t) = Un(t).

Structurally, the algorithm (19) can be represented as a closed system, the scheme of which is
shown in Fig. 3.

M =

[

m11 . . . m1n
. . . . . . . . .
mn1 . . . mnn

]

R =

[

r11 . . . r1n
. . . . . . . . .
rn1 . . . rnn

]

H =

[

h11 . . . h1n
. . . . . . . . .
hn1 . . . hnn

]

X0=









X10 Ẋ10 . . . X
(k−1)
10

X20 Ẋ20 . . . X
(k−1)
20

. . . . . . . . . . . .

Xn0 Ẋn0 . . . X
(k−1)
n0









Λ =









λ1
λ2

. . .
λn









MX0 [Φ
−1]TΛ2

d

RX0[Φ
−1]TΛd

HX0[Φ
−1]T

e
Λt

M

R

H

X0

fn(t)

f(t)

A =

[

a11 . . . a1n
. . . . . . . . .
an1 . . . ann

]





ρ1
. . .

ρn





∫

(. . .)dt





X1 . . . X
(k−1)
1

. . . . . . . . .

Xn . . . X
(k−1)
n





U̇ U X

Fig. 3. Algorithm block diagram.

X0

Xk−1
0

X(t) X(t)

f(x, u)

ρ =

[ρ1
.

.

.

ρn

] t
∫

0

U̇ U

(−)

O

(

MCΛ2

+RCΛ
+HC

)

C−1

Fig. 4. Structural scheme of the control algorithm.

This scheme corresponds to the algorithmic solution of the equation f(X,U) = fn(t). The pro-
grammatic value of the control force is determined by the relation (17).

It should be borne in mind that even if program control Un(t) as a function of time is built,
the practical benefits of its use are small: various kinds of disturbances, as well as the uncertainty
of the properties and conditions of the object, including in emergency situations, will prevent the
implementation of program motion. Therefore, the control should be formed taking into account
additional information coming into the control system in the process of movement. This requirement
is met by the feedback control.
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To obtain a feedback control algorithm, we present the programmed motion in the form

Xn(t) = CeΛt, (20)

where C = {cij}, i, j = 1, n is the square matrix of dimension n× n [1–7, 10, 15–18,21].
It should be noted that in this case the matrix C is modified in comparison with the expression (16)

— reduced to square. In many practical cases, such a representation of program motion is possible and
permissible [1, 17–20]. Then from the condition of equality X(t) = Xn(t) we get

X(t) = CeΛt.

Therefore
e∆t = C−1X(t), detC 6= 0. (21)

Then the force control law (17) with regard to expression (21) can be represented as

fn[X(t)] =
(

MCΛ2 +RCΛ+HC
) [

C−1X(t)
]

. (22)

At each moment of time fn(t) it is formed by measuring the current state of the system, that is, based
on feedback. It is characteristic that the coefficients of the force control algorithm are determined by
the initial conditions. The block diagram of the control algorithm constructed in accordance with (22)
is shown in Fig. 4.

4. Conclusions

The article proposes to apply the method of inverse problems of dynamics for the synthesis of a
system for stabilizing the motion of a dynamic object on an operational programmable trajectory.
The procedure for applying the method of inverse problems of dynamics provides for the sequential
execution of the following procedures. At the first stage, the desired trajectory of the dynamic object
X0

n(t) is specified and the vector of necessary control forces F is determined for the realization of
this trajectory of movement. At the second stage, the control functions U0

n(t) (control deviations) for
creating such forces F are determined.

In the development of the concepts of the algorithmic approach — inverse problems of dynamics,
an analytical expression is obtained for the governing force. The proposed block diagram of the control
algorithm can be used to synthesize control systems for complex dynamic objects, for example, remotely
piloted aircraft.
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Використання методу обернених задач динамiки для синтезу
системи стабiлiзацiї руху динамiчного об’єкта на оперативно

програмованих траєкторiях
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Стаття присвячена аналiзу можливостi застосування методу обернених задач дина-
мiки для синтезу системи просторової стабiлiзацiї руху динамiчного об’єкта на опера-
тивно програмованих траєкторiях. У статтi запропоновано застосувати метод обер-
нених задач динамiки для синтезу системи стабiлiзацiї руху динамiчного об’єкта на
оперативно програмованiй траєкторiї. Визначено, що процедура застосування методу
обернених задач динамiки передбачає послiдовне виконання двох процедур. Перша
процедура передбачає задання бажаної траєкторiя руху динамiчного об’єкта i визна-
чення вектора необхiдних керуючих сил для реалiзацiї цiєї траєкторiї руху. Друга
процедура передбачає визначення керуючої функцiї (вiдхилення органiв управлiння)
для створення таких сил. У розвитку концепцiй алгоритмiчного пiдходу — оберне-
них задач динамiки отримано аналiтичний вираз для керуючої сили. Запропонована
структурна схема алгоритму управлiння може бути використана для синтезу систем
керування складних динамiчних об’єктiв, наприклад дистанцiйно пiлотованих лiталь-
них апаратiв.

Ключовi слова: алгоритм управлiння, динамiчний об’єкт, керуюча сила, керуюча

функцiя, обернена задача динамiки, оперативно програмована траєкторiя, синтез

системи керування, стабiлiзацiя руху.
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