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In this work, a numerical bi-dimensional simulation of heat distribution in the human
eye is investigated. A dual reciprocity boundary element method (DRBEM) is applied to
obtain the heat distribution in the human eye. The non-overlapping Dirichlet–Neumann
domain decomposition method combined with DRBEM is used to find a more accurate
representation of heat distribution in the human eye presented for two, three and four
subdomains. The result obtained are compared with literature experimental and numerical
studies. The simulations of proposed algorithms describe with sufficient accuracy the heat
distribution in the human eye.
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1. Introduction

The human being is a homeothermic organism, which means that its body temperature is almost
constant which is mainly attributed to the existence of the epidermal envelope, the skin. The skin is
the first barrier to protect the human body. There is no epidermal envelope to protect the human eye
from environmental fluctuations. The human eye is exposed to the temperature of the environment
most of the time.

At the end of the 19th century, researchers became interested in the thermal profile of the human eye.
At present, the measurement techniques initially used have been abandoned because of their devastating
procedures for the human eye. In the early of 1960s, the development of modern technologies, especially
the use of infra-red devices, made it possible to obtain measurements of temperature on the surface of
the cornea without damaging the human eye. Erfon et al [5] used infra-red techniques and obtained a
mean temperature of 34.3◦C, while Purslow et al [16] recorded a mean temperature of 35±1.1◦C. These
infra-red techniques induce measurement errors and present only the measurements of the temperature
on the corneal surface without giving any information on the temperature in other components of the
eye.

During the last decades, with the availability of high computing power, numerical and mathematical
investigations are considered by many researchers as an alternative to experimental techniques. In 1982,
Lagendijk [10] using finite difference method (FDM) reported a mean corneal surface temperature of
34.5◦C. Later, Scott [18] used a finite element method (FEM) and obtained a temperature of 33.25◦C
at the surface of the cornea. Ng et al [13] obtained results of the ocular surface temperature using finite
element method (FEM) to have a mean of 33.65◦C. In 2007, Ooi et al [14] studied the bioheat transfer
in the eye using boundary element method (BEM) and reported a mean corneal surface temperature
of 33.68◦C.
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In this paper a discontinuous dual reciprocity boundary element method is adopted for the ap-
proximation of heat distribution in the human eye. This work is divided into five sections, in the first
one the governing equation of heat distribution in human eye is presented with adequate boundary
conditions, next part is devoted to the description of the combination of dual reciprocity method and
non overlapping domain decomposition method [2], the forth section give a numerical application of the
proposed methods to the investigated problem, finally some conclusions are drawn in the last section.

2. The human eye model
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Fig. 1. 2D model of the human eye.

We developed a two-dimensional model of the human eye fol-
lowing closely the dimensions in the model in [13]. The human
eye is modeled based on anatomical measurements reported in
the literature [3,7]. The human eye is divided into four regions
the aqueous humor, the lens, the vitreous humor and the sclera.
The retina and the choroid are relatively very thin therefore,
they are modeled as part of the sclera. The iris and the sclera
have the same thermal properties and are modeled together.
The cornea is assumed to be part of the aqueous humor since
they both have similar thermal properties [4].

The human eye is modeled as comprising four domains,
namely the aqueous humor, the lens, the vitreous humor and
the sclera which we denote as D1, D2, D3 and D4, respectively
as in Figs. 1 and 2. Thermal properties for each region of the
human eye are given in Table 1.
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Fig. 2. Four sub-domains of the human eye D1, D2, D3 and D4.

Table 1. Characteristics of different tissues of the human eye.

Tissue Thermal conductivity Rate of blood
(Wm−1K−1) perfusion (s−1)

Cornea 0.58 0
Aqueous humor 0.58 0
Lens 0.40 0
Iris 1.0042 0
Vitreous humor 0.603 0
Choroid 0.53 0.021
Retina 0.565 0.035
Sclera 1.0042 0
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3. Governing equations

3.1. Heat transfer equation

The partial differential equation governing this simulation is the Pennes bioheat equation [15] and its
is written as follows

ρ cb
∂T

∂t
= ∇(kt∇T ) + ωb ρb cb(Tb − T ) +Q+Qm, (1)

where ρ is the density (kgm−3), cb is the specific temperature (J kg−1K−1), k is the thermal conduc-
tivity of local tissue (Wm−1K−1), ωb is the rate of blood perfusion in the eye (1/s), t is time (s), Qm

is heat generated through metabolism (Wm−3) and Q is heat generated from external sources such as
radiation. Subscript t and b refers to tissue and blood, respectively.

Heat generated by metabolism or by external source is neglected because the human eye is composed
mainly of water and we assume that there is no radiations affecting the heat in human eye. For a steady
state case, the equation (1) is written

∇(kt∇T ) + ωb ρb cb(Tb − T ) = 0. (2)

The thermal conductivity of each sub-domain can be found in Table 1.
Moreover, Tb is the blood temperature 37◦C, Cb is the specific heat of blood 3594 J/kg◦C and ρb is

the density of blood which are equal to and 1060 kg/m3.

3.2. Boundary conditions

Boundary conditions are defined on the cornea and the sclera as follow:

— On the sclera Γs, the blood flow is acting as a heating source

− k
∂T

∂n
= hbl(T − Tbl). (3)

In the above equation, n is the normal direction to the surface boundary. hbl is the convection
coefficient between blood and eye (65Wm−2K−1) and Tbl is blood temperature (37◦C).

— On the cornea Γc, where there are three forms of heat loss through convection, radiation and tears
evaporation.

− k
∂T

∂n
= hamb(T − Tamb) + σε(T 4 − T 4

amb) + E. (4)

In this equation, Tamb is the ambient temperature (25◦C), hamb is the convection coefficient
(10Wm−2K−1) and E is the tear evaporation rate of the eye (40Wm−2). σ is the Stefan Boltzmann
constant (5.67 × 10−8|,Wm−2K−4) and ε is emissivity 0.975.

4. Approximation methods

In this section, a numerical solution of the problem (2) subject to (3) and (4) is investigated, where a
boundary element approach is adopted.

4.1. Discontinuous dual reciprocity boundary element method

In order to develop an integro-differential equation of the considered problem with respect to regions
Di (as illustrated in Fig. 2) a dual reciprocity boundary element method is adopted, i.e.,

λ(x, y)Ti(x, y) =

∫

Γi

Ti(s, t)
∂T ∗

∂n
(s, t;x, y) dS(s, t) −

∫

Γi

T ∗(s, t;x, y)
∂Ti

∂n
(s, t) dS(s, t)

+

∫

Di

T ∗(s, t;x, y)

[

wb ρb cb
ki

(Tb − Ti)

]

dD(s, t) (5)
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For (s, t) ∈ Di ∪ Γi and i = 1, 2, 3 and 4. And the jump term is given as:

λ(s, t) =







1, (s, t) ∈ Di,
0.5, (s, t) ∈ Γi,
0, if not.

The fundamental solution T ∗(s, t;x, y) is written as follows:

T ∗(s, t;x, y) = −
1

2π
log

(

√

((x− s)2 + (y − t)2)
)

The next step is devoted to the discretization of the boundaries Γi into Ni elements, where for each

element Γ
(j)
i two points (x

(j)
i , y

(j)
i ) and (x

(Ni+j)
i , y

(Ni+j)
i ) are chosen accordingly to the following ex-

pressions:
(

x
(j)
i , y

(j)
i

)

=
(

s
(j)
i , t

(j)
i

)

+ τ
(

s
(j+1)
i − s

(j)
i , t

(j+1)
i − t

(j)
i

)

,

(

x
(Ni+j)
i , y

(Ni+j)
i

)

=
(

s
(j)
i , t

(j)
i

)

+ (1− τ)
(

s
(j+1)
i − s

(j)
i , t

(j+1)
i − t

(j)
i

)

,

where the two points
(

s
(j)
i , t

(j)
i

)

and
(

s
(j+1)
i , t

(j+1)
i

)

denotes the ends points of the element Γ
(j)
i respec-

tively for j = 1, 2, . . . , Ni, and τ ∈]0, 0.5[. We perform a linear approximation of the temperature and
the heat flux (denoted Qi(s, t)) in the following form:

Ti(s, t) ≃
[

1− d
(j)
i (s, t)

]

T
(j)
i + d

(j)
i (s, t)T

(Ni+j)
i ,

Qi(s, t) ≃
[

1− d
(j)
i (s, t)

]

Q
(j)
i + d

(j)
i (s, t)Q

(Ni+j)
i , (6)

where

d
(j)
i (s, t) =

√

(

s− s
(j)
i

)2
+

(

t− t
(j)
i

)2
− τ l

(j)
i

(1− 2τ) l
(j)
i

T
(j)
i and T

(Ni+j)
i denotes the temperature at the points

(

x
(j)
i , y

(j)
i

)

and
(

x
(Ni+j)
i , y

(Ni+j)
i

)

respectively,

and Q
(j)
i and Q

(Ni+j)
i denotes the heat flux at the points

(

x
(j)
i , y

(j)
i

)

and
(

x
(Ni+j)
i , y

(Ni+j)
i

)

respectively,

l
(j)
i is the length of the element Γ

(j)
i .

The task of taking the domain integral in (5) to the boundary is achieved by using a radial basis
function approximation of the integrand, in other words we have

[

wb ρb cb
ki

(Tb − Ti(s, t))

]

≃

2Ni+Li
∑

j=1

α(j)R(j)(s, t; s(j), t(j)), (7)

where Li is the number of internal collocation points in the domain Di and the radial basis function

R(j)(s, t) is given by R(j)(s, t; s(j), t(j)) = 1+
(

(

s− s(j)
)2

+
(

t− t(j)
)2
)

+
(

(

s− s(j))2 + (t− t(j)
)2
)3/2

.

The particular solution T̂ and the radial basis function are related throw the following relation:

∆T̂ = R.

Hence the system (5) can be written as follows

λ(x(p), y(p))T
(p)
i =

Ni
∑

k=1

H
(k)
1i

(

x(p), y(p)
)

T
(k)
i +H

(k)
2i

(

x(p), y(p)
)

T
(Ni+k)
i

−G
(k)
1i

(

x(p), y(p)
)

Q
(k)
i −G

(k)
2i

(

x(p), y(p)
)

Q
(Ni+k)
i

=

2Ni+Li
∑

j=1

Ni
∑

k=1

H
(k)
1i

(

x(p), y(p)
)

T
(k)
i +H

(k)
2i

(

x(p), y(p)
)

T
(Ni+k)
i
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−G
(k)
1i

(

x(p), y(p)
)

Q
(k)
i −G

(k)
2i

(

x(p), y(p)
)

Q
(Ni+k)
i

×

2Ni+Li
∑

e=1

W
(je)
i

[

wb ρb cb
ki

(Tb − T
(j)
i )

]

(8)

for p = 1, 2, . . . , 2Ni + Li and i = 1, 2, 3 and 4. Where W
(je)
i are the coefficients of the inverse of the

matrix Ri. The system (8) constitutes 2Ni unknown (the temperature) and Li internal unknown T
(p)
i

for p = 2Ni + 1, . . . , 2Ni + Li.

The line integrals H
(k)
1i , H

(k)
2i , G

(k)
1i and G

(k)
2i are defined by

H
(k)
1i (x, y) =

∫

Γk

(1− d
(k)
i )

∂T ∗

∂n
(s, t;x, y) dS

H
(k)
2i (x, y) =

∫

Γk

d
(k)
i

∂T ∗

∂n
(s, t;x, y) dS

G
(k)
1i (x, y) =

∫

Γk

(1− d
(k)
i )T ∗(s, t;x, y) dS

G
(k)
2i (x, y) =

∫

Γk

d
(k)
i T ∗(s, t;x, y) dS

The non-linearity in (4) is treated using a non-linear modified Newton method with a given precision
10−15.

− k
∂T

∂n
= hamb(T − Tamb)− σ εT 4

amb +E. (9)

The given initial approximation is obtained by solving the linear system with using the previous linear
boundary condition (8) instead of non-linear condition (4).

4.2. Domain decomposition techniques

In this part a non-overlapping Dirichlet–Neumann domain decomposition method is described, in
the first case we decompose the human eye into two sub-domains, then three sub-domains case is
investigated, and the last case is devoted to four sub-domains decomposition.

4.2.1. The eye divided into two sub-domains
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Fig. 3. The decomposition of the human eye into two subdomains. The first
subdomain is D1 ∪ D2 composed of the cornea and the lens and the second
subdomain D3∪D4 is constitued of the iris, the vitreous humor and the sclera.

The first domain decom-
position technique is done
by decomposing the human
eye into two disjoint sub-
domains D1 ∪D2 and D3 ∪
D4 illustrated in Fig. 3. I14
and I23 are the interfaces
between sub-domains D1

and D4 and D2 and D3, re-
spectively. The Dirichlet–
Neumann algorithm used
to solve problem (2)–(4) in
two sub-domains is given
by Algorithm1.
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Algorithm 1 Two non-overlapping subdomains

Tol, µ0, k = 1, and error = 1
While error > Tol

• Solve non-linear problem (10) to obtain
∂T k

1

∂n1
on I14 ∪ I23:



















−∇(k1∇T k
1 ) + ωb ρb cb T

k
1 = ωb ρb cb Tb in D1 ∪D2,

−k1
∂T k

1

∂n1
= hamb(T

k
1 − Tamb) + σ ε

(

(T k
1 )

4 − T 4
amb

)

+ E on Γc,

T k
1 = µk−1 on I14 ∪ I23.

(10)

• Solve linear problem (11) to obtain T k
2 on I14 ∪ I23:























−∇(k2∇T k
2 ) + ωb ρb cb T

k
2 = ωb ρb cb Tb in D3 ∪D4,

−k2
∂T k

2

∂n2
= hbl(T

k
2 − Tbl) on Γs,

−k2
∂T k

2

∂n2
= k1

∂T k

1

∂n1
on I14 ∪ I23.

(11)

• Update:
µk = µk−1 + θ

(

T k
2 − µk−1

)

on I14 ∪ I23 and θ ∈]0, 1[

• Compute:
error = ‖µk − µk−1‖, k = k + 1.

End while

4.2.2. The eye divided into three sub-domains

The human eye is decomposed into three sub-domains D1, D2 and D3 ∪D4, shown in Fig. 4. I12 and
I14 are the interfaces between sub-domains D1 and D2 and D1 and D4, respectively. I23 refers to the
interface between sub-domains D2 and D3. The Dirichlet–Neumann algorithm solving problem (2)–(4)
is written as in Algorithm2.
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Fig. 4. The decomposition of the human eye into three subdomains. The first subdomain is D1 composed of
the cornea and the aqueous humor, the second subdomain D2 is the lens and the third subdomain D3 ∪D4 is

constitued of the iris, the vitreous humor and the sclera.
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Algorithm 2 Three non-overlapping subdomains

Tol, µ1
0, µ

2
0, k = 1, and error = 1

While error > Tol

• Solve non-linear problem (12) to obtain
∂T k

1

∂n1
on I14 ∪ I12:















−∇(k1∇T k
1 ) + ωb ρb cb T

k
1 = ωb ρb cb Tb in D1,

−k1
∂T k

1

∂n1
= hamb

(

T1 − T k
amb

)

+ σ ε
(

(T k
1 )

4 − T 4
amb

)

+ E on Γc,

T k
1 = µ1

k−1 on I14 ∪ I12.

(12)

• Solve linear problem (13) to obtain T k
2 on I12 and

∂T k

2

∂n2
on I23:















−∇(k2∇T k
2 ) + ωb ρb cb T

k
2 = ωb ρb cb Tb in D2,

−k2
∂T k

2

∂n2
= k1

∂T k

1

∂n1
on I12,

T k
2 = µ2

k−1 on I23.

(13)

• Solve linear problem (14) to obtain T k
3 on I14 ∪ I23:































−∇(k3∇T k
3 ) + ωb ρb cb T

k
3 = ωb ρb cb Tb in D3 ∪D4,

−k3
∂T k

3

∂n3
= hbl

(

T k
3 − Tbl

)

on Γs,

−k3
∂T k

3

∂n3
= k1

∂T k

1

∂n1
on I14,

−k3
∂T k

3

∂n3
= k2

∂T k

2

∂n2
on I23.

(14)

• Update:

µ1
k = µ1

k−1 + θ1
(

T k
2 − µ1

k−1

)

on I12 and θ1 ∈]0, 1[,

µ2
k = µ2

k−1 + θ2
(

T k
3 − µ2

k−1

)

on I14 ∪ I23 and θ2 ∈]0, 1[.

• Compute:
error = max

(

‖µ1
k − µ1

k−1‖, ‖µ
2
k − µ2

k−1‖
)

k = k + 1.

End while

4.2.3. The eye divided into four sub-domains
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Fig. 5. The decomposition of the human eye into four sub-domains D1, D2, D3 and D4.
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In this part, the human eye is divided into four sub-domains D1, D2, D3 and D4 presented in Fig. 5. I12
and I14 are the interfaces between sub-domains D1 and D2 and D1 and D4. I23 refers to the interface
between sub-domains D2 and D3, while I34 is the interface between sub-domains D3 and D4. In this
case, the Dirichlet–Neumann algorithm solving problem (2)–(4) is written as in Algorithm3.

Algorithm 3 Four non-overlapping subdomains

Tol, µ1
0, µ

2
0, µ

3
0, k = 1, and error = 1

While error > Tol

• Solve non-linear problem (15) to obtain
∂T k

1

∂n1
on I14 ∪ I12:











−∇(k1∇T k
1 ) + ωb ρb cb T

k
1 = ωb ρb cb Tb in D1,

−k1
∂T k

1

∂n1
= hamb(T

k
1 − Tamb) + σ ε

(

(T k
1 )

4 − T 4
amb

)

+ E on Γc,

T k
1 = µ1

k−1 on I14 ∪ I12.

(15)

• Solve linear problem (16) to obtain T k
2 on I12 and

∂T k

2

∂n2
on I23:











−∇(k2∇T k
2 ) + ωb ρb cb T

k
2 = ωb ρb cb Tb in D2,

−k2
∂T k

2

∂n2
= k1

∂T k

1

∂n1
on I12,

T k
2 = µ2

k−1 on I23.

(16)

• Solve linear problem (17) to obtain T k
3 on I23 and

∂T k

3

∂n3
on I34:











−∇(k3∇T k
3 ) + ωb ρb cb T

k
3 = ωb ρb cb Tb in D3,

−k3
∂T k

3

∂n3
= k2

∂T k

2

∂n2
on I23,

T k
3 = µ3

k−1 on I34

(17)

• Solve linear problem (18) to obtain T k
4 on I14 ∪ I34 :



























−∇(k4∇T k
4 ) + ωb ρb cb T

k
4 = ωb ρb cb Tb in D4,

−k4
∂T k

4

∂n4
= hbl(T

k
4 − Tbl) on Γs,

−k4
∂T k

4

∂n4
= k1

∂T k

1

∂n1
on I14,

−k4
∂T k

4

∂n4
= k3

∂T k

3

∂n3
on I34.

(18)

• Update:

µ1
k = µ1

k−1 + θ1
(

T k
2 − µ1

k−1

)

on I12 and θ1 ∈]0, 1[,

µ2
k = µ2

k−1 + θ2
(

T k
3 − µ2

k−1

)

on I23 and θ2 ∈]0, 1[,

µ3
k = µ3

k−1 + θ3
(

T k
4 − µ3

k−1

)

on I14 ∪ I34 and θ3 ∈]0, 1[.

• Compute:
error = max

(

‖µ1
k − µ1

k−1‖, ‖µ
2
k − µ2

k−1‖, ‖µ
3
k − µ3

k−1‖
)

, k = k + 1.

End while

The resolution of all non-linear problems in all algorithms is done using a non-linear modified
Newton algorithm.

Mathematical Modeling and Computing, Vol. 7, No. 1, pp. 1–13 (2020)



Simulation of heat distribution in the human eye . . . 9

5. Results and discussion

In this section, to confirm the performance of our method, we performed synthetic tests in which we
used application examples where the analytic expression of the solution is known then real experiments
have been carried out using data reported in the literature.

5.1. Synthetic tests

In the first set of tests, we used an example of the problem (1)–(4) where the analytical expression of
the solution is Tex(x, y) = cos(x+y), and k(x, y) = exp(−x−y). We have in Table 2, the errors between
approximated solutions Tnum and analytical solution Tex on the cornea and the sclera, respectively.

Table 2. Error between the analytical solution Tex and the approached solution Tnum and error between
the analytical normal flux Qex and the approched normal flux Qnum on the Cornea and Sclera.

Method
‖Tex − Tnum‖L∞(Γc) ‖Qex −Qnum‖L∞(Γc)

Cornea Sclera Cornea Sclera
DRBEM 8.18× 10−6 8.78 × 10−6 4.45 × 10−5 8.78 × 10−6

Algorithm 1 1.63× 10−6 7.39 × 10−7 2.95 × 10−4 7.39 × 10−7

Algorithm 2 6.39× 10−6 1.38 × 10−6 2.81 × 10−5 1.38 × 10−6

Algorithm 3 1.16× 10−6 2.18 × 10−6 3.09 × 10−5 2.18 × 10−6

5.2. Experiments with real data

The main contribution of this work is to present a 2D model of heat distribution in human eye using
dual reciprocity boundary element method in conjunction with domain decomposition method. We
performed real experiments using parameters reported in Table 1.

5.2.1. Dual reciprocity boundary element method without domain decomposition

The heat distribution on the corneal surface is shown in Fig. 6(left), where the lowest temperature
is 33.8188◦C and it is located at the center of the cornea, the highest temperature 36.9310◦C occurs
at the optic nerve where the blood vessels are acting as a heating source. Figure 6(right) plots the
temperature variation along papillary axis. Figure 7 presents the heat flux distribution on the corneal
surface.
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Fig. 6. Temperature (◦C) on the corneal surface (left) and on
the papillary axis (right) obtained by DRBEM without domain

decomposition.

Fig. 7. Normal heat flux on the corneal
surface (Wm−2) calculated by DRBEM

without domain decomposition.
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5.2.2. Domain decomposition method: Two sub-domains

In this section, we decomposed the human eye into two disjoint sub-domains D1 ∪D2 and D3 ∪D4,
we used the Dirichlet–Neumann algorithm to solve (2)–(4). In Fig. 8(left), the lowest temperature
33.7974◦C is located in the center of the cornea. The temperature increases gradually as one approaches
the sclera and the optic nerve as shown in Fig. 8(right). Fig. 9 plots the heat flux on the corneal surface.
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Fig. 8. Temperature (◦C) on the corneal surface (left) and on the
papillary axis (right) obtained by Algorithm 1.

Fig. 9. Normal heat flux on the corneal
surface (Wm−2) calculated byAlgorithm 1.

5.2.3. Domain decomposition method: Three sub-domains

In this part, we partitioned the human eye into three sub-domains D1, D2, and D3 ∪ D4, we used
the Dirichlet-Neumann algorithm to solve (2)–(4). Fig. 10(left) shows heat distribution on the corneal
surface where the lowest temperature, 33.7787◦C, is located at the center of the cornea. The highest
temperatures occur at the optic nerve and the sclera. Fig. 10(right) plots the heat variation along
papillary axis. Fig. 11 lays out the heat flux distribution on the corneal surface.
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Fig. 10. Temperature (◦C) on the corneal surface (left) and on
the papillary axis (right) obtained by Algorithm 2.

Fig. 11. Normal heat flux on the corneal
surface (Wm−2) calculated byAlgorithm 2.

5.2.4. Domain decomposition method: Four sub-domains

In the last numerical simulation, we subdivided the human eye into four sub-domains D1, D2, D3,
and D4. Similarly, we solved problem (2)–(4) using Dirichlet–Neumann algorithm. Fig. 12(left) and
Fig. 12(right) show that the numerical value of the temperature at the center of the cornea is 33.7710◦C
and the temperature increases as we go away from the cornea.
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Fig. 12. Temperature (◦C) on the corneal surface (left) and on
the papillary axis (right) obtained by Algorithm 3.

Fig. 13. Normal heat flux on the corneal
surface (Wm−2) calculated byAlgorithm 3.

Table 3. Comparison of values of the temperature at the center of the corneal surface, obtained by the proposed
methods and the values obtained by previous numerical and experimental studies.

Method Temperature (◦C) Reference
DRBEM without DD 33.8188 Present work

Algorithm 1 33.7974 Present work
Algorithm 2 33.7787 Present work
Algorithm 3 33.7710 Present work

Boundary element method 33.65 Ean-Hin Ooi et al [14]
Finite element method 33.68 E.Y.K.Ng et al [13]
Finite element method 33.25 Scott [18]
Finite element method 33.713 Amara [1]

Experimental method: Infra-red 34.80 Mapstone [11]
Experimental method: Infra-red 34.50 Rysa et al [17]

Experimental method: Contact probe 33.67 Horven et al [9]
Experimental method: Infra-red 33.40 Fielder et al [6]
Experimental method: heat flow 34.50 Martin et al [12]

All the methods that have been applied in this study, give values of the temperatures at the center
of the cornea between 33.7710◦C and 33.8188◦C. It is clear from Table 3 that there is a good agreement
between our results and past experimental and numerical results. The temperature on the papillary axis
is noticed to increase from it lowest value at the center of the corneal surface to a higher temperature
at the sclera.

6. Conclusion

In this work, we formulate the dual reciprocity boundary element method to find heat distribution
in the 2D model of the human eye. At first, we considered the human eye as one domain, then
we applied a non-overlapping Dirichlet–Neumann domain decomposition method by decomposing the
human eye into two sub-domains then three sub-domains and in a the last simulation to four sub-
domains. Comparing the obtained results with previous numerical and experimental studies our 2D
model is an accurate representation of heat distribution in the human eye. The presented model can
be used to predict the heat distribution in the case of a tumor in the human eye.
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Моделювання розподiлу тепла в людському оцi за допомогою
дуального розривного методу граничних елементiв та методу

декомпозицiї для областей без перекриття

Ахмедоу Бамба С., Еллабиб А., Ел Мадкоури А.

Унiверситет Кадi Айяд, Лабораторiя прикладної математики та обчислювальної технiки,

Факультет науки i технiки,

Авеню Абделькрим Ель-Хаттабi Б. П. 549, Марракеш, Марокко

У цiй роботi дослiджено чисельне двовимiрне моделювання розподiлу тепла в людсь-
кому оцi. Для отримання розподiлу тепла в людському оцi застосовується дуальний
метод граничних елементiв (DRBEM). Метод Дiрiхле–Ноймана для областей без пе-
рекриття в поєднаннi з DRBEM використовується для пошуку бiльш точного зобра-
ження розподiлу тепла в людському оцi, яке подається як двi, три та чотири пiдоб-
ластi. Отриманi результати порiвнюються з лiтературними експериментальними та
чисельними дослiдженнями. Моделювання запропонованих алгоритмiв з достатньою
точнiстю описує розподiл тепла в людському оцi.

Ключовi слова: розподiл тепла, людське око, дуальний метод, метод граничних

елементiв.
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